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Summary PTEN is a putative tumour suppressor gene located on chromosome band 10q23. Mutations in PTEN have been identified
in numerous human malignancies, including cancers of the brain, endometrium, ovary, and prostate. In this study, we screened 80 Barrett’s
oesophagus-associated adenocarcinomas (BOAd) for loss of heterozygosity (LOH) at 10q23, using the microsatellite markers D10S541,
D10S219, and D10S551. Tumours demonstrating LOH were then screened for the presence or absence of PTEN mutations. LOH at one or
more loci was identified in 17/80 (21%) cases. In none of these cases did we detect mutations in PTEN. The presence of LOH did not
correlate with patient age, tumour stage, degree of differentiation, presence of perineural or vascular invasion, or overall survival. We
conclude that LOH at chromosome 10q23 is uncommon in BOAd, is not associated with mutations in the PTEN tumour suppressor gene, and
does not correlate with the clinical or pathologic features of these tumours. It is possible that PTEN is inactivated through other mechanisms
in BOAd. © 2001 Cancer Research Campaign http://www.bjcancer.com
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In North America, the incidence of oesophageal adenocarcinoma
is increasing at a rate higher than any other malignancy (Blot et al,
1991). The development of oesophageal adenocarcinoma is
related to chronic gastro-oesophageal reflux and the subsequent
development of Barrett’s oesophagus (Lagergren et al, 1999).
However, the molecular events leading to the development of
oesophageal adenocarcinoma remain poorly understood. 

Loss of tumour suppressor gene function may play a role in the
development of oesophageal adenocarcinoma. Allelotype analysis
of oesophageal adenocarcinoma specimens has revealed frequent
loss of heterozygosity (LOH) at several sites of known tumour
suppressor genes. These sites include 17p (p53), 18q (DCC); 9p21
(CDKN2/p16), and 5q (APC) (Huang et al, 1992; Hammoud et al,
1996; Dolan et al, 1998). PTEN has recently been identified as a
novel tumour suppressor gene that is deleted or mutated in a wide
range of human malignancies (Li et al, 1997; Steck et al, 1997).
PTEN is located on chromosome band 10q23, and encodes a 403
amino acid dual specificity phosphatase that contains regions of
homology to tensin and auxillin, cytoskeletal proteins that interact
with adhesion molecules (Myers et al, 1997). Germline mutations
of PTEN have been found in Cowden syndrome, an autosomal
dominant inherited cancer syndrome characterized by hamartomas
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of the skin, intestine, breast and thyroid, and associated with a high
risk of breast and thyroid cancers (Liaw et al, 1997). Germline
mutations in PTEN have also been found in Bannayan-Zonana
syndrome, which is characterized by intestinal hamartomatous
polyps, lipomatosis, macrocephaly, and speckled penis, as well as
in a Proteus-like syndrome (Marsh et al, 1997a, 1999; Zhou et al,
2000). 

Somatic mutations of PTEN have been found in sporadic
tumours of the breast (Teng et al, 1997; Chen et al, 1999; Freihoff
et al, 1999), thyroid (Dahia et al, 1997), head and neck (Okami
et al, 1998; Shao et al, 1998), central nervous system (Liu et al,
1997; Rasheed et al, 1997; Teng et al, 1997; Wang et al, 1997;
Bostrom et al, 1998; Chiariello et al, 1998; Duerr et al, 1998;
Maier et al, 1998; Davies et al, 1999; Zhou et al, 1999),
endometrium (Kong et al, 1997; Risinger et al, 1997;
Tashiro et al, 1997; Simpkins et al, 1998; Mutter et al, 2000;
Yaginuma et al, 2000), ovary (Tashiro et al, 1997; Teng et al, 1997;
Obata et al, 1998; Saito et al, 2000), prostate (Cairns et al, 1997;
Dong et al, 1998; Gray et al, 1998; Pesche et al, 1998; Suzuki et al,
1998; Feilotter et al, 1999), kidney (Teng et al, 1997; Alimov et al,
1999), lung (Kohno et al, 1998; Yokomizo et al, 1998), and in
melanomas (Teng et al, 1997; Tsao et al, 1998) and non-Hodgkins
lymphomas (Gronbaek et al, 1998; Nakahara et al, 1998; Sakai
et al, 1998; Butler et al, 1999; Dahia et al, 1999). Whether loss of
PTEN function plays a role in the development of Barrett’s oesophagus-
associated adenocarcinoma (BOAd) is not known. In this study,
we determined the prevalence and clinical significance of LOH at
10q23 in 80 cases of BOAd. Tumours demonstrating LOH were
screened for PTEN mutations to determine if PTEN inactivation
plays a role in the development of this type of malignancy. 
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Table 1 Demographic and pathologic features of the patient population 

Characteristic No. of patients

Number of patients 63
Mean age (years) 62 (37–87) 
Male:female ratio 8:1 (56:7) 
Follow-up (months) 33 (1–204) 
Survival status

Alive without disease 22 (35%) 
Alive with disease 1 (2%) 
Dead of disease 39 (62%) 
Dead of other causes 1 (2%) 

Pathologic stage
I 12 (19%) 
IIA 14 (22%) 
IIB 9 (14%) 
III 24 (38%) 
IV 4 (6%) 

Tumour differentiation 
Well-differentiated 4 (7%) 
Moderately differentiated 32 (55%) 
Poorly differentiated 22 (38%) 

Perineural invasion 16 (25%) 
Vascular invasion 25 (40%) 
MATERIALS AND METHODS 

Study group 

80 patients who had en bloc oesophageal resection at the Brigham
and Women’s Hospital and at the Beth Israel-Deaconess Hospital
between 1973 and 1995 were identified. All patients had histo-
logically confirmed BOAd, and none had received preoperative
chemotherapy or radiation. All patients were treated surgically
with an intent to cure. 

Selected clinical information (patient age, gender) and follow-
up data were obtained from review of the patient’s hospital charts
and the hospital tumour registry, or from direct telephone inter-
views with the patient and/or his/her family when necessary.
Follow-up time was calculated from the date of initial diagnosis to
either the date of death or, for the patients who were still alive, to
the date of the most recent clinical investigation. In the survival
analysis, either death or tumour recurrence was considered a
failure (event). Patients alive without disease at last follow-up
were censored in the analysis. 

Pathologic analysis 

All oesophageal resection specimens were received in the surgical
pathology laboratory in the fresh state and fixed in 10% buffered
formalin for subsequent tissue sectioning. Tissue sections were
processed routinely, embedded in paraffin, and stained with
haematoxylin and eosin (H & E). 

The following microscopic features were evaluated in all cases
by one of the authors (RDO): 1) Pathologic stage according to the
1993 revised AJCC TNM classification (Fleming et al, 1997);
2) The presence or absence of lymphovascular invasion; 3) The
presence or absence of perineural invasion; 4) Degree of tumour
differentiation (well, > 95% of the tumour composed of glands;
moderate, 50–95% of the tumour composed of glands; poor,
< 50% of the tumour composed of glands). 

Molecular analysis 

Sections from paraffin-embedded tumour specimens were cut.
Tumour and normal tissue were identified and separated by
microdissection. DNA extraction was performed using the
QIAprep kit (Qiagen Inc, Chatsworth, CA). PCR amplification
was performed using primers for 3 known microsatellite repeat
sequences: D10S219, D10S541, and D10S551. PCR primers were
5′ tagged with fluorescent dye labels. PCR products were then
electrophoresed on 6% denaturing polyacrylamide gels and results
were analysed using GeneScan 672 collection and analysis soft-
ware (Genescan, Applied Biosystems, Foster City CA). Loss of
one PTEN allele was established when the normal:tumour DNA
peak ratio was greater than 1.5:1. 

All cases demonstrating LOH were analysed further with
denaturing-gradient gel electrophoresis (DGGE). In these cases,
DGGE was completed for all nine exons of PTEN. GC-clamped
primers for each exon have been previously described (Guldberg
et al, 1997; Marsh et al, 1997a, 1998). PCR products were gener-
ated using the following conditions: a ‘hot start’ at 95˚C for
10 min; followed by 40 cycles of 94˚C for 1 min, annealing at
55˚C for 1 min, and extension at 72˚C for 1 min; followed by 72˚C
for 10 min. Heteroduplexing of PCR products was performed with
one cycle of 98˚C for 8 min, 55˚C for 30 min, and 40˚C for
30 min. PCR was performed in 1X PCR buffer (Life Technologies
© 2001 Cancer Research Campaign
Inc.) 0.4 µM primer (Life Technologies, Inc. and 2.5 units of Taq
polymerase (Life Technologies, Inc) with TaqStart antibody
(Clontech, Palo Alto, CA). PCR products were separated on 1 mm
10% polyacrylamide gels with a gradient of 15–20% urea and
0–10% glycerol. Gels were run at 100 V for 16 h at 60˚C. 

Cases in which the DGGE analysis was not definitive were
sequenced directly. In these cases, the exon in question was
sequenced using nested primers designed within the flanking
intronic sequences. PCR conditions and primers for sequencing
have been previously described (Liaw et al, 1997; Marsh et al,
1997b; Steck et al, 1997). 

Statistical analysis 

The data analysis was done with STATA statistical software
(STATA Corporation, College Station, Texas). Comparison of
categorical data was done with either chi-square or Fisher’s exact
test, depending on sample size. Comparison for numeric data was
done with the t-test. Survival analysis for clinical and pathologic
variables was performed using a log-rank test. All variables that
were statistically significant by univariate analysis (P < 0.05) were
also evaluated by multivariate analysis. Kaplan–Meier curves
were determined for selected groups of patients for comparison of
survival. 

RESULTS 

A total of 80 BOAd specimens were analysed. Of the 80 samples,
63 had pathologic and clinical follow-up data. The demographic
and pathologic features of the patients are summarized in Table 1.
Patients had a mean age of 62 years and were predominantly male
(M:F = 8:1). The mean follow-up time was 33 months. At the time
of last evaluation, 22 (35%) were alive and disease-free, 1 (2%)
was alive with disease, and 39 (62%) had died of disease. All
stages of disease were represented in the group: 12 (19%) patients
had stage I, 14 (22%) stage IIA, 9 (14%) stage IIB, 24 (38%) stage
III, and 4 (6%) stage IV lesions. 
British Journal of Cancer (2001) 84(6), 748–753
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Figure 2 Representative Genescan analysis demonstrating LOH at
D10S541. Normal tissue demonstrates presence of two alleles, 247 and
257 bp in size. Tumour tissue demonstrates loss of the 257 bp allele 
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80 samples were analysed for evidence of LOH at 10q23. A
panel of loci was initially evaluated in DNA extracted from the
paraffin-embedded samples. We found that several of these
markers, including AFMa086, a polymorphic marker within the
PTEN gene, did not yield reproducible results in the archival speci-
mens. 3 microsatellite loci (D10S219, D10S541 and D10S551)
were selected for further study based on their reproducibility in our
specimens and on their location flanking the PTEN tumour
suppressor gene (Figure 1). Of the 3 markers, D10S541 is telo-
meric and in closest proximity to PTEN (< 0.3 cM) whereas
D10S219 and D10S551 are centromeric and more distant from the
gene (9 cM and 6 cM, respectively). A representative example of
LOH is shown in Figure 2. All but one case were evaluable for
LOH with at least one microsatellite marker (Figure 3). LOH was
found most commonly at the D10S541 locus (11/70; 15.7%) and
less commonly at D10S219 (4/74; 5.4%) and D10S551 (4/76;
5.2%). In almost all cases, LOH was found at only one of 3 loci
examined. In 2 cases, LOH was noted at 2 loci. The first (#31)
demonstrated LOH at both D10S219 and D10S551, and the
second (#55) demonstrated LOH at D10S219 and D10S541. In no
cases did all 3 loci demonstrate LOH. The total prevalence of LOH
at one or more loci was 17/80 (21%). 

DGGE was performed on all cases demonstrating LOH to deter-
mine if PTEN mutations were present in the remaining allele. All 9
exons of PTEN were analysed. In all but 9 cases, DGGE analysis
demonstrated no evidence of PTEN mutations. In these 9 cases, the
results of DGGE were not interpretable, and direct sequencing of
the PTEN exon in question was performed. In none of these cases
were mutations in PTEN found. 

No relationship was found between the presence of LOH at
10q23 and patient age (P = 0.98), degree of tumour differentiation
(P = 0.58), tumour stage (P = 0.43), presence of perineural
invasion (P = 0.32), or the presence of vascular invasion (P =
0.37). There was no correlation between the presence of LOH and
overall survival (P = 0.63). 

DISCUSSION 

An analysis of 80 cases of BOAd demonstrated LOH at chromo-
some 10q23 in 21% of cases. LOH was found most commonly
with the microsatellite locus D10S541, which is only several
hundred Kb from PTEN, and less commonly at the microsatellite
British Journal of Cancer (2001) 84(6), 748–753 © 2001 Cancer Research Campaign
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markers D10S219 and D10S551, which are more distant from the
PTEN locus. Studies of the 10q23 region in other malignancies
have also noted a higher rate of LOH at the D10S541 locus,
leading to speculation that loss of this marker correlates closely
with loss of PTEN. In an analysis of sporadic breast cancers using
11 microsatellite markers, LOH at D10S541 was found more
commonly than with any other marker, and occurred in 55% of
cases (Singh et al, 1998a). 

To assess if biallelic structural defects of PTEN play a role in the
development of oesophageal adenocarcinoma, we screened all 17
cases that demonstrated LOH for PTEN mutations using DGGE
and, when necessary, direct sequence analysis. In no case did we
find evidence of PTEN mutations in the respective remaining
allele. The finding of 10q23 LOH without associated PTEN muta-
tions is not unprecedented. Both 10q23 LOH and somatic PTEN
mutations have been demonstrated in endometrial carcinomas
(Kong et al, 1997; Mutter et al, 2000), endometrioid ovarian carcin-
oma (Teng et al, 1997; Obata et al, 1998; Saito et al, 2000), and
high-grade gliomas (Teng et al, 1997; Wang et al, 1997; Bostrom
et al, 1998; Chiariello et al, 1998; Zhou et al, 1999). However,
despite the presence of 10q23 LOH, somatic mutations of PTEN
are either absent or exceedingly rare in primary cancers of the
pancreas (Okami et al, 1998), kidney (Teng et al, 1997; Alimov 
et al, 1999), bladder (Cairns et al, 1998; Aveyard et al, 1999),
prostate (Cairns et al, 1997; Feilotter et al, 1998; Pesche et al,
1998; Suzuki et al, 1998), breast (Feilotter et al, 1999; Freihoff et
al, 1999), thyroid (Dahia et al, 1997), head and neck (Shao et al,
1998; Gasparotto et al, 1999; Okami et al, 1998), and lung (Okami
et al, 1998; Petersen et al, 1998). 

Several investigators have suggested that the lack of PTEN
mutations in these malignancies can be explained by the presence
of another tumour suppressor gene located at 10q23 (Bostrom 
et al, 1998; Feilotter et al, 1998; Butler et al, 1999; Saito et al,
2000). This view has been supported by the identification, in
several tumour types, of areas of 10q23 deletion distinct from
PTEN (Singh et al, 1998a; Yeh et al, 1999). The relatively small
number of loci analysed, and the absence of an intragenic marker
in our study, raise the possibility that our findings of LOH were
related to deletion of another gene at 10q23. However, the close
proximity of D10S541 to PTEN (< 0.3 cM) and the higher inci-
dence of D10S541 LOH in our study make it less likely that our
findings are due to deletion of another tumour suppressor gene at
this locus. Indeed, a high incidence of LOH at D10S541 was noted
during fine structure deletion mapping of 10q22–24 in follicular
thyroid adenomas and follicular thyroid carcinomas. In this study,
LOH at D10S541 appeared to correlate with deletions of the PTEN
gene (Yeh et al, 1999). 

Other investigators have proposed that PTEN undergoes
mechanisms of inactivation other than structural alteration, e.g.
somatic mutation. An analysis of prostate cancer xenografts
demonstrated decreased levels of both PTEN mRNA and PTEN
protein in the absence of PTEN gene mutations (Whang et al,
1998). In this study, treatment with the demethylating agent 5-
azadeoxycytidine restored mRNA expression, suggesting that
PTEN may undergo inactivation by promoter methylation.
Similarly, an analysis of leukaemia and lymphoma cell lines
demonstrated decreased levels of PTEN mRNA and PTEN
protein, despite the fact that only a small minority of these
samples contained PTEN mutations (Dahia et al, 1999).
Interestingly, several additional cell lines in this study demon-
strated decreased protein levels despite normal or high levels of
© 2001 Cancer Research Campaign
mRNA, suggesting that PTEN may be inactivated by both tran-
scriptional silencing and by disruption at the protein level.
Recently, multiple non-genetic mechanisms of PTEN inactiva-
tion have been observed in primary carcinomas of the thyroid,
endometrium, cervix, and in melanomas (Gimm et al, 2000;
Kurose et al, 2000; Mutter et al, 2000; Zhou et al, 2000). 

Analyses of other tumour suppressor genes in oesophageal
adenocarcinoma have demonstrated a similar high prevalence of
LOH with a corresponding low rate of mutations. The p16
tumour suppressor gene, located on 9p21, encodes a cyclin-
dependent kinase inhibitor. Allelic loss of 9p21 has been found
in 26–89% of oesophageal adenocarcinomas; however, muta-
tions in p16 are rare (Zhou et al, 1994; Gonzalez et al, 1997;
Muzeau et al, 1997). Similarly, allelic loss of 5q has been
reported in up to 75% of oesophageal adenocarcinomas, yet
mutations of APC have been demonstrated in less than 10% of
cases (Boynton et al, 1992; Zhuang et al, 1996; Gonzalez et al,
1997). Many of these tumour suppressor genes, like PTEN, may
be regulated by mechanisms other than intragenic mutation. In
the case of p16, small homozygous microdeletions appear to be a
major mechanism of inactivation, as does methylation of the p16
promoter (Liggett and Sidransky, 1998). Loss of expression of
p27, a cyclin-dependent kinase inhibitor, has also been demon-
strated in a wide range of malignancies, including oesophageal
adenocarcinoma (Esposito et al, 1997; Tan et al, 1997; Singh 
et al, 1998b; Yang et al, 1998). The expression of p27 appears to
be regulated by proteolytic degradation rather than by genetic
mutation (Singh et al, 1998b). 

LOH at 10q23 in our study did not correlate with any of the clin-
icopathologic features of the tumours analysed, nor did it correlate
with overall survival. These findings contrast with those in breast
cancer, where 10q23 LOH has been associated with adverse prog-
nostic factors, including higher stage, higher tumour grade, and
loss of oestrogen receptors (Bose et al, 1998; Garcia et al, 1999).
In gliomas, the presence of PTEN mutations correlated with high
tumour grade (Rasheed et al, 1997; Duerr et al, 1998; Davies et al,
1999; Zhou et al, 1999). However, among high-grade glioblas-
tomas, in which the incidence of PTEN mutation is highest, PTEN
mutations do not appear to influence overall survival (Zhou et al,
1999). Given that PTEN may undergo regulation through mech-
anisms other than somatic mutation, the level of PTEN expression
in various malignancies may be a more useful prognostic marker
than the presence of PTEN mutation. Indeed, in prostate cancer,
loss of PTEN protein expression has been found to be associated
with both a high Gleason score and advanced tumour stage, both
markers of poor prognosis (McMenamin et al, 1999). 

Of the other tumour suppressor genes lost or mutated in
oesophageal adenocarcinoma, both p27 and p53 have been
analysed with regard to their effect on prognosis. Loss of p27
expression occurs in approximately 80% of BOAd, and is predict-
ive of a poor prognosis (Singh et al, 1998b). Allelic loss of 17p,
the site of the p53 oncogene, is common in oesophageal adenocar-
cinomas, and p53 mutations have been demonstrated in approxi-
mately 50% of cases (Huang et al, 1992; Hamelin et al, 1994;
Neshat et al, 1994; Gleeson et al, 1995; Hammoud et al, 1996;
Schneider et al, 1996; Dolan et al, 1998). However, p53 mutations
do not have any prognostic significance in patients with these
tumours (Flejou et al, 1994; Vijeyasingam et al, 1994). 

In summary, we have demonstrated that, while LOH at 10q23
occurs in a subset of BOAd, intragenic mutations in the PTEN
tumour suppressor gene do not play a significant role in the
British Journal of Cancer (2001) 84(6), 748–753
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development of these lesions. Furthermore, LOH at 10q23 does
not correlate with the major clinicopathologic features of these
tumours. It is possible that PTEN activity is regulated by mechan-
isms other than intragenic mutation in BOAd. 
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