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Summary p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis
induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the
importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest,
Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and
mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration
in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC50 values ranging from
0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line,
whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional
and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational
status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1
accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and
a statistically significant relationship (r = 0.880, P = 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion,
whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research
Campaign
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p53 tumour-suppressor gene is involved in the control of cell
growth, arrest and apoptosis (Kastan et al, 1991; Oren, 1994;
Stewart et al, 1995). Cells exposed to DNA-damaging agents
such as 5-fluorouracil (5-FU) activate wild-type p53, then either
undergo G1/S arrest and are repaired or undergo apoptosis (Kastan
et al, 1991; Kuerbitz et al, 1992; Guillouf et al, 1995). The option
which prevails may be reflected by the relative levels of p21WAF1

and/or Bcl-2 gene family expression. However, apoptosis induc-
tion has also been reported in p53-defective cells after exposure to
DNA-damaging agents, suggesting the importance of alternative
pathways (Dou et al, 1995). As currently accepted, biosynthesis of
wild-type p53 can be controlled by both transcriptional (Deffie
et al, 1993; Hudson et al, 1995) and translational regulation
processes (Mosner et al, 1995; Ewen and Miller, 1996; Fu et al,
1996). Inhibition of p53 biosynthesis by translational process
requires wild-type p53 and arises through a negative autoregula-
tory feedback loop (Mosner et al, 1995; Ewen and Miller, 1996;
Fu et al, 1996). Although the precise mechanism through which
transcriptional autoregulation is mediated still remains to be
elucidated, this effect appears to be cell-type specific and to
involve binding of p53 to other transcription factors. It has now
been reported that mutation as well as other factors can stabilize
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p53 protein and render it non-functional (Vogelstein and Kinzler,
1992). Interactions with viral or cellular proteins such as HPV-E6
protein or mdm2 gene product (Scheffner et al, 1990; Kubbutat
et al, 1997) were shown to inactivate p53 protein. p53 and mdm2
proteins constitute an autoregulatory feedback loop in which p53
limits its own activity through the production of mdm2 (Momand
et al, 1992; Barak et al, 1993). These observations have now led to
the theory that the whole cellular environment may determine p53
stability and function. These data suggest that stabilized detectable
p53 protein, whether created as a result of mutation or by some
other protein interaction, may have inactivated or impaired
function in the cell, such as apoptosis induction.

Chemotherapeutic agents including 5-FU are known to induce
apoptosis (Lowe et al, 1993). Differences in p53 functionality
between cell lines displaying different 5-FU sensitivity could
result from p53 functional status inducing various cellular
responses to drug-induced damage. Bcl-2 belongs to a growing
family of apoptosis regulators and experiments suggested the
involvement of p53 and Bcl-2 family proteins in chemotherapy-
induced apoptosis (Harris, 1996; Nita et al, 1998a). Bcl-2 and
Bcl-xl can block cell death in various cell systems under a variety
of conditions. Conversely, overexpression of Bax, Bak and Bad,
among the other Bcl-2 family proteins, was shown to induce
apoptosis (Strobel et al, 1996).

Nita et al (1998a) have recently demonstrated that, in cells
expressing wild-type p53, 5-FU-induced apoptosis was accompa-
nied by increased expression of Bax and Bak without consistent
modulation of other Bcl-2 family proteins as opposed to cells
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containing mutant-type p53. In the present study, we investigated
the difference in 5-FU sensitivity observed in six human cancer
cell lines with different p53 status and tried to evidence the basis
of this difference by following Bcl-2/Bax ratio and its correlation
with p53 status and mRNA or protein expression induction after
exposure to 5-FU equitoxic concentration. Whether the 5-FU
sensitivity differences are a result of different p53 functionality
causing differences in Bcl-2 and Bax regulation, the implication of
p53 protein expression induction in G1 arrest ability will be
discussed and reconsidered.



Materials and chemicals

Cell culture materials were purchased from Costar (Dutscher,
Brumath, France), culture media and additives from Life
Technologies (Gibco BRL, Cergy-Pontoise, France), except for
fetal calf serum, which was obtained from Costar. Taq-
polymerase, RNAse H, random primers, SuperScript II® DNA
polymerase, deoxynucleotide triphosphate were purchased from
Life Technologies. Anti-bromodeoxyuridin monoclonal anti-
bodies, p53 monoclonal antibodies (DO-7) and peroxidase-
conjugated antibodies were provided by Dako (Trappes, France).
Bax (N-20) polyclonal antibodies were purchased from Tebu (Le
Perray-en-Yvelines, France). All other chemicals were purchased
from Sigma (St Quentin Fallavier, France) and were of molecular
biology grade.

Cell culture

CAL51 human breast adenocarcinoma, PANC3 pancreas carci-
noma, CAL27 and CAL33 human head and neck carcinoma cell
lines were kindly provided by Dr JL Fischel (Centre Antoine
Lacassagne, Nice, France). FaDu and KB, head and neck carci-
noma cell lines, were obtained from Professor A Hanauske
(Munich University, Germany) as part of the EORTC Preclinical
Therapeutic Models Group exchange program. All cell lines were
grown in 75 cm2 plastic tissue culture flasks in RPMI 1640
medium supplemented with 10% heat inactivated fetal calf serum,
penicillin (100 iu ml–1), streptomycin (100 µg ml–1) in a 37°C, 5%
CO2 atmosphere. The cells were exposed at day 4 after seeding to
equitoxic 5-FU concentrations (IC50) for 24 h, then analysed
immediately.

Cytotoxicity assay

MTT assays were carried out according to a procedure previously
reported (Barberi-Heyob et al, 1993). Briefly, cells were seeded at
the initial density of 2.104 cells ml–1 in 96-well micro titration
plates. 72 h after plating, cells were exposed for 72 h to 5-FU
concentrations ranging from 0.08–4.104 µM, each concentration
being tested in sextuplicate. 50 µl of 0.5% MTT solution were
then added in each well and incubated for 3 h at 37°C to allow
MTT metabolization. The formazan crystals were dissolved by
adding 50 µl per well of 25% sodium dodecylsulfate solution and
vigorous pipetting. Absorbance was measured at 540 nm using a
Multiskan MCC/340 plate reader (Labsystem, Cergy-Pontoise,
France). Results were expressed as relative absorbance to un-
treated controls. 5-FU concentrations yielding 50% growth
inhibition (IC50) were calculated using medium effect algorithm
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(Chou and Talalay, 1987) and expressed as mean values of five
independent experiments.

Analysis of p53 mutations

To identify p53 genomic mutation, direct DNA automated fluores-
cent sequencing analyses were conducted. Both DNA strands
were sequenced. Briefly, PCR was performed using four pairs of
primers covering exons 2–9 and including flanking intronic
splicing sites (one pair for exons 2–4, one for exons 5 and 6, one
for exon 7 and finally one pair for exons 8 and 9), in a 20 µl
volume containing 10 mmol l–1 Tris-HCl, 50 mmol l–1 KCl,
1.5 mmol l–1 MgCl2, 0.2 mmol l–1 deoxynucleotide triphosphates,
0.5 µmol l–1 of each primer, and 1 µg of genomic DNA. The reac-
tions were carried out using a Perkin Elmer/Cetus thermal cycler
model 9600. The PCR products were then purified using
Sephacryl S400HR (Amersham-Pharmacia Biotech, Les Ulis,
France). 5 µl of purified fragments were used for sequencing with
a Thermo Sequenase™ Dye Terminator Cycle Sequencing kit
(Amersham-Pharmacia Biotech), using the same PCR primers.
After purification with Biogel P10 (Bio Rad), the products were
sequenced using ABI 373 automated DNA sequencing system
(Applied Biosystem).

RNA isolation and RT-PCR analysis

Isolation of total RNA was performed using TRIzol® according to
the manufacturer’s specifications (Life Technologies). cDNA
synthesis was performed with 1 µg total RNA in a reaction volume
of 20 µl containing 100 ng of random primers, 50 mM Tris-HCl,
pH 8.3, 75 mM KCl, 3 mM MgCl2, 0.5 mM deoxynucleotide
triphosphate, 10 mM dithiothreitol and 200 units SuperScript II®
reverse transcriptase and incubated for 10 min at room tempera-
ture, 50 min at 42°C, followed by 15 min at 70°C. RNAse-H
(2.5 units) was added into each sample, then incubated for 20 min
at 37°C. cDNA samples were stored at –20°C until analysed.

p53 and p21
p53 and p21 semi-quantitative PCR analyses were then performed
using β2-microglobulin (β2m) as reference gene. 0.5 µl or 1 µl of
cDNA samples were mixed, respectively for p53 or p21 amplifica-
tion, in a volume of 20 µl containing 16 mM (NH4)2SO4, 67 mM
Tris-HCl, pH 8.8, 0.01% Tween 20, 2 or 1.5 mM MgCl2 respec-
tively for p53 or p21 amplification, 0.2 mM dNTP, 5 µM of each
5′- and 3′-primers, and 0.5 unit of Taq polymerase. The primers
sequences were 5′-TCTGTGACTTGCACGTACTC-3′ (sense)
and 5′-CACGGATCTGAAGGGTGAAA-3′ (antisense) for
p53 (Aguilar Santelises et al, 1996), 5′-CCCAGTGGACAGC-
GAGCAGC-3′ (sense) and 5′-ACTGCAGGCTTCCTGTGGGC-
3′ (antisense) for p21, 5′-ACCCCCACTGAAAAAGATGA-3′
(sense) and 5′-ATCTTCAAACCTCCATGATG-3′ (antisense) for
β2-microglobulin (β2m) (Gussow et al, 1987).

The PCR tubes were incubated for p53 and β2m amplification,
as follows: the first cycle was 5 min at 95°C, 1 min at 57°C and
1 min at 72°C. The 33 or 36 following cycles, respectively for p53
and p21 amplification, were 1 min at 94°C, 1 min at 57°C and
1 min at 72°C. In each case, after completion of PCR cycles, the
mixture was finally incubated for 7 min at 72°C. p53 and β2 PCR
products were electrophoretized on 1% agarose gel containing
0.1 µg ml–1 of ethidium bromide. Quantification was performed by
UV transillumination using a Gel Doc 1000 system (Bio Rad,
British Journal of Cancer (2000) 83(10), 1380–1386
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Table 1 Characteristics of the cell lines used. Identification of p53 genomic mutations covering exons 2–9 and 5-FU sensitivity (IC50)

Cell lines Exon Codon Nucleoside Amino-acid p53 5-FU IC50
c

substitution substitutiona statusb (mM)

CAL51 4 72 CGC → CCC R → P wt 0.16 ± 0.01
KB – – – – wt 0.94 ± 0.17
FaDu 7 248 CGG → CTG R → L mt 1.05 ± 0.48

7 splicing site TAG → TAA – – –
CAL33 4 72 CGC → CCC R → P mt 0.97 ± 0.63

5 175 CGC → CAC R → H – –
CAL27 4 72 CGC → CCC R → P mt 3.12 ± 0.84

6 193 ATC → TTC H → L – –
PANC3 2–4 – deletion – del 22.62 ± 3.09

a R = arginine; P = proline; L = leucine; H = histidine; bmt = mutant-type; wt = wild-type; del = deletion; cmean ± standard deviation of five independent
experiments
Ivry-sur-Seine, France). Finally, for each cDNA sample, p53: β2m
relative expression ratio (RER) was calculated as the ratio of the
fluorescence intensities of p53 and β2m PCR products bands.

Mdm2
Mdm2 gene contains two different promoter regions. The
upstream promoter region (P1) is known to be active in absence of
p53 and the second promoter region (P2) is located within the first
intron and contains a p53-responsive element (mdm2-p53RE).

The multiPCR of these different transcripts was performed
using the forward mdm2 exon1-specific and mdm2 exon2-specific
primers (5′-GAAAAGATGGAGCAAGAAGCC-3′ and 5′-CAG-
TGGC-GATTGGAGGGTAG-3′), respectively with a unique
reverse primer (5′-GTAGGTACAGACATGTTGGTA-3′) located
in exon3 of the mdm2 gene. Amplification of β2m was performed
concomitantly using the forward (5′-AGCAGAGAATGGAA-
AGTCAAA-3′) and reverse (5′-TGTTGATGTTGGATAAGA-
GAAT-3′) primers. The reaction volume was 50 µl and comprised
1X reaction buffer, 1.5 mM MgCl2, 0.2 µM of each mdm2 forward
primers, 0.4 µM of mdm2 reverse primer and 0.05 µM of β2m
primers, 0.25 mM of deoxynucleotides and 1 unit of HotStarTaq
DNA polymerase (Qiagen, Courtaboeuf, France). Amplification
was carried out for 30 cycles of 94°C for 1 min, 55°C for 30 s and
72°C for 30 s using a thermal cycler (Perkin Elmer 480). The
cycles were followed by incubation of the mixtures for 15 min at
95°C to ensure full denaturation of the target DNA and activation
of HotStarTaq DNA polymerase. The PCR products, P1 (405 pb),
P2 (210 pb) and β2m (620 pb) were separated on an agarose gel in
presence of ethidium bromide and quantified by image analysis.

Cell cycle distribution analysis

Cell cycle distribution was measured before and after 5-FU expo-
sure. Cell samples for flow cytometry were washed with PBS,
resuspended in 0.1% sodium citrate, 0.1% Triton X100 and 50 µg
ml–1 propidium iodide (PI), and then stored for 24 h at 4°C. After
centrifugation at 1500 rpm for 5 min, the samples were resus-
pended in PBS containing 250 µg ml–1 RNAse. Bivariate distribu-
tions of cells number vs DNA content (PI) were analysed, using an
Orthocyte flow cytometer (Ortho Diagnostic Systems, Roissy,
France) equipped with xenon lamp and filter set for excitation at
488 nm. PI fluorescence intensity was recorded through 575 nm
high pass filters. At least 20 000 events were collected in each
final gated histogram. The data were analysed using Multicycle
software (Phoenix Flow Systems, San Diego, CA, USA).
British Journal of Cancer (2000) 83(10), 1380–1386
Western blot analysis and ELISA

Cells were collected in PBS, washed twice, and lysed in ice-cold
lysis buffer (20 mmol l–1 Tris-HCl pH 8.0, 100 mmol l–1 NaCl, 1%
Triton X100, 0.5% sodium-deoxycholate, 0.1% SDS, 1 mmol
l–1sodium-EDTA). Samples were incubated for 30 min on ice then
stored at –80°C until analysed. Defrosted samples received 20 µg
of protein in Laemmli buffer (Bio Rad) then boiled for 5 min,
subjected to SDS-PAGE (10% and 15% respectively for p53 and
Bax protein) and were transferred onto Immobilon-P transfer
membranes (Millipore, St Quentin Y velynes, France) for p53 or
to yuelines Immun-Blot® PVDF membranes (Bio Rad) for Bax,
using semi-dry blotting techniques. Membranes were probed for 1
h with DO-7 mouse p53 primary monoclonal antibody or
overnight at 4°C with Bax primary polyclonal antibody, and then
probed with horseradish peroxidase-labelled secondary antibody
for 1 h at room temperature. Immunological complexes were visu-
alized by chemiluminescence detection according to the manufac-
turer’s recommendations (Amersham-Pharmacia Biotech).

Bcl-2 enzyme-linked immunosorbent assay (ELISA) was
performed using Amersham-Pharmacia Biotech kit and according
to the manufacturer’s specifications.

Statistical analysis

Unless indicated, all data are mean values ± standard deviation
(SD) calculated from at least four independent experiments.
Spearman’s rank correlation was used to test the correlation
between the different parameters and Mann and Whitney U test
was used to test for the significance level between independent
variables.



p53 status of cell lines displaying different 5-FU
sensitivity

The six carcinoma cell lines displayed a marked difference in
5-FU sensitivity with IC

50 values ranging from 0.16 ± 0.01 to
22.62 ± 3.09 mM for CAL51 and PANC3 lines, respectively
(Table 1). The cell lines were first checked for p53 mutations by
direct DNA sequencing. These data are summarized in Table 1.
Germline polymorphism at codon 72 in exon 4 (G to C transver-
sion) was detected in CAL51, CAL27 and CAL33 cell lines
inducing arginine to proline amino-acid substitution
(Matlashewski et al, 1987; Ara et al, 1990). Mutated sequence was
© 2000 Cancer Research Campaign
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Table 2 p53 mRNA expression induction, p53 protein induction after 24 h
5-FU equitoxic exposure

Cell lines p53/β2 m RERa p53 protein
(%) inductionc

CAL51 (wt) 73 ± 6 +++
KB (wt) 238 ± 22 no
FaDu (mt) 109 ± 9 ++
CAL33 (mt) 150 ± 13 +
CAL27 (mt) 121 ± 23 +
PANC3 (del) nob no

a mean ± standard deviation of five independent experiments; b no RT-PCR
mRNA expression; c+ = weakly; ++ = moderately; +++ = highly
overexpressed; no = no protein expression
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Figure 1 p53 mRNA relative expression ratio vs β2m before n and after n
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Figure 3 Bax protein basal expression levels evaluated by western blot
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Figure 4 Bax n and Bcl-2 n protein expression after 5-FU treatment.
Results are mean values of three independent experiments

Table 3 p53 functionality as transcription factor

mdm2-p53RE RER p21 RER

Cell lines Control After 5-FU Control after 5-FU

CAL51 (wt) 3.3 ± 1.0 6.0 ± 1.8 4.0 ± 0.7 7.8 ± 1.5
KB (wt) 0.1 ± 0.0 0.5 ± 0.0 4.0 ± 0.3 5.7 ± 0.4
FaDu (mt) 0.2 ± 0.0 0.3 ± 0.0 2.4 ± 0.1 3.5 ± 0.1
CAL33 (mt) 0.1 ± 0.0 0.1 ± 0.0 2.3 ± 0.2 3.5 ± 0.3
CAL27 (mt) 0.3 ± 0.0 0.1 ± 0.0 2.8 ± 0.1 3.4 ± 0.3
PANC3 (del) 1.6 ± 0.3 0.5 ± 0.1 2.8 ± 0.3 3.3 ± 0.2

-------
observed in three cell lines. A to T transversion at codon 193 in
exon 6 was found in CAL27, resulting in histidine to leucine
substitution. Point mutation was detected in CAL33 line (G to A
transition) at codon 175 in exon 5, inducing arginine to histidine
amino-acid substitution. Point mutation (G to T transversion) at
codon 248 in exon 7, resulting in arginine to leucine substitution,
was detected in FaDu cells. Internal sequence deletion corres-
ponding to exons 2–4 was evidenced in PANC3 cells. Wild-type
p53 status was found in CAL51 and KB cells.

p53 mRNA and protein expression after 5-FU treatment

p53 mRNA and protein expression were determined after cellular
stress induced by equitoxic concentrations of 5-FU (Table 2).
Figures 1 and 2 show that p53 mRNA RER as well as protein
expression were significantly altered after 24-h 5-FU exposure.
Mutant p53 cell lines displayed either no modification or an
increase of p53 mRNA RER (Figure 1) and p53 protein was
slightly up-regulated (Figure 2). p53 mRNA RER was signifi-
cantly decreased in wild-type p53 CAL51 cell line (Figure 1) and
p53 protein was found to be highly overexpressed (Figure 2).
Despite p53 wild-type status in KB line, p53 mRNA expression
was also found to be up-regulated (Figure 1) and p53 protein was
not detected (Figure 2).

p53 protein functionality as transcription factor: mdm2
and p21 mRNA expression

mdm2 mRNA expression before and after 5-FU exposure was
reported in Table 3. In the wild-type-p53 CAL51 and KB a
© 2000 Cancer Research Campaign
significant increase in mdm2 transcription at p53 responsive
element (mdm2-p53RE) was observed. No overexpression was
detected when p53 was mutated or deleted, except in FaDu cell
line which displayed a 1.5-fold increase in mdm2-p53RE (Table 3).

p21 mRNA basal expression was higher in CAL51 and KB wt
cells. Up-regulation of p21 mRNA was detected in all cell lines,
except in PANC3 cell line. Overexpression, however, was higher
in CAL51 wt cell lines.

Cell cycle distribution after 5-FU exposure: p53 status
consequences

After 5-FU exposure, all cell lines were able to arrest in G1 phase
(Table 4). Nevertheless, only CAL51, KB and FaDu cell lines
displayed statistically significant accumulation in G1 phase. S
phase was unchanged or slightly decreased and G2/M phase was
more markedly reduced (Table 4).
British Journal of Cancer (2000) 83(10), 1380–1386
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Table 4 Cell cycle distribution after 5-FU exposure (percentage vs
untreated controls)

Cell lines G1 (%) S (%) G2/M (%)

CAL51 (wt) 130 ± 15 89 ± 14 27 ± 20
KB (wt) 120 ± 16 102 ± 19 25 ± 38
FaDu (mt) 126 ± 10 77 ± 8 50 ± 47
CAL33 (mt) 135 ± 20 76 ± 1 39 ± 46
CAL27 (mt) 111 ± 32 104 ± 35 65 ± 49
PANC3 (del) 108 ± 8 100 ± 12 66 ± 33
Bax and Bcl-2 proteins expression after 5-FU exposure:
relationship with 5-FU sensitivity and p53 status

As Bax and Bcl-2 proteins are under p53 protein control, changes
associated with equitoxic concentration of 5-FU were investi-
gated. After 5-FU exposure, Bcl-2 protein expression decreased in
the wild-type p53 cell lines (even in HPV-positive KB cells)
whereas in the mutant p53 cell lines no variation (CAL33 and
FaDu) or a significant increase (CAL27 and PANC3, Figure 4)
was detected. Bcl-2 induction was significantly correlated with 5-
FU sensitivity (r = 0.47, P = 0.0323, Figure 5A). Bax was found to
be relatively overexpressed in the wild-type p53 CAL51 cell line,
but neither in the mutant p53, nor in the HPV-positive cell lines
(Figure 3). Moreover, Bax basal levels were related to 5-FU sensi-
tivity, since the most sensitive cell line (CAL51) displayed the
highest Bax level as opposed to data achieved in the most resistant
cell line (PANC3, Figure 3). Bax induction was significantly
correlated with 5-FU sensitivity (r = 0.65, P = 0.0054, Figure 5B).
Bcl-2/Bax proteins ratio was also correlated with 5-FU sensitivity
(r = 0.88, P = 0.0097, Figure 5C).



Among the six human cancer cell lines selected and exhibiting a
wide range of sensitivity to 5-FU, CAL51 and KB cell lines
displayed wild-type p53 profile: wild-type gene and undetectable
basal protein expression, three out of six cell lines showed point
mutations of p53 gene and constitutive p53 protein expression.
PANC3 cell line displayed internal gene deletion resulting in
complete lack of p53 mRNA and protein expression. Wt p53 cell
lines were more sensitive to 5-FU than mutated lines. Our results
British Journal of Cancer (2000) 83(10), 1380–1386
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Figure 5 Relationship between 5-FU sensitivity and (A) Bcl-2 protein induction
(C) between Bcl-2/Bax protein ratio (r = 0.88, P = 0.0097), after exposure to 5-FU
support the concept that cells carrying wt gene tend to be sensitive
to 5-FU and that deletion of p53 function results in resistance. In
the present experiments, 5-FU induced an increase in p53 mRNA
expression in mutant-type cell lines and in HPV-positive wild-type
cell lines, whereas in CAL51 wild-type p53 cell line, a significant
decrease in p53 gene expression was observed (0.7-fold, P = 0.02).
These results are in agreement with those reported by Palmer et al
(1997). Cellular mechanisms able to regulate wt p53 function
include post-translational stabilization (Kastan et al, 1991),
nuclear exclusion or cytoplasmic sequestration (Moll et al, 1996),
negative feedback inhibition of p53 mRNA translation by p53
protein itself (Mosner et al, 1995), binding of p53 by proteins such
as mdm2 (Momand et al, 1992) or HPV E6 (Crook et al, 1991).
Moreover, regulation of p53 protein could also implicate the
changes in the p53 gene transcription such as p53 mRNA half-life
modification or CpG nucleotides methylation (Kren et al, 1996).
Conversely, regulation of mutated p53 levels after drug treatment
consisted in an increase in translation process (Nabeya et al,
1995). In the present study, 5-FU exposure was found to induce an
increase in p53 mRNA and protein expression in mutated cell
lines. As currently accepted, biosynthesis of wild-type p53 can be
controlled by both transcriptional (Deffie et al, 1993; Hudson et al,
1995) and translational (Mosner et al, 1995; Ewen and Miller,
1996; Fu et al, 1996) regulation processes. Our results are consis-
tent with Nabeya et al (1995), demonstrating that an increase in
wild-type p53 protein levels was mainly due to post-translational
stabilization. Nevertheless, despite p53 wild-type status in KB
line, p53 protein was not up-regulated and remained undetectable
after exposure to 5-FU. In fact, KB cell line was described as
containing HPV-18 sequences (Boshart et al, 1984). HPV E6
protein was shown to actively stimulate the degradation of bound
p53 through ubiquitin-dependent proteolysis (Scheffner et al,
1990; Crook et al, 1991; Huibregtse et al, 1993) and HPV E7
protein could also inhibit p53 transcriptional activity by binding
p53 in presence of TATA box-binding protein (Massimi and
Banks, 1997). Consequently, cell lines containing HPV-16 and
HPV-18 oncogenic human papilloma virus should not display any
up-regulation of p53 protein despite a wild-type status.

Whether p53 protein up-regulation observed could correspond
to p53 transcriptional ability was tested through the induction of
mdm2 and p21 transactivation. Mdm2 gene possesses a p53-
responsive element (mdm2-p53RE) (Barak et al, 1994; Zauberman
© 2000 Cancer Research Campaign
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et al, 1995), moreover p53 and mdm2 proteins constitute an
autoregulatory feedback loop in which p53 activity is self-limited
through mdm2 production (Kubbutat et al, 1997). Wild-type cell
lines (CAL51 and KB) showed a marked increase in mdm2 tran-
script corresponding to mdm2-p53RE and no up-regulation was
detected when p53 gene was mutated or deleted, except for FaDu.
Mutant p53 was previously demonstrated to be able to bind
mdm2-p53RE, according to the nature and position of the amino-
acid substitution (Gorgoulis et al, 1998). O’Connor et al (1993)
also demonstrated induction of mdm2 mRNA for three mutant p53
lines, which exhibited alteration of codon 248 as observed in FaDu
cell line. This mutation was classified as ‘contact mutant’, since
residue 248 is directly involved in p53 DNA-binding, and then
reduced the affinity of p53 for its consensus sites by removing criti-
cal contact with DNA (Cho et al, 1994; Arrowsmith and Morin,
1996) without changing p53 conformation (Ory et al, 1994). p21
mRNA basal expression was reduced in p53 mutated cell lines in
agreement with Elbendary et al (1996). Relationship could be
evidenced between p21 basal expression and p53 status. p21
mRNA overexpression was still detected in all cell lines indepen-
dently of p53 status, suggesting that p21 could be up-regulated by
other pathways (Macleod et al, 1995; Loignon et al, 1997; Wouters
et al, 1999). In all cell lines after 5-FU exposure p21 induction,
mediated or not by p53, results in G1 arrest (el-Deiry et al, 1993;
1994). However, G1 accumulation was statistically significant
only for CAL51, KB, and FaDu lines, which exhibited p53 tran-
scriptional functionality leading to G1 arrest, which should be
more related to p53 functionality than p53 status.

Since Bax was identified as a p53 early-response gene
(Selvakumaran et al, 1994), and a unique p53-regulated gene
which induced apoptosis (Zhan et al, 1994), and Bcl-2 as an apop-
tosis antagonist (Oltvai et al, 1993; Reed, 1994), levels of Bax and
Bcl-2 were analysed in cell lines after exposure to 5-FU equitoxic
concentrations. Bcl-2 family proteins were demonstrated to be
important apoptosis regulators after 5-FU treatment (Koshiji et al,
1997; Nita et al, 1998a). Likewise, CAL51 cell line displayed a
significant increase in Bax, as well as a significant decrease in Bcl-
2 protein expression. All p53 mutant cell lines displayed either no
modification of Bax and Bcl-2 protein expression (CAL33 and
FaDu), or a significant decrease in Bax as well as an increase in
Bcl-2 protein expression (CAL27 and PANC3) after 5-FU expo-
sure. Our results also showed that HPV-18 positive KB cell line, in
which p53 was not up-regulated, displayed no Bax protein up-
regulation, but Bcl-2 down regulation. 5-FU-resistant cell lines
(CAL27 et PANC3) showed an increase in Bcl-2 protein expres-
sion reported to protect the cells against thymidylate synthase
inhibitor (Fisher et al, 1993), as well as other anticancer drugs
(Reed, 1994). Bcl-2 and Bax induction significantly correlates
with 5-FU sensitivity and whatever p53 status, Bcl-2 to Bax rela-
tive expression ratio was also correlated with 5-FU sensitivity.

In vitro, 5-FU sensitivity was related to different mechanisms
(Pinedo and Peters, 1988; Spears et al, 1988; Zhang et al, 1992;
Peters et al, 1995). Although each of the mechanisms have been
well documented, their relative contribution to the development of
clinical drug resistance remains incertain. However, there is a
growing body of evidence to suggest that sensitivity to the cyto-
toxic effects of fluoropyrimidines may be mediated via TS and
DPD process (Peters et al, 1995). Although TS and DPD have
demonstrated potential prognostic significance, their prognostic
values are still controversial (Beck et al, 1994; Nita et al, 1998b;
Etienne et al, 1999; Kirihara et al, 1999). More recently, Bcl-2
© 2000 Cancer Research Campaign
family proteins were implicated in chemotherapy-induced cell
death (Simonian et al, 1997) and previous results suggest that
some members of the Bcl-2 family of proteins, in human colon
cancer cell lines, are modulated by 5-FU, and that the ratio of Bcl-
X(L) to Bax may be related to chemosensitivity to 5-FU (Nita
et al, 1998a).

In conclusion, for cell cycle control, p53 functionality appeared
to be more essential than mutational status. Moreover, whatever
p53 status or functionality, 5-FU sensitivity was related to Bcl-2
family proteins expression and Bcl-2/Bax ratio could be a relevant
marker to predict 5-FU treatment response.
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