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Summary Flavopiridol is the first potent inhibitor of cyclin-dependent kinases (CDKs) to enter clinical trials. Little is known about mechanisms
of resistance to this agent. In order to determine whether P-glycoprotein (Pgp) might play a role in flavopiridol resistance, we examined
flavopiridol sensitivity in a pair of Chinese hamster ovary cell lines differing with respect to level of Pgp expression. The IC50s of flavopiridol in
parental AuxB1 (lower Pgp) and colchicine-selected CHRC5 (higher Pgp) cells were 90.2 ± 6.6 nM and 117 ± 2.3 nM, respectively (P < 0.01),
suggesting that Pgp might have a modest effect on flavopiridol action. Consistent with this hypothesis, pretreatment with either quinidine or
verapamil (inhibitors of Pgp-mediated transport) sensitized CHRC5 cells to the antiproliferative effects of flavopiridol. Because of concern that
colony forming assays might not accurately reflect cytotoxicity, we also examined flavopiridol-treated cells by trypan blue staining and flow
cytometry. These assays confirmed that flavopiridol was less toxic to cells expressing higher levels of Pgp. Further experiments revealed that
flavopiridol inhibited the binding of [3H]-azidopine to Pgp in isolated membrane vesicles, but only at high concentrations. Collectively, these
results identify flavopiridol as a weak substrate for Pgp. © 2001 Cancer Research Campaign http://www.bjcancer.com
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Flavopiridol is the first potent cyclin-dependent kinase inhibitor to
enter clinical trials as a potential anticancer agent (Sedlacek et al,
1996; Senderowicz et al, 1998; Wright et al, 1998). This agent
inhibits proliferation (Kaur et al, 1992; Czech et al, 1995; Carlson
et al, 1996; Sedlacek et al, 1996; Drees et al, 1997) and induces
apoptosis in a variety of human cancer cells and cell lines (Bible
and Kaufmann, 1996; de Azevedo et al, 1996; König et al, 1997;
Schwartz et al, 1997; Arguello et al, 1998; Brüsselbach et al, 1998;
Byrd et al, 1998; Parker et al, 1998; Patel et al, 1998). Based on its
unique mechanism of action (Losiewicz et al, 1994), its ability to
kill noncycling tumour cells (Bible and Kaufmann, 1996; Byrd 
et al, 1998) and its promising antitumour activity in xenograft
models (Czech et al, 1995; Drees et al, 1997; Arguello et al, 1998;
Patel et al, 1998), flavopiridol has entered phase I (Senderowicz 
et al, 1998) and phase II (Wright et al, 1998) testing as a single
agent as well as phase I trials in combination with paclitaxel or
cisplatin (Wright et al, 1998). 

Despite the clinical interest in flavopiridol, relatively little is
known about potential mechanisms of resistance to this agent.
Comparison of paired cell lines expressing the P-glycoprotein
(Pgp) multidrug transporter (K562 and K562R, 8226 and
8226/Dox40) reportedly failed to demonstrate Pgp-mediated alter-
ations in drug sensitivity (Schlege et al, 1999). Likewise, examina-
tion of a flavopiridol-resistant ovarian cancer line revealed no
cross-resistance to the Pgp substrates paclitaxel, etoposide or
doxorubicin (Bible et al, 2000), suggesting that Pgp does not play
a role in flavopiridol resistance of this particular cell line. As a
hydrophobic natural product, however, flavopiridol resembles
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other agents that are substrates or inhibitors of Pgp. In particular,
the flavonoids quercetin, apigenin, galangin and genistein, which
are all structurally related to flavopiridol, have been shown to
interact with Pgp, thereby modulating its transport capabilities
and altering drug resistance (Critchfield et al, 1994; Castro and
Altenberg, 1997; Conseil et al, 1998). The structural similarities
between flavopiridol and these previously studied agents raise the
possibility that flavopiridol might also be capable of interacting
with Pgp. 

Because of the potentially important implications of Pgp-
mediated resistance in the clinical setting (Ling, 1997; Bradshaw
and Arceci, 1998; Kaye, 1998; Volm, 1998), we have specifically
investigated the effects of Pgp on flavopiridol-induced cell cycle
arrest and cytotoxicity in CHRC5 (Pgphi) and parental AuxB1
(Pgplo) Chinese hamster ovary cells. In previous studies, this pair
of cell lines has been utilized not only to clone the Pgp cDNA and
gene (Riordan et al, 1985; Van der Bliek et al, 1986), but also to
investigate the role of Pgp in resistance to a wide variety of drugs
(Bech-Hanson et al, 1976; Riordan et al, 1985; Hendricks et al,
1992). Compared to the AuxB1 cells, previous studies have
demonstrated that CHRC5 cells are 30-, 25-, 40-and 300-fold
resistant to etoposide, doxorubicin, vinblastine, and colchicine,
respectively (Bech-Hanson et al, 1976; Hendricks et al, 1992). The
present studies indicate that the effects of flavopiridol are attenu-
ated in cells that overexpress Pgp, but the degree of resistance is
much lower than that observed with other agents. 

MATERIALS AND METHODS 

Materials 

Flavopiridol was provided by the Pharmaceutical Resources
Branch of the National Cancer Institute (Bethesda). Paclitaxel,
cisplatin, propidium iodide, quinidine, and verapamil were
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purchased from Sigma (St. Louis). Stock solutions of flavopiridol,
paclitaxel, quinidine and verapamil were prepared in DMSO and
stored at –20˚C. Cisplatin stocks were prepared in DMSO immedi-
ately before use. Other reagents were obtained as previously
described (Hendricks et al, 1992; Bible and Kaufmann, 1997). 

Cell lines 

CHRC5 Chinese hamster cells (Bech-Hanson et al, 1976), which
contain an amplified mdr1 gene (Van der Bliek et al, 1986) and
express at least 10-fold more Pgp than parental AuxB1 cells
(Kartner et al, 1985; Hendricks et al, 1992) were kindly provided
by Dr Victor Ling (British Columbia Cancer Research Center,
Vancouver). These cells were cultured in medium A (α-MEM
containing ribonucleotides and deoxyribonucleotides, 10%
heat-inactivated fetal bovine serum, 100 units ml–1 penicillin G,
100 µg ml–1 streptomycin and 2 mM glutamine). Cells maintained
under subconfluent conditions at 37˚C in an atmosphere of
humidified 5% (w/w) CO2 were passaged twice weekly. 

Colony-forming assays were performed as previously described
(Bible and Kaufmann, 1997). In brief, 1000 AuxB1 or CHRC5
cells were seeded in triplicate in 35 mm tissue culture dishes
containing 2 ml of medium A. After a 12–16 h incubation to allow
cells to adhere, drugs were added to the indicated final concentra-
tions from 1000-fold concentrated stocks. After a 24-h incubation,
plates were washed twice with serum-free medium and incubated
in medium A for an additional 6–7 days to allow colonies to form.
Colonies stained with Coomassie brilliant blue were manually
counted as previously described (Hendricks et al, 1992; Bible
and Kaufmann, 1997). Where indicated, quinidine or verapamil
(10 µM) was added 5–10 min prior to flavopiridol or paclitaxel.
Neither quinidine or verapamil alone altered colony formation in
CHRC5 or AuxB1 cells. 

Flow cytometry 

Aliquots containing ~1 × 106 cells in 100 mm tissue culture dishes
were treated with flavopiridol as described above and harvested
by trypsinization. All further steps were performed at 4˚C unless
otherwise indicated. Cells were washed in calcium- and magne-
sium-free phosphate buffered saline (PBS), resuspended in 300 µl
PBS, and fixed by addition of an equal volume of 95% ethanol.
Cells were then washed twice with PBS, digested with RNase A,
and stained with 50 µg ml–1 propidium iodide as described
(Bible, 1997). Samples were examined using a Becton Dickinson
FACScan (San Jose) using an excitation wavelength of 488 nm
and an emission wavelength of 585 ± 21 nm. Data were analysed
using ModFit software (Verity Software, Topsham) or PC-LYSIS
(Becton Dickinson). 

Assessment of cell viability 

In order to directly assess cell viability, AuxB1 and CHRC5 cells
were grown to 30% confluence in 100 mm dishes and treated with
varying concentrations of flavopiridol for 24 h. At the end of the
incubation, adherent cells were released by trypsinization and
combined with cells in the culture supernatant before cell viability
was assessed using trypan blue as previously described (Bible and
Kaufmann, 1996). 
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Affinity labelling of P-glycoprotein in membrane
vesicles 

The ability of flavopiridol to interact with the drug-binding site of
Pgp was assessed by affinity labelling (modified from Safa et al,
1987; Yang et al, 1989, as previously described in Sha et al, 1996).
Membrane vesicles were prepared from CHRC5 cells by the
method of Lever (1977) and stored in 1 ml aliquots of buffer B
(250 mM sucrose containing 10 mM Tris-HCl, pH 7.5 at 20˚C) at
–70˚C for up to 2 months. Aliquots containing 100 µg of mem-
brane protein (estimated by the method of Bradford, 1976) were
incubated for 60 min at 22˚C in the dark with 50 nM [3H]-
azidopine in the absence or presence of 100 µM quinidine or
various concentrations of flavopiridol. The samples were then
placed on ice and irradiated for 15 min at a distance of 10 cm from
a 10 W germicidal ultraviolet light (Yang et al, 1989). 

The irradiated vesicles were recovered by ultracentrifugation
and solubilized in SDS sample buffer at room temperature
(Greenberger et al, 1988). Aliquots containing 40 µg of protein
were subjected to SDS-PAGE on 5–15% (w/v) acrylamide gels.
After staining with Coomassie blue to confirm equivalent recovery
of the samples, gels were impregnated with Amplify (Amersham,
Arlington Heights) according to the manufacturer’s instructions,
and subjected to fluorography using preflashed Kodak Xomat 
AR-5 film and appropriate intensifying screens. 

Statistics 

Reliabilities of differences in sample means (statistical signifi-
cances) were calculated using the two-tailed Student’s t-tests and
pooled estimates of sample variances. 

RESULTS 

Effects of P-glycoprotein on colony formation 

In order to examine the potential effects of Pgp on flavopiridol-
induced cytotoxicity, AuxB1 and CHRC5 cells were exposed to
varying concentrations of flavopiridol for 24 h and allowed to
form colonies under drug-free conditions. To provide a basis for
comparison, the cells were also exposed to paclitaxel, a well-
characterized Pgp substrate (Greenberger et al, 1988; Bhalla et al,
1994), or cisplatin, which is not transported by Pgp. Results of this
analysis (Figure 1A) revealed that the IC50 for flavopiridol was
90.2 ± 6.6 nM in AuxB1 cells and 117.3 ± 2.3 nM in CHRC5 cells
(n = 4, P < 0.01), indicating a requirement for 30% higher extra-
cellular drug concentrations to achieve the same effect in the Pgphi

CHRC5 cell line. In comparison, the CHRC5 cells required
6.2 ± 1.3-fold more paclitaxel (Figure 1B) and 20-fold more
etoposide (Hendricks et al, 1992) than the AuxB1 cells while
demonstrating no resistance to cisplatin (Figure 1C). 

Effects of P-glycoprotein modulators on 
flavopiridol-induced cytotoxicity 

In order to determine whether the observed differences between
the two clones reflected clonal variation as opposed to a bona fide
effect of Pgp, we examined the effects of Pgp modulators on
flavopiridol sensitivity. Of the various modulators that have been
identified (Ford et al, 1996), we focused on verapamil and quini-
dine because of the widespread availability of these agents and the
© 2001 Cancer Research Campaign
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Figure 1 Effects of P-glycoprotein on sensitivities to (A) flavopiridol, (B),
paclitaxel and (C) cisplatin in parental AuxB1 (Pgplo) and colchicine-selected
CHRC5 (Pgphi) cells. Error bars represent ± 1 sample standard deviation
(triplicate plates). Cells were exposed to flavopiridol for 24 h and then
cultured in drug-free medium for 7 days prior to assessing colony formation.
Results are representative of four independent experiments 
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Figure 2 Effects of P-glycoprotein modulators on flavopiridol-induced
cytotoxicity in (A) CHRC5 (Pgphi) and (B) AuxB1 (Pgplo) cells. Error bars
represent ± 1 sample standard deviation (triplicate plates). Cells were
exposed to flavopiridol for 24 h and then cultured in drug-free medium for
7 days prior to assessing colony formation. Results are representative of
four independent experiments 
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reported selectivity of quinidine for Pgp as opposed to other ABC
cassette transporters (Willingham et al, 1986; Cole et al, 1989). As
illustrated in Figure 2A, treatment of the CHRC5 (Pgphi) cells with
either quinidine or verapamil enhanced the ability of flavopiridol
to inhibit colony formation. Similar effects, albeit of greater
magnitude, were observed with paclitaxel (data not shown). In
contrast, quinidine and verapamil had little effect on flavopiridol
sensitivity in the AuxB1 (Pgplo) cell line (Figure 2B). 

Effect of P-glycoprotein on flavopiridol-induced cell
cycle arrest and cytotoxicity 

Because of concern that colony formation assays might not accu-
rately reflect cytotoxicity (Waldman et al, 1997), further experi-
ments examined the effects of flavopiridol using different assays.
Previous studies (Kaur et al, 1992; Carlson et al, 1996; Bible and
Kaufmann, 1997) have demonstrated that flavopiridol induces
© 2001 Cancer Research Campaign
arrest in the G1 and G2 phases of the cell cycle. For cell lines that
contain a predominance of G1 cells, this cell cycle arrest is most
reliably observed by examining the size of the G2 population. 

When the cell cycle effects of flavopiridol on AuxB1 and
CHRC5 cells were assessed by flow cytometry, fewer of the
CHRC5 cells arrested in G2 at each drug concentration (Figure 3A).
The same analysis revealed that CHRC5 cultures contained fewer
cells with subdiploid DNA content (a hallmark of apoptosis) after
flavopiridol treatment (Figure 3B), raising the possibility that the
Pgphi cell line was potentially resistant to the cytotoxic as well as
cell cycle effects of flavopiridol. To further evaluate this possi-
bility, AuxB1 and CHRC5 cells were exposed to varying con-
centrations of flavopiridol for 24 h and examined for ability to
exclude trypan blue. Results of this analysis (Figure 3C) indicated
that CHRC5 cells were resistant to the cytotoxic effects of
flavopiridol, in agreement with the results obtained with the other
methods. 
British Journal of Cancer (2001) 84(10), 1391–1396
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Figure 3 Effects of P-glycoprotein on flavopiridol-induced alterations in cell
cycle distribution and cytotoxicity in CHRC5 (Pgphi) and AuxB1 (Pgplo) cells.
(A) Effects of Pgp on flavopiridol-induced accumulation of cells in the G2/M
phase of the cell cycle as assessed by flow cytometry. (B) Effects of Pgp on
flavopiridol-induced accumulation of subdiploid cells as assessed by flow
cytometry. (C) Effects of Pgp on flavopiridol-induced cytotoxicity as assessed
by trypan blue staining. Results in each panel are representative of three
independent experiments 
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[3H]-azidopine to P-glycoprotein in isolated membrane vesicles. Competitors
added with azidopine were vehicle control (C, lane 1), 100 µM quinidine 
(Q, lane 2), or flavopiridol at 0.16, 0.32, 0.63, 1.25, 2.5, 5, 10 or 20 µM
flavopiridol (lanes 3–10, respectively). Results are representative of three
independent experiments 
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Affinity labelling 

The interaction between Pgp and various substrates or modulators
has been studied under cell-free conditions using the photoactivat-
able substrate azidopine (Safa et al, 1987). In these experiments,
agents that bind to the same site as azidopine decrease the amount
of azidopine covalently bound to Pgp after photoactivation. To
determine whether flavopiridol was directly binding to Pgp,
CHRC5 membrane vesicles were incubated with [3H]-azidopine in
the absence or presence of flavopiridol, then subjected to ultra-
violet light to crosslink the azidopine to Pgp. Quinidine served as a
positive control. As shown in Figure 4, quinidine markedly in-
hibited the binding of [3H]-azidopine to Pgp in comparison to vehicle
control (Figure 4, lanes 2 and 1, respectively). Flavopiridol 
also inhibited [3H]-azidopine binding to Pgp in a dose-dependent
manner, although the extent of inhibition at the highest
flavopiridol concentration tested (20 µM) was lower than the
inhibition by 100 µM quinidine (lanes 10 and 2, Figure 4). 

DISCUSSION 

Drug resistance is a major impediment to the successful treatment
of cancer. Despite its novel structure and mechanism of action,
flavopiridol causes tumour regression in only a minority of treated
patients (Senderowicz et al, 1998), suggesting that resistance to
this agent might also be a problem in the clinical setting. Previous
studies have not only demonstrated that Pgp can be expressed in a
wide variety of tumour types (Ling, 1997; Bradshaw and Arceci,
1998; Kaye, 1998), but have also indicated that other flavone
derivatives can directly interact with this transporter (Critchfield 
et al, 1994; Castro and Altenbog, 1997; Conseil et al, 1998). Based
on these considerations, we have examined the effects of Pgp on
flavopiridol-induced cell cycle arrest and cytotoxicity. Results of
these analyses have potential implications for future clinical devel-
opment of this agent. 

The present observations indicate that flavopiridol is less active
in cells that overexpress Pgp. This effect of Pgp is manifest as a
decrease in cell cycle arrest (Figure 3A), as well as diminished
cytotoxicity as assessed by three different assays (Figures 1A, 3B
and 3C). Consistent with these results, we observed that
flavopiridol inhibits the binding of the affinity label azidopine to
Pgp in membrane vesicles in vitro (Figure 4) and Pgp modulators
enhance the effect of flavopiridol in cells that overexpress Pgp
(Figure 2A). All of these findings are consistent with an interac-
tion between flavopiridol and Pgp. 

The present data do not rule out the possibility that flavopiridol,
acting as a kinase inhibitor, might also alter Pgp phosphorylation
and function. Such a model, however, would not explain the effect
of Pgp inhibitors on flavopiridol action (Figure 2) or the effect of
flavopiridol on (3H)-azidopine binding under cell-free conditions
(Figure 4). Instead, these observations are best explained by a
direct interaction between flavopiridol and Pgp. On the other hand,
comparison of the data in Figures 1 and 4 indicates that higher
flavopiridol concentrations are required to displace azidopine from
Pgp than are required to kill cells. This disparity raises the possi-
bility that Pgp might be affecting flavopiridol sensitivity in some
indirect manner at the low flavopiridol concentrations used in the
cytotoxicity assays. We note, however, that a similar requirement
for high drug concentrations has been observed when other Pgp
substrates, including paclitaxel, doxorubicin and colchicine, have
been used to displace affinity labels from Pgp (Greenberger et al,
© 2001 Cancer Research Campaign
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1990). Thus, it is more likely that higher flavopiridol concentra-
tions required to prevent [3H]-azidopine labelling reflect the artifi-
cial conditions of the photolabelling experiment, i.e. the need to
completely prevent all noncovalent binding of azidopine to Pgp
during the entire period of illumination in order to see a decrease
in the covalently bound label. 

It is also important to note that the effects of Pgp on the action of
flavopiridol are much smaller than effects on other anticancer
drugs. The relative resistance of CHRC5 cells (i.e. the ratio of IC50s
of CHRC5 cells compared to parental AuxB1 cells) is ~ 20 for
etoposide, 30 for doxorubicin (Hendricks et al, 1992) and 6 for
paclitaxel (Figure 1B), but only 1.3 for flavopiridol. While it
would be potentially possible to make the effects of Pgp on
flavopiridol appear more dramatic, e.g. by picking a cell line that
expresses more Pgp and is 10 000 fold resistant to doxorubicin, the
fact that the flavopiridol-Pgp interaction is a weak one (Figure 4)
would still remain. 

The realization that flavopiridol is a Pgp substrate raises the
possibility that malignancies such as renal cell carcinoma, colon
cancer and pancreatic cancer, which universally express Pgp
(Goldstein et al, 1989), might have some degree of de novo
flavopiridol resistance on this basis. The significance, however, of
the relatively low level of flavopiridol resistance imparted by Pgp
overexpression remains to be established, particularly in the clin-
ical setting. Although the present study appears to identify one
potential mechanism of flavopiridol resistance, other mechanisms
also undoubtedly exist, as illustrated by the recently characterized
pair of ovarian cell lines studied in our laboratory (Bible et al,
2000). 
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