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Summary Tumour necrosis factor-α (TNF-α) is a cytokine that can induce cell death of different cancers via a cellular cascade of proteases,
the caspases. However, TNF-α has been detected in tumour and serum of patients with head and neck squamous cell carcinoma (HNSCC),
and tumour cell lines derived from this environment often exhibit resistance to TNF-α-induced cell death. Cell death mediated by TNF-α and
caspases may be inhibited by cytoprotective genes regulated by transcription factor nuclear factor-κB (NF-κB). We recently showed that NF-
κB is constitutively activated in HNSCC, and that inhibition of NF-κB by expression of a nondegradable mutant inhibitor of NF-κB, IκBαM,
markedly decreased survival and growth of HNSCC cells in vivo. In the present study, we examined the TNF-α sensitivity and response of
HNSCC with constitutively active NF-κB, and of HNSCC cells in which NF-κB is inhibited by stable expression of a dominant negative mutant
inhibitor, IκBαM. Human lines UM-SCC-9, 11B and 38, previously shown to exhibit constitutive activation of NF-κB, were found to be highly
resistant to growth inhibition by up to 104 U/ml of TNF-α in 5 day MTT assay. These TNF-α resistant HNSCC lines expressed TNF receptor I,
and exhibited constitutive and TNF-α-inducible activation of NF-κB as demonstrated by nuclear localization of NF-κB p65 by
immunohistochemistry. UM-SCC-9 I11 cells which stably expressed an inhibitor of NF-κB, IκBαm, were susceptible to TNF-α-induced growth
inhibition. DNA cell cycle analysis revealed that TNF-α induced growth inhibition was associated with accumulation of cells with sub-G0/G1
DNA content. Cell death was demonstrated by trypan blue staining, and was blocked by caspase inhibitor. We conclude that HNSCC that
exhibit constitutive and TNF-α-inducible activation of transcription factor NF-κB are resistant to TNF-α, and that inhibition of NF-κB sensitizes
HNSCC to TNF-α caspase-mediated cytotoxicity. The demonstration of the role of activation of NF-κB in resistance of HNSCC to TNF-α may
be helpful in the identification of potential targets for pharmacological, molecular and immune therapy of HNSCC. © 2000 Cancer Research
Campaign
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Tumour necrosis factor-alpha (TNF-α) is a cytokine which was
initially reported to have cytocidal activity against a variety of
normal and neoplastic cells (Carswell et al, 1975; Haranaka and
Satomi, 1981; Sugarman et al, 1985; Fransen et al, 1986). TNF-α
has been shown to induce cell death of tumours via apoptosis or
necrosis (Schmid et al, 1986; Dealtry et al, 1987; Larrick and
Wright, 1990; Laster et al, 1998). TNF-α can induce apoptosis of
some HNSCC cell lines at concentrations at or above 104 U/ml
(Briskin et al, 1996), but most human HNSCC have been reported
to be relatively resistant to TNF-α (Gapany et al, 1990, Schuger
et al, 1990; Sacchi et al, 1991, Monchimatsu et al, 1993, Briskin
et al, 1996). Development of resistance to TNF-α has been shown
to occur with tumour progression in murine fibrosarcomas through
exposure of tumour cells to TNF-α produced by host responses,
and selection of TNF-α resistant tumour cells (Urban et al, 1983,
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1986). TNF-α expression has been detected in tumour and serum
of patients with HNSCC, indicating that TNF-α resistant HNSCC
may also develop in the presence of endogenous TNF-α (Parks et
al, 1994; Soylu et al, 1994; Younes et al, 1996; Knerer et al, 1996;
Kurokawa et al, 1998). Thus, these tumours may be resistant to
concentrations of TNF-α produced endogenously or administered
exogenously (Fraker et al, 1995; Olieman et al, 1999). The
mechanism of increased resistance of HNSCC to TNF-α has not
been previously defined.

TNF-α induces cell death through activation of TNF Receptor I
(Tartaglia and Goeddel, 1992) and a cascade of death gene
products, including caspases (Wallach et al, 1999). Lack of TNF
receptor expression has been proposed as a possible basis for
TNF-α resistance of HNSCC (Younes et al, 1996), but other inves-
tigators have found that TNF-α resistant HNSCC may retain
expression of TNF receptors (von Biberstein et al, 1995).
Alternatively, resistance to TNF-α could involve mechanisms
which promote cell survival. We recently reported that survival of
HNSCC cells is promoted by constitutive activation of nuclear
factor-κB (NF-κB) (Duffey et al, 1999), a transcription factor
which has been reported to induce expression of a variety of
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proteins that can inhibit cell death (Beg and Baltimore et al, 1996;
Wang et al, 1996; Van Antwerp et al, 1996; Mayo et al, 1997; Sun
and Carpenter, 1998; Wang et al, 1998; Zong et al, 1999). We
showed that several human HNSCC cell lines in the University
of Michigan (UM-SCC) series exhibit constitutive activation of
NF-κB and NF-κB inducible cytokine genes (Duffey et al, 1999;
Ondrey et al, 1999). We also demonstrated that an increase in
constitutive activation of NF-κB and expression of NF-κB
inducible cytokines occurs with metastatic tumour progression in a
murine model of squamous cell carcinoma (Dong et al, 1999). We
noted that TNF-α induced NF-κB and NF-κB-inducible cytokine
production in these human UM-SCC and murine SCC cell lines
without evidence of significant cell toxicity or death. These obser-
vations suggest the hypothesis that acquisition of TNF-α resis-
tance by HNSCC may result from selection of cancer cells in
which NF-κB and cytoprotective responses can be activated.

Activation of NF-κB has been shown to involve signal-induced
phosphorylation and degradation of inhibitor κB (IκB) proteins,
which release NF-κB for nuclear translocation (Brockman et al,
1995; Brown et al, 1995; Traeckner et al, 1995; Verma et al, 1995),
and for binding to the promoter sites of target genes. Studies in
these laboratories have shown that mutations in the serine phos-
phorylation sites at S32 and/or S36 of IκBα can inhibit the signal-
dependent activation of NF-κB by a variety of stimuli. Such
phosphorylation mutants can therefore exert a dominant negative
effect, preventing the activation of NF-κB dependent genes. By
expression of a dominant negative IκBα mutant, NF-κB has been
shown to be important in activation of genes necessary for survival
and protection of cells from injury by a variety of cytotoxic
stimuli, including cytokine TNF-α, chemo- and radiation therapy
(Beg and Baltimore et al, 1996; Van Antwerp et al, 1996; Wang
et al, 1996). In these studies, decreased resistance of cells to TNF-
α-induced cell death could be demonstrated following cytoplasmic
inactivation of NF-κB by expression of an inhibitor-κB (IκB)
phosphorylation mutant which is unable to undergo TNF-α-
induced phosphorylation and degradation. We recently reported
that inactivation of NF-κB by expression of an IκB phosphoryla-
tion mutant inhibits survival and in vivo growth of human UM-
SCC cell lines (Duffey et al, 1999).

In the present study, we determined the effects of TNF-α treat-
ment on UM-SCC cell lines which exhibit constitutive activation
of NF-κB, and asked whether inhibition of NF-κB activation
by stable expression of a dominant negative inhibitor-κB could
enhance sensitivity to TNF-induced cytotoxicity. We provide
evidence that HNSCC that exhibit constitutive and TNF-α-
inducible activation of transcription factor NF-κB are resistant to
TNF-α, and that inhibition of NF-κB activation by the expression
of a phosphorylation mutant of inhibitor-κBα (IκBαM) sensitizes
a UM-SCC cell line to TNF-α-mediated cell death. This TNF-α
induced cytotoxicity was blocked by caspase inhibitor. We
conclude that HNSCC cell  line that exhibit constitutive and TNF-
α-inducible activation of transcription factor NF-κB are resistant
to TNF-α, and that inhibition of NF-κB sensitizes HNSCC to
TNF-α caspase-mediated cytotoxicity.



Cell culture

Human squamous cell carcinoma cell lines were derived from
advanced stage head and neck cancer patients at the University of
British Journal of Cancer (2000) 83(10), 1367–1374
Michigan and were a generous gift of Thomas Carey, Ph.D.
Squamous carcinoma cell lines UMSCC-9, -11B, and -38 cells
used in the present study were previously described (Duffey et al,
1999; Ondrey et al, 1999). These lines were cultured at 37°C, 5%
CO2 as adherant monolayer cultures in Minimum Essential
Medium (Gibco/BRL, Gaithersburg, MD) with 10% heat-
inactivated fetal calf serum (Gibco/BRL) containing 2 mM L-
glutamine, and penicillin (50 µg/ml), streptomycin (50 µg/ml).
Log-phase cells were routinely passaged weekly after trypsiniza-
tion.

Cell proliferation assay

Cell proliferation was quantified using an MTT-based colorimetric
assay (Cell Proliferation Kit I, Boehringer Mannheim, Mannheim,
Germany). HNSCC cells were plated in flat-bottomed 96-well
plates at a density of 5 × 103 cells/well and allowed to adhere
overnight at 37°C. Addition of control medium or medium with
TNF-α was followed by incubation at 37°C for 1–5 days. The
MTT assay was conducted at 1, 3 and 5 days following stimulation
according to manufacturer’s protocol (Boehringer Mannheim,
Indianapolis, IN). At endpoint intervals, 100 µl of medium was
removed and 10 µl of dimethylthiazol-diphenyl tetrazolium
bromide (MTT) labelling reagent was added and the plate was
incubated for 4 hours at 37°C as per the manufacturer’s recom-
mendations. After a 4 hour incubation, cells were solubilized by
adding 100 µl of 10% SDS in 0.01 M HCl as per the manufac-
turer’s instructions. Overnight incubation at 37°C was then fol-
lowed by optic densitometry reading at 570 nm with a microplate
reader (Biotek 311, Biotek Systems, Winooski, VT). All readings
were done in quadruplicate.

RNAse protection assay

Total RNA from UM-SCC-9, 11B and 38 was harvested with
Trizol reagent (Gibco BRL Life Technology, Inc, Gaithersburg,
MD). 10 µg of RNA from each sample was hybridized with 32P-
labelled RNA probes specific for TNFRI and II made from
commercially available templates, which included probes for L32
and GAPDH as loading controls (hCR-4, #45374P, Pharmingen,
San Diego, CA). The hybridized products were digested with
RNAse. 15 µg total RNA was loaded per lane and the protected
RNA probes were separated by sequencing gel electrophoresis
which was exposed to X-ray film. The films were scanned and
density of TNFRI and TNFRII was normalized to GADPH using
NIH IMAGE software, v1.62, and reported as a ratio.

Immunohistochemical staining

Immunohistochemical analysis was performed using anti-TNF RI
and anti-TNF RII, and anti-p65 antibody which recognizes the
nuclear localization sequence of the activated form of NF-κB p65
using a modification of the protocol of Kaltschmidt et al (1995).
UM-SCC-9, -11B and 38 cells were plated at a density of 104 cells
and incubated at 37°C for 2–3 days to roughly 50% confluency on
8-well chamber slides (Lab-Tek, Naperville, IL). The slides with
attached cells were fixed with 3.7% formalin in PBS for 5 minutes,
washed with PBS, and then permeabilized with 0.2% Triton X-100
in PBS for 10 minutes. After washing, the slides were blocked
with 10% goat serum for 30 minutes, and goat anti-TNF RI or anti-
TNF RII antibody (Santa Cruz Biotechnology, Santa Cruz, CA)
© 2000 Cancer Research Campaign
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Figure 1 Effect of TNF-α upon growth of UM-SCC cell lines in MTT assay.
UM-SCC-9, 11B and 38 cells were cultured in 96 well plates in the presence
of 0 to 104 U/ml TNF-α, and growth on day 1, 3 and 5 was compared by MTT
assay, as described in Methods. The OD 570 nm +/– SEM is shown.
*Denotes significant difference by Student’s t test at P < 0.05
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was added directly into the blocking serum on the slides at a
1:2000 dilution for 1 hour. Isotype controls were purified goat IgG
at 1:2000 dilution (Cappel, West Chester, PA) that corresponded
to an equal concentration of primary antibody. After washing,
secondary anti-goat antibody and biotin-avidin conjugates from
Vectastain Elite ABC kit and chromogen diaminobenzidine
tetrahydrochloride (Vector Lab, Inc., Burlingame, CA) were used
for colour development following the manufacturer’s instructions.

Transfection of UM-SCC-9 cells with IκBαM and control
vector

The cDNA plasmid pCMX IκBαM contains a mutation at S36 of
the NH2 terminus and a COOH-terminal PEST sequence mutation,
and was a generous gift from Dr Inder M Verma, Salk Institute, La
Jolla, CA (Van Antwerp et al, 1996). The plasmid containing the
neomycin (neo) resistance gene used is described by Brown et al
(1995). The method of transfection and isolation of UM-SCC-9
cells was previously described (Duffey et al, 1999). UM-SCC-9
I11 cells expressed IκBαM most abundantly and UM-SCC-9 C11
cells transfected with vector control alone were expanded and used
for the present studies. We recently showed that the difficulty in
obtaining stable transformants of UM-SCC 11B and 38 cell lines is
due to decreased survival of cells transfected with IκBα (Duffey et
al, 1999).

Cell viability by DNA cytofluorometry and trypan blue
exclusion

Cells were collected for DNA cell cycle analysis and stained with
propidium iodide using the Cycle TEST PLUS DNA Reagent Kit
according to manufacturer’s instructions (Becton Dickinson, San
Jose, CA). The stained cells were analysed using a FACScan flow
cytofluorometer and compared for DNA content following calibra-
tion with diploid DNA QC particles, using CELLQuest software
(Becton Dickinson, Mountain View, CA). Statistical analyses were
performed by ModFit LT software (Verity Software House,
Topsham, ME).

Cell viability was quantified by trypan blue exclusion. Cells
were plated at 5 × 103 cells/well in each well of a 96-well plate.
UM-SCC-9 I11 and UM-SCC-9 C11 control cells in monolayer
cultures were treated with TNF-α as described, and adherent and
nonadherent cells were collected in suspension following trypsin-
EDTA treatment. For the caspase inhibition study, UM-SCC9 I-11
cells were incubated overnight, pre-incubated for 60 minutes
with 0, 1, 10, and 25 µM Caspase Inhibitor I (Z-VAD-FMK)
(Calbiochem, La Jolla, CA), and 1000 U/mL TNF-α was added.
Cells were centrifuged at 1200 rpm for 5 minutes at room temper-
ature. The cell pellet was resuspended in MEM complete medium.
An aliquot was mixed with an equal volume of 1.0% trypan blue,
and cell concentration and viability were determined using a
haemacytometer.



UM-SCC-9, 11B and 38 cell lines are resistant to TNF-α
induced cytotoxicity and express TNFR I

To determine the sensitivity of a panel of HNSCC lines to TNF-α,
we cultured UM-SCC-9, 11B and 38 cell lines with 100, 1000 and
© 2000 Cancer Research Campaign
104 U/ml of TNF-α or control media, and compared the prolifera-
tion of cells during a 5-day MTT assay (Fig. 1). TNF-α showed no
appreciable inhibitory effect upon the proliferation of cells during
the first 3 days, and only a small inhibition of growth of UM-SCC-
9 and 38 cells was detected by day 5. Although the inhibition of
growth following treatment at higher concentrations was statisti-
cally significant, cells continued to grow in the presence of TNF-
α, and no difference in density larger than 30% was detected by
day 5. The TNF-α used was functional, since TNF-α at the same
concentrations completely inhibited proliferation of primary
keratinocytes (not shown). Since it has been reported that resis-
tance of HNSCC to TNF-α-induced cytotoxicity may be due to
loss of expression of TNF receptor (Younes et al 1996), we exam-
ined the expression of TNF receptor I and II mRNA and protein
expression, as determined by RNAse protection assay and
immunohistochemical analysis. Table 1 shows that all three UM-
SCC cell lines expressed quantitatively similar ratios of TNFR I
mRNA when normalized to GADPH by densitometric analysis. A
similar pattern of protein staining was detected in all 3 cell lines by
immunohistochemistry. No TNFR II was detected in UM-SCC
cells by either method, while control A549 cells were positive for
both receptors by immunohistochemistry. Thus, the TNF-α resis-
tant UM-SCC cell lines examined in the present study retain
expression of TNFR I, the TNF receptor associated with TNF-
inducible cell cytotoxicity (Tartaglia and Goeddel, 1992).
British Journal of Cancer (2000) 83(10), 1367–1374
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Figure 2 Immunolocalization of activated NF-κB p65 in untreated and TNF-α treated UM-SCC cell lines. UM-SCC-38, 9, and 11B cell lines stained with anti-
p65 specific for the nuclear localization sequence in the absence of TNF-α (-TNF2α) show varying levels of constitutive cytoplasmic and nuclear staining, while
104 U/ml TNF-α (+TNF-α) induces increased nuclear localization of p65 in all cell lines

Table 1 Detection of TNF receptor expression in UM-SCC cells by RNAse
protection assay and immunohistochemistry

TNF Cell line
receptor UM-SCC-9 UM-SCC-11B UM-SCC-38 A549

TNF RI
RNA 0.82 0.80 0.78 ND
Protein + + + +
TNF RII
RNA – – – ND
Protein – – – +

TNFR I and II mRNA expression was assayed by RNAse protection, and the
ratio of TNFR to GADPH mRNA is reported, as described in Methods. TNFR I
and II protein was assayed by immunohistochemistry using anti-TNF RI and
TNF RII antibodies. UM-SCC were compared with A549 cell line expression
as a positive control for both TNFR I and TNFR II. ND, not done
TNF-α induces increased activation and nuclearl
localization of NF-κB in UM-SCC cell lines

Resistance to TNF-α induced cell death has been associated with
activation of NF-κB (Beg and Baltimore, 1996; Van Antwerp et al,
1996; Wang et al, 1996). We previously showed that NF-κB/Rel A
(p50/p65) is constitutively activated in UM-SCC-9, 11B and 38
cell lines (Ondrey et al, 1999), and may be further induced by
TNF-α in UM-SCC-9 (Duffey et al, 1999). To examine whether
TNF-α induces activation of NF-κB/Rel A in TNF-α resistant
HNSCC cell lines, we examined the pattern of nuclear activation
and localization of the NF-κB p65 subunit by immunoperoxidase
staining in UM-SCC-9, 11B and 38, in the absence and presence of
104 U/ml of TNF-α, using an antibody that recognizes the nuclear
British Journal of Cancer (2000) 83(10), 1367–1374
localization site of activated Rel A p65 (Kaltschmidt et al, 1995;
Duffey et al, 1999). The left panels in Fig. 2 show the baseline
staining pattern, which reveals mixed cytoplasmic and nuclear
staining of p65 in UM-SCC 9 and 38 cell lines, and an apparent
increase in constitutive nuclear staining in UM-SCC-11B. The
apparent difference in constitutive nuclear localization between
UM-SCC-11B and the other two cell lines is consistent with the
relative differences in constitutive activation of NF-κB in these
cell lines by EMSA and NF-κB luciferase reporter assay (Ondrey
et al, 1999). Within 15 minutes of treatment with TNF-α, an
increase and predominant staining of NF-κB in the nuclear and
perinuclear regions was detected in all three cell lines (Fig. 2,
middle panels). The staining with anti-p65 could be differentiated
from background detected with an isotype control (Fig. 2, right
panels). We confirmed that TNF-α induced p50/p65 DNA binding
activity in the cell lines by electromobility shift assay (Ondrey et
al, 1999; D Duffey, data not shown). Thus, TNF-α induces activa-
tion of the NF-κB signal pathway in HNSCC cell lines that are
resistant to TNF-α.

TNF-α induces cell death in UM-SCC-9 111 cells
expressing a dominant negative mutant Inhibitor-κB by
a caspase-dependent mechanism

We recently demonstrated that expression of an inhibitor-κBα phos-
phorylation mutant (IκBαM) in UM-SCC-9 can inhibit both consti-
tutive and TNF-α inducible activation of NF-κB (Duffey et al,
1999). The inhibition of NF-κB in UM-SCC-9 I11 cells was demon-
strated by EMSA, NF-κB luciferase reporter activity, and by expres-
sion of NF-κB-dependent cytokine gene expression (Duffey et al,
© 2000 Cancer Research Campaign
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Figure 3 Growth of UM-SCC-9, C11 and I11 cells cultured without and with
TNF-α in MTT assay. UM-SCC-9 parental cells, UM-SCC-9 C11 cells
transfected with vector alone, and UM-SCC-9 I11 cells transfected with
IκBαM mutant were cultured in media alone or media with 104 U/ml of TNF-
α. Growth was compared on days 0, 1, 2, 3 and 5 of culture. The optical
density shown is the average result of two independent experiments, each
consisting of quadruplicate cultures. A significant inhibition in growth was
observed in UM-SCC-9 I11 cells on day 3 and 5 (P < 0.05)
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Figure 4 DNA content analysis of UM-SCC-9, C11 and I11 cells cultured
without and with TNF-α. UM-SCC-9, C-11 and I-11 cells cultured without
(Control) and with TNF-α for 24 were stained with PI and analysed for DNA
content by flow cytofluometry, as described in methods. The percentage fo
cells in sub G1/G0, G1/G0, S and G2/M was quantified. A 14% increase in
cells with sub G0/G1 DNA content was detected at 24 hours
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1999). To determine if inhibition of NF-κB sensitized UM-SCC-9
cells to TNF-α, we compared the TNF-α sensitivity of IκBαM
transfected UM-SCC-9 I11 cells with UM-SCC-9 and control vector
transfected UM-SCC-9 C11 cells in MTT assay. Figure 3 shows the
average optical density from two independent MTT experiments.
UM-SCC-9 I11 cells exposed to TNF-α exhibit a significant
decrease in density relative to untreated UM-SCC-9 I11 or UM-
SCC-9 and control vector transfected UM-SCC-9 C11 cells by day 3
of culture. An effect of TNF-α on UM-SCC-9 I11 cells is not
detectable by MTT assay on day 1 and 2. The difference is observed
toward the end of the exponential growth phase when untreated
UM-SCC-9 I11 cells reach maximal density, and is sustained
without further increase in the difference for up to 5 days of culture.

To examine if the decrease in cell density of IκBαM transfected
cells treated with TNF-α is associated with evidence of cell cycle
© 2000 Cancer Research Campaign
block or sub-G0/G1 DNA fragmentation prior to detection of
differences in density, the DNA staining profile of IκBαM trans-
fected cells was determined by flow cytofluorometry 24 hours
following treatment with TNF-α. Figure 4 shows a comparison of
propidium iodide DNA staining in UM-SCC-9, control vector,
and IκBαM transfected cells following TNF-α treatment. A 14%
increase in sub-G0/G1 DNA content was observed in IκBαM
expressing UM-SCC-9 I11 cells beginning 24 hours following
treatment with TNF-α, while no increase in sub-G0/G1 DNA
staining was observed in UM-SCC-9 and UM-SCC-9C11 cells.

To establish whether the significant decrease in cell density
detected after 3 days in Figure 3 was attributable to cell death, we
determined the viability of cells by trypan blue exclusion at 72
hours. Decreased viability of UM-SCC-9 I11 cells was detected, as
shown by a 75% decrease in cells excluding trypan blue exclusion
British Journal of Cancer (2000) 83(10), 1367–1374
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following exposure of the cells to TNF-α for 72 hours (Fig. 5). To
determine if TNF-α induced cell death following inhibition of NF-
κB was attributable to a caspase mediated mechanism, we deter-
mined whether cytotoxicity could be blocked by a caspase
inhibitor. Figure 6 shows that caspase inhibitor blocked TNF-α
induced cytotoxicity in a dose-dependent manner. We conclude
that TNF-α induces cytototoxicity in UM-SCC-9 cells expressing
a dominant negative mutant inhibitor-κB by a caspase-dependent
mechanism. The blockade of caspase dependent cell death by NF-
κB has been shown previously to be due to NF-κB induced
expression of cytoprotective proteins, which can be blocked with
cycloheximide (Beg and Baltimore, 1996). We further confirmed
by microscopy that TNF-α induces morphologic cell fragmenta-
tion of all 3 UM-SCC cells lines in the presence of 10 µg/ml cyclo-
heximide, but not TNF-α or cycloheximide alone (data not
shown). These observations provide evidence that NF-κB medi-
ated resistance of the UM-SCC cell lines to TNF-α is dependent
on TNF-α inducible cytoprotective proteins.



In the present study, we confirmed that the 3 human UM-SCC cell
lines previously shown to exhibit constitutive activation of NF-κB
are highly resistant to TNF-α induced cell death. Our results
which demonstrate a relatively high resistance of these 3 UM-SCC
cell lines to TNF-α cytotoxicity are consistent with several studies
with different panels of cell lines, which showed that resistance of
HNSCC to TNF-α is common (Gapany et al, 1990, Schuger et al,
1990, Sacchi et al, 1991, Monchimatsu et al, 1993, Briskin et al,
1996). The UM-SCC cell lines in the present study exhibited
limited sensitivity at 104 U/ml TNF-α, consistent with results
obtained in another laboratory with a different panel of HNSCC
cell lines (Briskin et al, 1996). TNF-α has been shown to induce a
wide range of biological responses, including inflammation, cell
proliferation, differentiation, tumour necrosis and apoptosis (Liu
et al, 1996). Induction of responses to TNF-α is mediated through
binding of TNF Receptor I or II and activation of the TNF-
Receptor-associated protein 1 and 2 (TRAF) pathways (Tartaglia
and Goeddel et al, 1992; Wallach et al, 1999). Previous investiga-
tors have attributed a lack of TNF-α sensitivity of HNSCC to a
lack of TNF receptor expression (Younes et al, 1996). We have
demonstrated that the UM-SCC cell lines examined in this and our
previous studies exhibit resistance to TNF-α induced cell death,
while retaining expression of TNFR I. We have shown that these
HNSCC retain TNF-α responsiveness, as demonstrated by TNF-α
inducible activation of transcription factor NF-κB/RelA (Fig. 1;
Dong et al, 1999; Duffey et al, 1999). In UM-SCC-9 cells in which
we obtained stable expression of a mutant IκBα (IκBαM) and
inactivation of NF-κB (Duffey et al, 1999), TNF-α inhibited
growth and induced an increase in cell death relative to that
observed in UM-SCC-9 cells or cells transfected with vector
lacking the insert. We obtained evidence confirming that the TNF-
α induced cell death observed was dependent on the caspase
pathway, and that TNF-α resistance of HNSCC is dependent upon
inducible expression of protective proteins, as previously reported.

In previous studies, we noted that TNF-α treatment of human
and murine SCC cell lines induced NF-κB and NF-κB dependent
cytokine production (Dong et al, 1999; Duffey et al, 1999),
without evidence of significant cytotoxicity or cell death. We
reported recently that inactivation of NF-κB by expression of an
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inhibitor-κB (IκB) phosphorylation mutant in human HNSCC
cells can inhibit survival in vitro and growth in vivo (Duffey et al,
1999). We encountered difficulty in obtaining other HNSCC lines
which stably expressed the dominant negative IκBα phosphoryla-
tion site mutant, suggesting that expression of the mutant IκBα
could severely affect survival of transfected UM-SCC cells. We
confirmed that when 3 UM-SCC cell lines were co-transfected
with a Lac-Z reporter in the presence of excess vector containing a
human IκBα phosphorylation mutant or control vector, transfec-
tion of mutant IκBα markedly reduced the survival of β-galactosi-
dase staining cells by 70–90% in cultures within 72 hours (Duffey
et al, 1999). These results were consistent with studies by others
which show that inhibition of activation or deletion of NF-
κB/RelA inhibits survival of a variety of normal and neoplastic
cells of different tissue origin (Beg and Baltimore, 1996; Van
Antwerp et al, 1996; Wang et al, 1996; Wu et al, 1996; Bargou
et al, 1997; Naksharti et al, 1997; Shattuck-Brandt and Richmond,
1997). These observations indicated that constitutive activation of
NF-κB may play a role in inhibiting cell death of HNSCC, even in
the absence of TNF-α. Interestingly, independent clones of the
UM-SCC-9 cell line in which stable expression of IκBαM was
obtained, survived and grew in vitro, but grew poorly or regressed
in vivo (Duffey et al, 1999). These observations raise the possi-
bility that even surviving UM-SCC-9 cells transfected with
IκBαM may have attenuated resistance to cytotoxic host factors,
such as TNF-α.

TNF-α has been reported to have a variety of effects on DNA
cell cycle and cell death, including sub G0/G1 DNA fragmenta-
tion, and block at the G1/S and G2/M transitions (Watanabe et al,
1987; Coffman et al, 1989; van de Loosdrecht et al, 1993; Wan
et al, 1993; Pocsik et al, 1995; Shih and Stutman et al, 1996;
Otsuka et al, 1999). The cytotoxic effect of TNF-α on UM-SCC
following inhibition of NF-κB or cycloheximide treatment
appeared to involve an increase in cell death rather than cell cycle
block. The increase in trypan blue staining and sub G0/G1 DNA
content of UM-SCC-9 IκBαM transfected cells following TNF-α
treatment provides evidence for cell death and subcellular DNA
fragmentation. The morphologic changes in UM-SCC-9, -11B and
-38 following inhibition of protein synthesis with cycloheximide
included cell rounding, blebbing, fragmentation and cell loss (data
not shown). The early increase in Sub G0/G1 DNA content in
UM-SCC-9I-11 cells and changes in cell morphology of all 3 cell
lines following treatment with cycloheximide were observed
within 18–24 hours following TNF-α treatment, consistent with
the time interval during which TNF-α-induced cell death is
observed in other cell types (Beg and Baltimore, 1996; Van
Antwerp et al, 1996; Wang et al, 1996).

The susceptibility or resistance of several other cell types to
TNF-α induced cell death has recently been shown to depend upon
the state of activation or recruitment of signal transduction path-
ways, particularly those involving transcription factor NF-κB and
NF-κB dependent proteins (Beg and Baltimore, 1996; Van
Antwerp et al, 1996; Wang et al, 1996). In cells where NF-κB is
induced by TNF-α, apoptosis may not occur (Liu et al, 1996). The
promotion of cell survival by activation of NF-κB has recently
been attributed to expression of several proteins which may
protect cells from apoptosis. NF-κB has been reported to induce
TRAF1, TRAF2, c-IAP1 and c-IAP2, resulting in suppression of
caspase-8 activation, thereby inhibiting apoptosis (Wang et al,
1998). We obtained evidence that TNF-α induces cell death in
© 2000 Cancer Research Campaign
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UM-SCC-9 I11 by a caspase dependent mechanism, since cell
death was blocked by a caspase inhibitor. Other novel inhibitors of
cell death have been reported. IEX-1L (Wu et al, 1998) and the
pro-survival Bcl-2 homologue Bfl-1/A1 (Zong et al, 1999) have
been shown to be transcriptional targets of NF-κB which can block
TNF-α-induced apoptosis. In other systems, the targets of NF-κB
have been shown to include p53 (Hu et al, 1994) and the c-myc
oncogene promoter (La Rosa et al, 1994; Klefstrom et al, 1997;
Mayo et al, 1997; Bellas and Sourshein, 1999; Kaltschmidt et al,
1999), leading to the abrogation of apoptosis. Our data are consis-
tent with the findings of others which suggest that TNF-α
signalling results in a negative feedback mechanism involving NF-
κB activation and expression of protective proteins, with subse-
quent suppression of downstream signals which lead to caspase
mediated cell death (Beg and Baltimore, 1996; Van Antwerp et al,
1996; Wang et al, 1996, 1998). Although TNF-α resistance can be
inhibited by the addition of cycloheximide in these cell lines, and
cytoprotection appears to require new protein synthesis, the iden-
tity of these protein(s) in HNSCC remains to be determined.

It is possible that the cytokines expressed by HNSCC also
contribute to survival of cells exposed to TNF-α. We previously
showed that HNSCC cells express IL-1α (Chen et al, 1998),
another cytokine that can induce activation of NF-κB and
cytokines (Wood and Richmond, 1995). IL-1α has been reported
to promote resistance of cells to apoptosis, such as occurs in
response to radiation damage (Neta, 1997). We have recently
found that IL-1α serves as an autocrine factor for HNSCC, and
that IL-1α can stimulate transcriptional activation of both NF-κB
and AP-1 (Wolf et al, 1999). Preliminary studies have provided
evidence that expression of IL-1-receptor antagonist to block the
autocrine effects of IL1α, produces a decrease in cytokine expres-
sion and survival by UM-SCC cell lines (Wolf et al, 1999). Further
study in this area is warranted.

Identification of the molecular components of pathways acti-
vated up- and downstream of NF-κB in HNSCC will be important.
Identification of proteins necessary for cell survival following
TNF-α treatment may allow for specific targeting and develop-
ment of therapy to sensitize HNSCC to TNF-α produced by host
responses or given exogenously. For example, epidermal growth
factor receptor activation has been detected in the majority of
HNSCC, and the EGF induced Ras activation can activate NF-κB
and AP-1 (Sun and Carpenter, 1998). Ras activation has been
shown to suppress p53 independent apoptosis (Mayo et al, 1997).
Since approximately 50% of HNSCC appear to retain wild type
p53, it will important to determine whether constitutive activation
of NF-κB or AP-1 can prevent apoptosis by p53 mediated DNA
repair or p53 independent mechanisms involving c-myc that affect
cell cycle (La Rosa et al, 1994; Klefstrom et al, 1997; Bellas and
Sonenshein, 1999; Kaltschmidt et al, 1999; Kirch et al, 1999).
Regulation or manipulation of activation of these transcription
factors, such as by pharmacologic inhibitors of NF-κB (Giardina
et al, 1999) or by introduction of mutant transcription factor
repressors using viral vectors, may hold promise in sensitizing
HNSCC and other cancers to TNF-α and other types of cytotoxic
therapy.
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