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Summary Both host carbogen (95% oxygen/5% carbon dioxide) breathing and nicotinamide administration enhance tumour radiotherapeutic
response and are being re-evaluated in the clinic. Non-invasive magnetic resonance imaging (MRI) and 31P magnetic resonance
spectroscopy (MRS) methods have been used to give information on the effects of nicotinamide alone and in combination with host carbogen
breathing on transplanted rat GH3 prolactinomas. Gradient recalled echo (GRE) MRI, sensitive to blood oxygenation changes, and spin echo
(SE) MRI, sensitive to perfusion/flow, showed large signal intensity increases with carbogen breathing. Nicotinamide, thought to act by
suppressing the transient closure of small blood vessels that cause intermittent tumour hypoxia, induced a small increase in blood
oxygenation but no detectable change in perfusion/flow. Carbogen combined with nicotinamide was no more effective than carbogen alone.
Both carbogen and nicotinamide caused significant increases in the nucleoside triphosphate/inorganic phosphate (βNTP/Pi) ratio, implying
that the tumour cells normally receive sub-optimal substrate supply, and is consistent with either increased glycolysis and/or a switch to more
oxidative metabolism. The most striking observation was the marked increase in blood glucose (twofold) induced by both nicotinamide and
carbogen. Whether this may play a role in tumour radiosensitivity has yet to be determined. © 2000 Cancer Research Campaign
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Tumour oxygenation and blood flow are of fundamental impor-
tance to many forms of cancer therapy. Poorly-perfused regions of
tumours are likely to be hypoxic and thus resistant to radiotherapy
(Gray et al, 1956). At present it is believed that in addition to the
chronic, diffusion-limited hypoxia described by Thomlinson and
Gray (1955), there is a second mechanism – transient, acute
hypoxia in small (50 µm diameter) tumour volumes (Chaplin et al,
1987; Braun et al, 1999). Both nicotinamide and carbogen (95%
oxygen/5% carbon dioxide) have been shown to increase tumour
response to radiotherapy (Horsman et al, 1987; Chaplin et al,
1991; Kjellen et al, 1991), and it is generally considered that
they target these two different hypoxia mechanisms. Breathing
carbogen increases the amount of dissolved oxygen in the plasma
at the capillary level and this, assisted by hypercapnic-induced
vasodilation, may allow diffusion of oxygen into chronically
hypoxic regions of tumours, resulting in an increase in tumour
oxygenation. Nicotinamide is thought to reduce the occurrence of
acute hypoxia (Chaplin et al, 1990) and hence increase tumour
blood flow (Horsman et al, 1988; Hirst et al, 1993), although its
precise mechanism of action is still unclear. The combination
of carbogen breathing and nicotinamide is currently being
re-evaluated in the clinic as a strategy to overcome hypoxic cell
radioresistance (Hoskin et al, 1997; Kaanders et al, 1998;
Bernier et al, 1999).
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The response of tumours to host carbogen breathing has been
successfully monitored by 1H MRI methods with high temporal
and spatial resolution, and which are sensitive to the deoxyhaemo-
globin concentration. Deoxyhaemoglobin is paramagnetic and its
presence creates inhomogeneities in the magnetic field. This
reduces the T2* magnetic resonance (MR) relaxation time of the
tissue surrounding blood vessels containing deoxygenated blood.
Gradient-recalled echo (GRE) images are sensitive to T2*, thus a
change in GRE image intensity reflects a change in blood deoxy-
genation due to either a change in blood saturation or blood flow.
Deoxyhaemoglobin therefore acts as an endogenous, blood
oxygenation level dependent (BOLD) contrast agent (Ogawa et al,
1990). GRE MR images are also sensitive to the so-called ‘in-flow
effect’ whereby the water in fresh blood flowing into the selected
imaging slice is not saturated from the previous radiofrequency
pulse, thus giving a stronger signal than that from static water in
tissue (Duyn et al, 1994). Several studies have demonstrated large
carbogen-induced increases in T2* in both rodent (Robinson et al,
1995; Dunn and Swartz, 1997; Oikawa et al, 1997; Robinson et al,
1997, 1999) and human (Griffiths et al, 1997) tumours. This is a
consequence of an improvement in both tumour blood flow and
oxygenation (Howe et al, 1996; Al-Hallaq et al, 1998), a method
subsequently termed FLOOD (Flow and Oxygen Dependent)
imaging (Howe et al, 1999).

In preclinical in vivo studies, sensitization is only seen when
nicotinamide is administered prior to radiotherapy (Horsman,
1995), with an apparent maximum observed when given ca. 1 hour
prior to treatment (Horsman et al, 1987). To try and elucidate 
the mechanisms behind nicotinamide-induced tumour radio-
sensitization, the temporal response of rat GH3 prolactinomas to
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nicotinamide, alone and in combination with carbogen, was
monitored by three MR methods. GRE MR imaging was used to
monitor blood oxygenation via T2*; spin echo (SE) MR imaging to
monitor flow via the changes in the T1* relaxation time (Howe et
al, 1999); and 31P MRS to detect changes in tumour bioenergetics
(e.g. βNTP/Pi ratio) (Tozer and Griffiths, 1992). The combination
of these MR methods was firstly validated in a pilot study
following the response of GH3 prolactinomas to hydralazine, a
vasodilator whose tumour vascular steal-effects are well docu-
mented (Jirtle, 1988; Robinson et al, 1998). Subsequently the
tumour response to nicotinamide and carbogen was studied in vivo
using MR and other complementary methods to elucidate the
underlying mechanisms of action.



Animals and tumours

GH3 prolactinomas were grown in the flanks of female Wistar
Furth rats. Tumour cells from a serial passage of a cell suspension
(Prysor-Jones and Jenkins, 1981) were injected subcutaneously
into 180–200 g rats and tumours grown to 1.5–2 cm diameter.

Anaesthesia was induced with a 4 ml kg–1 intraperitoneal
injection of fentanyl citrate (0.315 mg ml–1) plus fluanisone
(10 mg ml–1) (‘Hypnorm’, Janssen Pharmaceutical Ltd), mida-
zolam (5 mg ml–1) (‘Hypnovel’, Roche) and water (1:1:2). This
combination has a minimal effect on tumour blood flow (Menke
and Vaupel, 1988) and 31P MRS characteristics (Sansom and
Wood, 1994). The tail vein was cannulated prior to MR, to allow
administration of hydralazine (Sigma, UK) or nicotinamide
(Sigma, UK) whilst the animal remained in the magnet bore. The
animals were placed on a flask containing circulating warm water
to maintain the core temperature at 37°C and positioned so the
tumour hung vertically into a radiofrequency coil. Carbogen
(BOC, UK Ltd) was administered via a nose-piece, equipped with
a scavenger to prevent the leakage of paramagnetic oxygen into
the magnet bore, which could potentially change the magnetic
susceptibility around the coil and produce image artefacts (Bates
et al, 1995).

MRI and MRS

1H MRI and 31P MRS was performed with a 4.7 T, 33 cm SISCO
(Spectroscopy Imaging Systems Corporation) instrument fitted
with a 10 G cm–1, 12-cm bore high-performance auxiliary gradient
insert, using a two-turn 3-cm coil tuneable to both 1H and 31P reso-
nant frequencies. Prior to data acquisition, field homogeneity was
optimized by shimming on the water signal for each tumour to a
linewidth of between 50 and 70 Hz. GRE images (echo time TE =
20 ms, repetition time TR = 80 ms, flip angle α = 45°) and SE
images (TE = 20 ms, TR = 300 ms) were acquired from a single
1 mm slice taken through the centre of the tumour. Each image
took 3 min to acquire using 256 phase encode steps over a 4 cm
field-of-view (FOV) with 8 averages. Non-localized 31P spectra
were acquired using a hard pulse with TR = 3 s, 64 transients and
an acquisition time of 4 min. The hard pulse flip angle was
optimized to minimize the appearance of PCr from surrounding
muscle tissue.

Interleaved MRI and MRS were acquired from separate cohorts
(n = 6) of tumours for an initial 20 min of baseline (air breathing
with no vasoactive agent) data, and thereafter using one of the
British Journal of Cancer (2000) 82(12), 2007–2014
following protocols.

1. 5 mg kg–1 of hydralazine administered with air breathing for
40 min

2. 1000 mg kg–1 nicotinamide in saline administered followed by
70 min air breathing

3. initial 20 min carbogen breathing alone, resumption of air
breathing for 40 min with administration of 1000 mg kg–1

nicotinamide, and finally 30 min carbogen breathing.

MR data analysis

For the images, a region of interest (ROI) encompassing the whole
tumour 1H image but excluding the skin was chosen and the
average pixel intensity calculated. Image intensities are reported
relative to the average pixel intensity in the ROI during initial air
breathing which was set to 100%.

Spectral analysis was performed using the Variable Projection
(VARPRO) time-domain non-linear least squares method (van den
Boogaart et al, 1995). For each analysis the first three data points
were excluded from the fit to eliminate the influence of fast
decaying signals from immobilized phosphates which cause a
baseline hump in the spectra. The data were fitted assuming contri-
butions from phosphomonoesters (PME), inorganic phosphate
(Pi), phosphodiesters (PDE), phosphocreatine (PCr) and the three
nucleoside triphosphates (NTP) resonances, and peak lineshape
was assumed to be Lorentzian. Peak area ratios of βNTP/Pi and
Pi/ΣP were then determined. Intracellular tumour pHi was deter-
mined using the VARPRO-derived chemical shifts for the Pi and
α-NTP resonances (Ojugo et al, 1999).

Blood pressure monitoring

Mean arterial blood pressure (MABP) was measured over the
same time course as for the MR protocols on separate cohorts of
rats (n = 5), using a rat tail blood pressure monitor (Harvard
Apparatus Ltd, Edenbridge, UK).

Blood plasma glucose

Arterial blood samples were taken from the iliac artery of a sepa-
rate cohort of tumour-bearing rats before and (1) 40 min post-
administration of 1000 mg kg–1 nicotinamide intravenously or (2)
after 10 min of carbogen breathing (n = 10 samples per treatment
group). The blood samples were centrifuged to remove the red
cells, an aliquot of the plasma supernatant was deproteinized with
perchloric acid and subsequently neutralized. Glucose was deter-
mined on the neutralized extracts according to Bergmeyer (1974).

Statistical analysis

The reproducibility of the MRI and 31P MRS acquisitions was
assessed from the two sets of pre-challenge measurements made in
each protocol. For the normalized GRE and SE image intensities,
βNTP/Pi and Pi/ΣP, the coefficient of variation (CV) was measured
in each of the 18 animals and the r.m.s. value determined. For pHi,
the standard deviation was measured and the r.m.s. determined.
Results are presented as mean ± standard error, and significant
changes identified using Student’s two-tailed t-test at a 5% confi-
dence level.
© 2000 Cancer Research Campaign
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In all the studies the blood-oxygenation-sensitive GRE images
showed a heterogeneous pattern of intensities whereas the flow-
sensitive SE images showed a fairly homogeneous pattern. In the
GRE images during air breathing, the regions of high signal
intensity are thought to delineate well-oxygenated/perfused areas
of the tumour, whilst dark areas are thought to indicate poorly
perfused/necrotic regions. The small hyperintense spots in both SE
and GRE images are probably attributable to signal from large
blood vessels (Howe et al, 1999). In the 31P MR spectra, typical
resonances were identified for PME, Pi, PDE, PCr and γ, α and β-
NTP. Non-localized 31P MRS was utilized to maintain adequate
temporal resolution and can result in spectral contamination.
However, in all the acquired spectra the PCr peak, when present,
was always less than that of NTP.

In the pilot study, hydralazine produced the expected significant
decreases in both GRE and SE image intensity and in βNTP/Pi

after 5 min. After 20 min the changes were maximal and stable for
the further 20 min of measurements. Within some of the GRE and
SE images, bright structures were observed which decreased in
number and intensity post-hydralazine (Figure 1).

Figure 2 shows representative GRE and SE MR images and 31P
spectra from a GH3 prolactinoma where the changes following
nicotinamide challenge had reached a maximum. Figure 3 shows
the time course of changes in MR image intensity and 31P MRS
parameters following administration of nicotinamide. A signifi-
cant increase in βNTP/Pi was observed 10 min after administration
of nicotinamide; the maximal increase was reached after 40 min
and it was then stable for a further 30 min. Concurrent with this
was a significant decrease in Pi/ΣP and a small but statistically
non-significant increase in tumour pHi. Changes in the oxygena-
tion-sensitive average GRE MR image intensity over the tumour
were much less but there was a small significant signal increase
after 40 min. The SE MR images, which are sensitive to blood
flow, showed no change in average image intensity.

These results formed the basis of the protocol designed to
assess the combination of carbogen and nicotinamide; carbogen
breathing was started 40 min post-nicotinamide when the
maximum response to nicotinamide occurred. The response to
carbogen breathing alone was much greater and faster than that
with nicotinamide alone. Significant increases in both GRE and
SE image intensity and in βNTP/Pi were observed after 5 min of
carbogen breathing with maximum increases after 10 min. Figure
4 shows representative GRE and SE MR images of the maximum
response to host carbogen breathing. On return to air-breathing
these changes were reversed within 5 min. When carbogen was
given 40 min after administration of nicotinamide, the 1H MRI and
31P MRS changes were no different to those caused by carbogen
breathing alone. Hyperintensities in both GRE and SE images
increased in number and intensity with carbogen breathing,
irrespective of whether nicotinamide had been administered
(Figure 4).

Table 1 summarizes the data for each vascular challenge when
MRI and MRS changes were maximal and stable, i.e. 40 min after
hydralazine administration, 40 min after nicotinamide administra-
tion and after 10 min of carbogen breathing. The data during air
breathing represent the average of data from all three of the
previously described protocols, but prior to the vascular challenge.
From the two successive MRI and 31P MRS measurements in all
© 2000 Cancer Research Campaign
18 animals prior to treatment, the precision of the measurements
was determined: these were 3% for GRE MRI intensity, 2% for SE
MRI intensity, 23% for βNTP/Pi, 19% for Pi/ΣP (all r.m.s. CV) and
0.1 units for pH (r.m.s. std. dev.).

Mean arterial blood pressure was unchanged by nicotinamide
and carbogen but significantly reduced by hydralazine (Table 1).

Circulating blood glucose levels were determined prior to and
either 40 min post-administration of nicotinamide or after 10 min
of carbogen breathing, these time points selected on the basis of
the maximum observed improvement in tumour energetics. Both
nicotinamide (11.4 ± 0.7 µmol ml–1) and carbogen breathing
(15.6 ± 0.6 µmol ml–1) induced significant increases in plasma
glucose levels (Table 1). The control plasma glucose levels (6.6 ±
0.3 µmol ml–1) and the enhanced levels after carbogen breathing
were similar to those previously reported (Stubbs et al, 1998).



The observed MRI and MRS responses of GH3 prolactinomas to
hydralazine were as expected, and this pilot study validated our
interpretation of the changes seen with nicotinamide and carbogen.
Hydralazine acts directly on vascular smooth muscle in vessels of
normal tissues, causing vasodilation and an overall decrease in
MABP. Tumour blood vessels, which may lack smooth muscle, do
not dilate in response to hydralazine, resulting in a redistribution
of blood away from the tumour, described as vascular steal (Jirtle,
1988), and hence a reduction in tumour blood flow. This reduction
in tumour perfusion results in nutrient and oxygen deprivation, and
hence reduced bioenergetic status as observed in the 31P MRS
spectrum (an increase in Pi relative to NTP). This has also been
observed for hydralazine in other tumour models (Okunieff et al,
1988; Dunn et al, 1989; Bhujwalla et al, 1990; Robinson et al,
1998). SE MR images (Figure 1 C,D) are sensitive to flow, and
hydralazine causes a decrease in overall signal intensity due to
reduced perfusion. The hyperintense spots are from the water in
blood vessels and are thus identified as large blood vessels in
cross-section. This is confirmed by their reduction in number in
response to hydralazine, the reduced perfusion resulting in less of
an ‘in-flow’ effect. The overall reduction in GRE image signal
intensity reflects the increase in capillary blood deoxyhaemo-
globin as the reduced perfusion means a larger oxygen fraction is
extracted. A similar GRE MRI response to hydralazine has been
observed in RIF-1 fibrosarcomas (Bhujwalla et al, 1994; Williams
et al, 1996).

Despite the plethora of data demonstrating the ability of nicoti-
namide to radiosensitize (Chaplin et al, 1991; Kjellen et al, 1991;
Horsman 1995 and references therein), there appears to be no
consensus on its precise mechanism of action. The main aim of
this study was to investigate tumour response to nicotinamide
administration and carbogen inhalation, which were given sepa-
rately and in combination. Carbogen caused marked and wide-
spread increases (39 ± 2%) in GRE MR image intensity, whereas
those caused by nicotinamide were much smaller (8 ± 3%), though
still statistically significant (Table 1). The results with carbogen
were qualitatively similar to those seen in our previous studies
on this tumour model which we interpreted as largely due to
decreased deoxyhaemoglobin in the tumour blood vessels
(Robinson et al, 1995, 1997, 1999; Howe et al, 1996, 1999). It
should be noted that the GRE MR images with short TRs are also
susceptible to in-flow effects, and hence an increase in blood flow
British Journal of Cancer (2000) 82(12), 2007–2014
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Figure 2 Response of a GH3 prolactinoma to 1000 mg kg–1 nicotinamide administered i.v., monitored by interleaved 1H MRI & 31P MRS: (A and B) are GRE
MR images prior to and 42 min post-nicotinamide; (C and D) are SE MR images prior to and 45 min post-nicotinamide; (E and F) are non-localized 31P MR
spectra prior to and 48 min post-nicotinamide
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Figure 1 Response of a GH3 prolactinoma to 5 mg kg–1 hydralazine i.v., monitored by interleaved 1H MRI & 31P MRS: (A and B) are GRE MR images prior to
and 32 min post-hydralazine; (C and D) are SE MR images prior to and 35 min post-hydralazine; (E and F) are non-localized 31P MR spectra prior to and 38 min
post-hydralazine
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Figure 3 Time course of 1H MR imaging and 31P MR spectroscopy changes
prior to and following administration of 1000 mg kg–1 nicotinamide.
(A) Normalized GRE MR image intensity (%). (B) Normalized SE MR image
intensity (%). (C) βNTP/Pi (D) Pi/ΣP. (E) pHi. All data are mean ± s.e.m. for
n = 6. *P < 0.05 Student’s two-tailed t-test
could also result in an increase in GRE signal (Duyn et al, 1994). A
secondary effect that we demonstrated herein with SE MRI was
enhanced blood flow into vessels within the tumour slice being
imaged, and here again the results with carbogen in the present
study were qualitatively similar to those we have previously
published (Howe et al, 1999). Nicotinamide, however, had no
effect on the SE images, suggesting that it did not cause changes in
blood flow in the tumour vessels that we were able to image. Flow-
sensitive MRI perfusion maps of 9L rat brain gliomas also showed
no change in response to nicotinamide (Brown et al, 1999).

In general, these results can be understood in terms of the
accepted mechanisms of action of carbogen and nicotinamide.
Since carbogen inhalation causes vasodilation (because of the
hypercapnia) and enhanced oxygen transport (because of the
hyperoxia) it is not surprising that there is evidence of enhanced
blood flow and decreased vascular deoxyhaemoglobin content of
© 2000 Cancer Research Campaign
the tumours. Furthermore, these effects are likely to be widespread
throughout the tumour, so the overall signal intensity of the image
is likely to change. Nicotinamide, on the other hand, is thought to
act by suppressing the transient closure of small blood vessels that
causes intermittent tumour hypoxia (Chaplin et al, 1987). Studies
using window chamber tumours (Eddy and Cassarett, 1973;
Yamaura and Matsuzawa, 1979; Dewhirst et al, 1992) or histo-
logical methods (Chaplin et al, 1987) have indicated that less than
10% of tumour blood vessels are subject to intermittent hypoxia at
any one time. This would be consistent with the present results in
which nicotinamide changed the GRE image intensity by only 8%.
In a study by Kimura et al (1996) up to 30% of the tissue in a
mammary tumour model was found to contain vessels subject to
unstable blood flow and thus liable to experience transient
hypoxia, but the volume of transiently hypoxic tissue at any one
time was not calculated. If each susceptible vessel were closed for
30% of the time the overall volume of transiently hypoxic tumour
tissue would still be about 10%. Our SE MRI experiments directly
addressed the question of tumour blood flow, and we found that
nicotinamide had no effect on flow into the imaged slice. This,
however, is explicable, since the vessels we are able to image are
quite large (> 0.3 mm), whereas the transient hypoxia phenom-
enon occurs in vessels of less than 0.1 mm diameter (Kimura et al,
1996).

When carbogen and nicotinamide were administered sequen-
tially, the addition of nicotinamide made no significant difference
to the GRE MRI image, i.e. carbogen followed by nicotinamide
had the same effect as carbogen alone. This, too, is explicable in
terms of the standard mechanisms of action of the two agents.
There is no reason to think that their effects would be synergistic,
and if they are additive one would not expect to be able to distin-
guish the small effect of nicotinamide superimposed on the larger
one caused by carbogen. In radiobiological experiments, carbogen
and nicotinamide in combination cause more radiosensitization
than either treatment alone (Chaplin et al, 1991; Kjellen et al,
1991). The difference between this result and the present one could
be due to the much smaller proportion of cells in a tumour that are
radiobiologically hypoxic. Nicotinamide could have a major effect
on radiobiological hypoxia by oxygenating some of these cells
without significantly affecting the overall MRI response of the
tumour.

The increased βNTP/Pi ratio in response to carbogen in these
GH3 tumours is unsurprising (although not all tumour models
show such rises after carbogen challenge), if we assume that the
tumour’s oxygen supply is sub-optimal when the host is breathing
air. If there are substantial, chronically hypoxic volumes of tissue
then the improved blood flow and blood oxygen content caused by
carbogen inhalation would be expected to enhance tumour ener-
getics. In contrast, if the action of nicotinamide is confined to a
small fraction of the cells in the tumour one would not expect to
see such marked changes in the βNTP/Pi ratio. A similar response
has been previously reported in both SCCVII and KHT murine
tumours (Wood et al, 1991), However, there is another factor to be
taken into account: surprisingly, both these very different treat-
ments caused marked and statistically significant hyperglycaemia.

We can explain the improved bioenergetic parameters in GH3
tumour in response to carbogen if we assume that the tumour cells
normally receive sub-optimal substrate supply. Many studies with
perfused tumours have shown that glucose consumption varies
directly with glucose supply (Sauer et al, 1982; Vaupel et al, 1989).
British Journal of Cancer (2000) 82(12), 2007–2014
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Figure 4 GRE and SE 1H MR images of one GH3 prolactinoma acquired during (A) initial air breathing, (B) host carbogen breathing, (C) resumed air
breathing and ca. 40 min post-administration of 1000 mg kg–1 nicotinamide i.v. and (D) subsequent carbogen breathing and ca. 70 min post-nicotinamide

Table 1

Air Hydralazine Nicotinamide Carbogen Nicotinamide and
carbogen

GRE SI 100 85 ± 2a 108 ± 3b 139 ± 2a 146 ± 5a

SE SI 100 90 ± 2a 100 ± 4 115 ± 2a 117 ± 3a

βNTP/Pi 1.06 ± 0.02 0.66 ± 0.06a 1.81 ± 0.21a 1.58 ± 0.1a 1.62 ± 0.14a

Pi/ΣP 0.13 ± 0.01 0.17 ± 0.01a 0.08 ± 0.01a 0.09 ± 0.01a 0.09 ± 0.01a

pH 7.22 ± 0.01 6.92 ± 0.04a 7.32 ± 0.04 7.23 ± 0.02 7.26 ± 0.02
MABP (mmHg) 103 ± 6 46 ± 2a 92 ± 7 112 ± 5 95 ± 4
Glucose (µmol ml–1) 6.6 ± 0.3 – 11.4 ± 0.7a 15.6 ± 0.6a –

aP < 0.01 compared to air. bP < 0.05 compared to air. Summary of the data for each vascular challenge when MRI and MRS changes were
maximal and stable. The data during air breathing are the average of data from all three protocols prior to the vascular challenge.
Since carbogen and nicotinamide cause approximately doubled
blood glucose concentrations, it is not, therefore, surprising that
they both enhance the tumour βNTP/Pi ratio. It is not possible to
deduce whether the glucose substrate in the present experiments
was metabolized oxidatively or glycolytically, and there are
reports of both types of metabolism in the literature. Dewhirst et al
(1999) showed that combined hyperglycaemia and hyperoxia
improved tumour pO2 more than hyperoxia alone, suggesting that
the R3230Ac tumour line they studied switched from an oxidative
to a more glycolytic metabolism when challenged with glucose,
thus sparing oxygen – a Crabtree effect. However, in 13C MRS
dynamic studies in the RIF-1 tumour, Nielsen et al (1999) have
shown that carbogen breathing significantly decreases the
‘apparent’ glycolytic (i.e. 13C glucose to 13C lactate) rate,
suggesting a more oxidative metabolism. Similarly Stubbs et al
(1998) showed carbogen-induced hyperglycaemia accompanied
by a decrease in [lactate] (in Morris hepatoma 9618a), also consis-
tent with a switch to a more oxidative metabolism. Despite these
British Journal of Cancer (2000) 82(12), 2007–2014
differing observations of the metabolic fate of glucose, they are all
consistent with enhanced energetic status in response to an
increased substrate supply.

In summary, the MRI results can be accounted for on the basis
of the accepted mechanisms of action of carbogen and nicotin-
amide, whereas the 31P MRS changes can be explained by the
raised (~twofold) blood glucose induced by these two agents.
Systemic effects of raised blood glucose induced by nicotinamide
and carbogen do not appear to have been considered in the litera-
ture with respect to tumour radiosensitization, although attempts
to increase tumour pO2 by decreasing the consumption of oxygen,
and hence radioresponse, have been (Biaglow et al, 1998). It has
been known for many years that metabolism of nicotinamide
results in glycogen breakdown and a consequent increase in blood
glucose (Ammon and Estler, 1967; Moreno et al, 1985). However,
we have not found any previous reports (other than our own work,
Stubbs et al, 1998) of carbogen-induced hyperglycaemia and the
mechanism of this effect must be speculative. Carbogen breathing
© 2000 Cancer Research Campaign
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induces hypercapnia which is known to cause an excitatory
response of the sympathetic nervous system and epinephrine
release. Epinephrine induces glycogenolysis as well as stimula-
tion of cardiac output and metabolic rate via the adrenal medulla
(Guyton and Hall, 1996). The impact of these systemic effects on
tumour physiology and metabolism is clearly complex and may
well influence how a tumour responds to radiotherapy in the pres-
ence of clinical radiosensitizers. High levels of hyperglycaemia
induced by glucose infusion (fourfold higher than normal blood
glucose) have been shown to decrease tumour blood flow and
pH and used as an adjuvant for hyperthermia (Song, 1998 and
therein) but these effects probably do not play a role in this study
in which the degree of hyperglycaemia was much less severe.
However, in view of the current clinical radiotherapy trials of
combined nicotinamide and carbogen administration to patients,
it would be prudent to check for hyperglycaemia in human
subjects.
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