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Summary Tissue from 54 histologically-identified basal cell carcinomas of the skin was obtained at surgery and assayed using a combination
of functional and immunochemical procedures for matrix metalloproteinases (MMPs) with collagenolytic activity and for MMPs with
gelatinolytic activity. Collagenolytic enzymes included MMP-1 (interstitial collagenase), MMP-8 (neutrophil collagenase) and MMP-13
(collagenase-3). Gelatinolytic enzymes included MMP-2 (72-kDa gelatinase A/type IV collagenase) and MMP-9 (92-kDa gelatinase B/type IV
collagenase). Inhibitors of MMP activity including tissue inhibitor of metalloproteinases-1 and -2 (TIMP-1 and TIMP-2) were also assessed. All
three collagenases and both gelatinases were detected immunochemically. MMP-1 appeared to be responsible for most of the functional
collagenolytic activity while gelatinolytic activity reflected both MMP-2 and MMP-9. MMP inhibitor activity was also present, and appeared,
based on immunochemical procedures, to reflect the presence of TIMP-1 but not TIMP-2. As a group, tumours identified as having
aggressive-growth histologic patterns were not distinguishable from basal cell carcinomas with less aggressive-growth histologic patterns. In
normal skin, the same MMPs were detected by immunochemical means. However, only low to undetectable levels of collagenolytic and
gelatinolytic activities were present. In contrast, MMP inhibitor activity was comparable to that seen in tumour tissue. In previous studies we
have shown that exposure of normal skin to epidermal growth factor in organ culture induces MMP up-regulation and activation. This
treatment concomitantly induces stromal invasion by the epithelium (Varani et al (1995) Am J Pathol 146: 210–217; Zeigler et al (1996b)
Invasion Metastasis 16: 11–18). Taken together with these previous data, the present findings allow us to conclude that the same profile of
MMP/MMP inhibitors that is associated with stromal invasion in the organ culture model is expressed endogenously in basal cell carcinomas
of skin. © 2000 Cancer Research Campaign
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Invasion into the adjacent stroma is the initial event in the process
by which epithelial tumours spread to distant sites. A number of
experimental approaches have been developed to study the inva-
sion process (Kramer and Nicolson, 1979; Mareel et al, 1979;
Erkell and Schirrmacher, 1988; Reich et al, 1988; Huber et al,
1992; Varani et al, 1997; Rosenthal et al, 1998). While useful for
studying invasion in experimental tumours, these approaches are
not amenable for the study of human tumours under in situ condi-
tions. Recently we described a human skin organ culture model
that can be used to investigate mechanisms of tissue invasion in
situ. This model consists of small pieces of normal human skin
maintained in organ culture under serum-free conditions. In the
absence of exogenous growth factors, normal histological features
and biochemical functions are preserved (Varani et al, 1993a,
1993b, 1994). However, when an exogenous source of growth
factors is included in the culture medium, the epithelium becomes
hyper-proliferative and invasion of the underlying stroma by
epithelial cells occurs (Fligiel and Varani, 1993; Zeigler et al,
1996a). Since invasion in this model is initiated by addition of
exogenous growth factors to the culture medium, the cellular and
Received 24 March 1999
Revised 19 August 1999
Accepted 23 August 1999

Correspondence to: J Varani
molecular changes that occur concomitantly with invasion can be
identified. Furthermore, we can use this model to interfere with
cellular and molecular events that occur concomitantly with inva-
sion to directly assess their role in the invasion process.

Matrix metalloproteinases (MMPs) are a family of genetically-
related enzymes that play a role in normal tissue development,
remodelling and repair (Sympson et al, 1994; Inoue et al, 1995).
These same enymes are also responsible for tissue destruction in a
number of pathological conditions including acute and chronic
inflammation (Mulligan et al, 1993; Galis et al, 1994; Gibbs et al,
1999), ultraviolet light-induced skin damage (Fisher et al, 1996,
1997), rheumatoid arthritis (Hasty et al, 1990) and tumour inva-
sion (Coussens and Werb, 1996). Stromal invasion by growth
factor-stimulated epithelial cells in organ-cultured skin appears to
be dependent, at least in part, on MMP activity. Acquisition of
invasive potential is accompanied by increased synthesis and
activation of a number of MMPs (Varani et al, 1995; Zeigler et al,
1996b); and invasion is suppressed by addition of exogenous
MMP inhibitor to the culture medium (Zeigler et al, 1996b).

While this model of stromal invasion allows the pathophysio-
logical events that support invasion to be probed under in situ
conditions, it is not clear how closely events in this model mimic
those that bring about invasion by actual human epithelial
tumours. In order to begin addressing this issue, we have in the
present study examined basal cell carcinomas of skin for produc-
tion of MMPs and MMP inhibitors. Basal cell carcinomas were
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chosen for this study because while metastasis formation is a late
event in this tumour, local invasion with extensive tissue destruc-
tion is prevalent (Goslen and Bauer, 1986). We report here that
levels of collagenolytic and gelatinolytic enzymes present in the
tumour tissue (in the absence of exogenous growth factors) are
much higher than levels present in normal skin maintained under
the same serum-free, growth factor-free conditions, but similar to
the levels seen in normal skin following exposure to invasion-
promoting growth factors. In contrast, there appear to be no differ-
ences in MMP inhibitor levels between tumour tissue and normal
tissue maintained under either growth factor-free or growth factor-
containing conditions.



Antibodies and reagents

A rabbit polyclonal IgG antibody to MMP-1 was obtained from
Chemicon (Temecula, CA, USA). Monoclonal antibodies to MMP-
2, MMP-8, MMP-9 and MMP-13 were obtained from Oncogene
Sciences (Cambridge, MA, USA). Rabbit IgG antibodies to tissue
inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 were
acquired from Triple Point Biologics (Forest Grove, OR, USA). A
mouse monoclonal IgG1 antibody and a rabbit polyclonal IgG anti-
body were used as controls (Accurate Scientific and Chemical
Company, Westbury, NY, USA). Human recombinant TIMP-1,
obtained from Oncogene Sciences, and human recombinant TIMP-
2, obtained as a generous gift from Dr Keith Langley (Amgen
Corp., Thousand Oaks, CA, USA), were also used as controls.

Basal cell carcinomas and normal skin

Surgically-removed basal cell carcinomas were obtained from 54
different individuals. Ten were from lesions diagnosed as aggres-
sive-growth histological pattern (e.g. morpheaform, infiltrative,
sclerosing and micronodular) basal cell carcinoma; with the
remaining specimens classified as superficial, nodular or mixed
(non-aggressive-growth) types. Upon arrival in the laboratory, a
small piece of tissue from each specimen was immediately fixed in
10% buffered formalin and used for histology/immunohistology.
Another small piece of tissue was frozen in liquid nitrogen. An
extract of the frozen tissue was prepared as described previously
for normal skin (Fisher et al, 1996). The remaining tissue was
trimmed away from the surrounding normal epidermis as much as
possible, cut into 2 × 2-mm, full-thickness pieces (i.e. with the
adjacent stroma), and placed in wells of a 24-well dish. Normally
4–6 tissue pieces were placed in 0.5 ml of culture medium.
Keratinocyte basal medium (KBM), obtained from Clonetics Inc
(Walkersville, MD, USA) was used as culture medium. This
serum-free, growth factor-free modification of MCDB-153
medium was supplemented with 1.4 mM Ca2+ (final concentra-
tion), since previous studies have shown that a physiological Ca2+

concentration is required for maintenance of tissue viability
(Varani et al, 1993a, 1993b, 1994). The tissue pieces were incu-
bated for 3 days at 37°C and 5% carbon dioxide/95% air. At the
end of the incubation period, culture fluids were collected and
used for MMP and MMP inhibitor measurements as described
below. The tissue was fixed in 10% buffered formalin and used to
assess structural integrity after staining with haematoxylin and
eosin.
British Journal of Cancer (2000) 82(3), 657–665
Sixteen neonatal foreskin specimens obtained at circumcision
were used as controls. The normal tissue was fixed in 10%
buffered formalin or maintained under the same serum-free,
growth factor-free conditions as used with the tumour tissue. The
preparation and characteristics of normal skin in organ culture
have been described in past reports (Varani et al, 1993a, 1993b,
1994). Human dermal fibroblasts and human dermal microvas-
cular endothelial cells were also used as controls in certain experi-
ments. Cells were prepared from foreskin tissue as described
previously (Varani et al, 1994; Zeigler et al, 1996a). Fibroblasts
were grown in Dulbecco’s modified minimal essential medium of
Eagle supplemented with 10% fetal bovine serum (Gibco, Grand
Island, NY, USA). The endothelial cells were grown in endothelial
growth medium (Clonetics). For use as controls in MMP assays,
the fibroblasts were incubated for 3 days in Ca2+-supplemented
(serum-free) KBM and the endothelial cells were maintained in
serum-free endothelial basal medium (Clonetics). In other experi-
ments, human peripheral blood neutrophils, prepared by dextran
sedimentation and Ficoll-Hypaque centrifugation (Varani et al,
1985), were used as a control. Neutrophils were suspended in
Hanks’ balanced salt solution at 1 × 107 cells ml–1 and stimulated
for 90 min with 100 nM phorbol myristate acetate. After centrifu-
gation to remove cells, the supernatant (e.g. the releasate), was
used as a source of enzymes (MMP-8 and MMP-9) (Grams et al,
1995; Shapiro et al, 1995).

Collagenase assays

A combination of approaches was used to assess collagenase
expression and activity. Collagenase activity in organ culture
fluids was quantified as the production of trichloroacetic 
acid (TCA)-soluble fragments from 3H-labelled type I fibrillar
collagen (18 h assay) as described previously (Hu et al, 1978).
Activity was assessed in the absence of aminophenyl mercuric
acetate (APMA) and following exposure to 1 mM APMA for 
90 min to activate latent enzyme (Springman et al, 1990).
Clostridium histolyticum collagenase, obtained from Worthington
Biochemicals (Freehold, NJ, USA), was used as a positive control
in each experiment. A standard curve was generated in each assay
using the bacterial collagenase, and the activity in organ culture
fluids was compared to the standard curve. In certain experiments,
the same experimental samples were assayed on different days.
Variability from day to day was minimal.

As a way to visualize collagen fragmentation, a 1 mg ml–1 solu-
tion of native type I fibrillar collagen was exposed to control or
APMA-treated culture fluids for 18 h. At the end of the incubation
period, the collagen samples were resolved on an 8.5% sodium
dodecyl sulphate polyacrylamide gel (SDS-PAGE) along with
intact collagen that had not been exposed to the culture fluids and
with culture fluids without substrate. Activity was indicated by the
disappearance of the parent collagen bands and the concomitant
appearance of lower molecular weight fragments (Mulligan et al,
1993).

In parallel, organ culture fluids were assessed for ability to
digest casein by substrate zymography and examined by Western
blotting for reactivity with anti-MMP-1, anti-MMP-8 and anti-
MMP-13 antibodies. Mammalian collagenases have the capacity
to digest casein (Sottrup-Jensen and Birkedal-Hansen, 1989).
Zymography allows for the identification of the molecular size of
active fractions. Used in conjunction with Western blotting, it
© 2000 Cancer Research Campaign
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Figure 1 Dot plot comparing collagenase activity in culture fluids from
aggressive growth pattern basal cell carcinomas, from non-aggressive
growth pattern tumours and from normal skin. Each dot is representative of
an individual tumour or normal tissue specimen. A standard curve was
generated using Clostridium histolyticum collagenase with each experiment,
and culture fluid values determined directly from the standard curve.
Experimental values are presented as a percentage of the maximal
radioactivity released using the highest concentration of bacterial
collagenase (20 ng). Insert: Rat tail collagen was exposed to control and
APMA-activated culture fluids from a basal cell carcinoma and a normal skin
sample for 18 h as described in the Materials and Methods section.
Following this, the treated collagen specimens along with untreated collagen
were separated by SDS-PAGE and stained with Coomassie brilliant blue.
Intact α1(I) and α2(I) chains (arrows) can be seen in the untreated collagen
sample. Decreased intensity of the parent bands and presence of lower
molecular weight fragments are indicative of collagen digestion
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provides a means for distinguishing MMP-1 (interstitial colla-
genase), MMP-8 (neutrophil collagenase) and MMP-13 (colla-
genase-3). Quantification of latent and active forms was done 
by laser scanning densitometry. For Western blotting, culture fluid
proteins were resolved by SDS-PAGE and transferred to nitro-
cellulose filters. Following treatment of filters with specific
antibodies, the filters were reacted with horseradish peroxidase
(HRP)-conjugated secondary antibodies. Reactive proteins were
detected by enhanced chemiluminescence (ECL; Amersham) after
treatment with liminol and visualization on light-sensitive auto-
radiography film (Fisher et al, 1996).

Finally, tissue specimens fixed in 10% buffered formalin
immediately after surgery were examined by immunoperoxidase
staining for MMP-1, MMP-8 and MMP-13 expression (Fisher et
al, 1997). Briefly, paraffin-embedded sections were mounted on
glass slides coated with poly-L-lysine and stained using the ABC
method (Vector Labs; Burlingame, CA, USA). Diaminobenzidine
was used as the chromogenic substrate, and tissues were counter-
stained with haematoxylin. Tissues stained with rabbit or mouse
IgGs in place of specific antibodies were used as controls.

Gelatinase assays

Gelatin zymography was used for the detection of enzymes with
gelatinolytic activity including MMP-2 (Mr 72-kDa gelatinase
A/type IV collagenase) and MMP-9 (Mr 92-kDa gelatinase B/type
IV collagenase). Zymography was performed as described previ-
ously (Varani et al, 1995; Zeigler et al, 1996b). In parallel, tissue
specimens fixed in 10% buffered formalin immediately after
surgery were examined by immunoperoxidase staining for MMP-2
and MMP-9 expression.

MMP inhibitor assays

MMP inhibitor expression was assessed using a combination of
functional and immunochemical approaches. To determine levels
of functional inhibitor activity, 3-day culture fluids were obtained
from basal cell carcinomas or normal skin and treated overnight
with 10 mM EDTA to inactivate endogenous MMPs. Following
dialysis in four changes of Ca2+-free, 0.05 M Tris buffer (pH 7.2),
the EDTA-treated and dialysed culture fluids were examined for
suppression of human neutrophil MMP activity in a spectro-
fluometric assay as described in a recent report (Chi et al, 1999).
Briefly, human peripheral blood neutrophils were prepared and
‘activated’ as described above. The neutrophil releasate (containing
MMP-8 and MMP-9 but no inhibitor [Shapiro et al, 1995]) was
mixed with varying amounts of organ culture fluid and a series of
inhibition slopes generated. TIMP-1 was used in parallel to
generate a standard curve, and inhibition values obtained with
culture fluids were expressed in relation to this. In conjunction with
the functional assay, organ culture fluids were examined by
Western blotting with antibodies to TIMP-1 and TIMP-2.



Collagenase activity in basal cell carcinomas and
normal skin

In the first series of experiments, 3-day culture fluids from 18
basal cell carcinomas were assayed for degradation of 3H-collagen
© 2000 Cancer Research Campaign
into TCA soluble fragments (Figure 1). High levels of activity
were detected in all of the culture fluids. While there was vari-
ability from specimen to specimen, the aggressive-growth histo-
logical pattern tumours were not different as a group from basal
cell carcinomas with non-aggressive histological patterns.
Maximal enzymatic activity was observed in the absence of
APMA treatment and incubation of the culture fluids with APMA
did not further increase the activity (not shown). This indicates that
a significant fraction of the MMP enzymes responsible for colla-
genase activity was present in active rather than latent form. The
failure of APMA treatment to increase activity is consistent with
the fact that continued fragmentation of MMPs occurs during incu-
bation, and that biological activity can be lost as smaller fragments
are generated (Shapiro et al, 1995). Additional studies (not shown)
demonstrated that collagenase activity was lost in the presence of
10 mM EDTA but was unaffected by 2 mM phenylmethyl sulph-
onylfluoride (PMSF). In contrast to what was seen with the tumour
culture fluids, there was little activity in 3-day organ culture fluids
from normal skin, either in the absence or presence of APMA 
(n = 12) (Figure 1).

Characterization of collagenolytic enzymes by casein
zymography and Western blotting

Culture fluids from 14 basal cell carcinomas were next examined
by casein zymography. An additional 12 specimens of normal 
skin were examined in parallel. Culture fluids from all of the
tumour specimens hydrolysed the casein substrate, with zones of
hydrolysis evident at 54 and 45 kDa (consistent with the presence
British Journal of Cancer (2000) 82(3), 657–665
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Figure 2 (A) Zymograms demonstrating caseinolytic activity in culture fluids
from a representative basal cell carcinoma specimen and from a normal skin
specimen. (B) Western blots of the same specimens with anti-MMP-13, anti-
MMP-8 and anti-MMP-1 antibodies. Human skin fibroblasts and human
peripheral blood neutrophils were used as controls

Figure 3 Dot plot comparing ratios of active to latent MMP-1 bands based
on densitometry scanning of casein zymograms. Each dot is representative
of an individual tumour or normal tissue specimen
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of latent and active forms of MMP-1). The casein hydrolytic zones
co-migrated identically with zones obtained with culture fluid
from control human diploid fibroblasts (54 kDa) and APMA-acti-
vated human diploid fibroblasts (54 and 45 kDa). Most specimens
demonstrated no activity in the higher molecular weight regions of
the gel. In the few specimens demonstrating activity in the 60–
70 kDa region of the gel (consistent with the presence of MMP-8
and/or MMP-13), the zones were very faint. In contrast to these
results, culture fluids from normal skin expressed a 54 kDa
caseinolytic activity (indicative of the latent form of MMP-1).
There was no evidence of active MMP-1 in these culture fluids
and no significant activity in the higher molecular weight regions
of the gel. Representative zymograms from one basal cell carci-
noma and one normal skin sample are shown in Figure 2A.
Quantitative data from the entire group of specimens is shown in
Figure 3.

To determine if caseinolytic activity could be detected in tissue
extracts prepared from tissue immediately after surgery, four basal
cell carcinoma specimens were frozen in liquid nitrogen upon
arrival in the laboratory. Extracts prepared from these specimens
were assayed for casein hydrolytic activity by zymography. In all
British Journal of Cancer (2000) 82(3), 657–665
four specimens, 54 kDa and 45 kDa caseinolytic activities were
present (not shown). Thus, activity was not only detectable in the
short-term organ culture fluids but was also measurable in the
tumour tissue at the time of surgery.

Culture fluids from ten basal cell carcinomas and five normal
skin specimens were examined by Western blotting for reactivity
with antibodies to MMP-1, MMP-8 and MMP-13. Basal cell carci-
noma reactivity with anti-MMP-1 antibody was observed in the 54
and 45 kDa regions of the gel, consistent with latent and active
forms of MMP-1. Reactivity with anti-MMP-8 was seen as a band
at approximately 50 kDa, while anti-MMP-13 reactivity was
observed at 60 kDa. Organ culture fluids from normal skin showed
anti-MMP-1 reactivity in the 54 kDa region (but not in the 45 kDa
region). Reactivity with anti-MMP-8 was observed at approxi-
mately 50 kDa, while no reactivity with anti-MMP-13 was
observed. Western blots from one basal cell carcinoma and one
normal skin sample are shown in Figure 2B, along with blots from
normal diploid fibroblasts and peripheral blood neutrophils (used
as controls).

Localization of MMP-1, MMP-8 and MMP-13 in
histological section

Tissue sections were prepared from ten basal cell carcinoma spec-
imens and stained with antibodies to MMP-1, MMP-8 and MMP-
13. Staining with anti-MMP-1 was observed in all specimens.
Intense anti-MMP-1 reactivity was observed throughout the
stroma and in both the normal and tumour epithelium (Figure 4A).
Anti-MMP-8 staining was also seen in tumour specimens.
Staining was observed throughout the dermis; there was no
staining in either the normal or tumour epithelium (Figure 4B).
Anti-MMP-13 staining was also observed in the majority of speci-
mens. Weak staining was observed in both the stroma and tumour
epithelium, while more staining was observed in the normal
epithelium adjacent to the tumour (Figure 4C).

In parallel, four normal skin specimens were stained with the
same antibodies. As expected based on zymographic and Western
blotting results, there was detectable (albeit, weak) staining with
© 2000 Cancer Research Campaign
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Figure 4 Immunohistochemical detection of (A) MMP-1, (B) MMP-8 and 
(C) MMP-13 in representative sections from a basal cell carcinoma
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Figure 5 Gelatinolytic activity in culture fluids from a representative basal
cell carcinoma specimen and from a normal skin specimen

Figure 6 Dot plot comparing ratios of active to latent MMP-9 and MMP-2
bands based on densitometry scanning of gelatin zymograms. Each dot is
representative of an individual tumour or normal tissue specimen
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anti-MMP-1 in both the epidermis and dermis. Weak reactivity
with anti-MMP-8 was also observed in the dermis while reactivity
with anti-MMP-13 was not detectable (not shown).

Gelatinase activity in basal cell carcinomas and normal
skin

Organ culture fluids from the same specimens used for casein
zymography were also examined for gelatinolytic activity by
gelatin zymography. High levels of activity corresponding to both
MMP-2 and MMP-9 were observed in all of the tumour speci-
mens. In most of the culture fluids, a mixture of latent and active
forms of both enzymes was observed. In certain of the culture
© 2000 Cancer Research Campaign
fluids, only active forms of MMP-9 (e.g. 83–67 kDa) were
present. Culture fluids from normal tissue specimens were exam-
ined in parallel. Consistent with past reports (Varani et al, 1995;
Zeigler et al, 1996b), MMP-2 (72-kDa activity) was detected by
gelatin zymography in these specimens, but MMP-9 (92-kDa
activity) was undetectable or barely so. Latent forms of both
enzymes predominated. Figure 5 shows gelatin zymograms from
one basal cell carcinoma and one normal skin specimen.
Quantitative data are shown in Figure 6. In additional studies (not
shown) it was found that incorporation of 10 mM EDTA in the
overnight washing buffer completely suppressed gelatinolytic
activity while 2 mM PMSF was without effect. Western blotting
demonstrated that the culture fluids contained appropriately-sized
moieties reactive with antibodies to MMP-2 and MMP-9 (not
shown).

Basal cell carcinoma specimens (ten in total) were also stained
with antibodies to MMP-2 and MMP-9. Reactivity with the 
MMP-2 antibody was seen throughout the stroma as well as in
both the normal and malignant epithelium in all of the specimens.
Anti-MMP-9 staining was observed in six of the ten specimens.
Most of the staining was seen in the normal epithelial cells imme-
diately adjacent to the tumour. There was less stromal staining and
very little staining in the tumour epithelium itself (not shown).
British Journal of Cancer (2000) 82(3), 657–665
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carcinomas and normal skin. Values shown represent means values based
on n = 8 tumour specimens and n = 12 normal tissue specimens. A standard
curve was generated with TIMP-1 in each experiment, and the values were
determined directly from the standard curve (see Table 1). (B) Western
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Table 1 Comparison of MMP inhibitor activity in organ culture fluids from
basal cell carcinomas and normal skin

Percent inhibition of TIMP-1 equivalents
Treatment neutrophil MMP activity (ng 100 µl–1)

TIMP-1
300 ng 67 ± 8
30 ng 25 ± 4
3 ng 15 ± 3
0.3 ng 8 ± 3

Basal cell carcinoma 35 ± 15 60
Normal skin 32 ± 6 58

MMP inhibition was assessed as described in the Materials and Methods
section and in our recent report (Chi et al, 1999). Values shown are means
and standard errors based on n = 8 for basal cell carcinomas and n = 12 for
normal skin. TIMP-1 equivalent values were obtained by direct comparison
with a TIMP-1 standard curve.
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These immunohistochemical findings are consistent with previous
observations by others (Pyke et al, 1992; Karelina et al, 1993;
Kobayashi et al, 1996).

Elaboration of MMP inhibitors by basal cell carcinomas
and normal skin

Organ culture fluids from eight basal cell carcinomas were
analysed for MMP inhibitor activity and for the presence of anti-
TIMP-1- and anti-TIMP-2-reactive proteins. Organ culture fluids
from 12 normal skin specimens were analysed for comparison.
Similar levels of inhibitor activity were detected in all of the
culture fluids (Figure 7A and Table 1). Based on Western blotting,
MMP inhibitor activity in both the tumour culture and normal skin
culture fluids appeared to be due almost entirely to TIMP-1
(Figure 7B).



The findings presented here are of interest from several stand-
points. First is the identification of three different collagenolytic
enzymes present in the tumour tissue. Previous studies have
demonstrated high levels of collagenase activity associated with
basal cell carcinomas (Goslen and Bauer, 1986; Bauer et al, 1997).
British Journal of Cancer (2000) 82(3), 657–665
Immunohistochemical techniques and in situ hybridization have
demonstrated that epithelial tumours of skin (as well as epithelial
tumours from other sites) elaborate detectable amounts of both
MMP-1 and MMP-13 (Muller et al, 1991; Gray et al, 1992; Airola
et al, 1997; Uria et al, 1997). Our results (e.g. Western blotting and
immunohistology) indicate that MMP-8 is also represented in the
tumour tissue. More importantly, however, our data (e.g. casein
zymography in conjunction with Western blotting and immuno-
histology) suggest that although three different collagenolytic
enzymes are detectable, the majority of the activity in the tumour
tissue is reflective of MMP-1.

These studies are also of interest in regard to enzyme localiza-
tion. Previous studies have shown that both the stroma and epithe-
lium are capable of elaborating enzymes with collagenolytic
activity under a variety of normal or pathological conditions
(Muller et al, 1991; Polette et al, 1991; Shima et al, 1992; Gray et
al, 1992; Airola et al, 1997; Johansson et al, 1997; Uria et al,
1997). In our basal cell carcinoma specimens, MMP-1 was highly
expressed in the stroma surrounding the carcinoma as well as in
both the normal and malignant epithelial cells. In contrast, MMP-
13 was expressed in the normal epithelium adjacent to the tumour,
but barely detectable in the tumour itself or in the tumour-associ-
ated stroma. MMP-8, on the other hand, was confined entirely to
the stroma. With regard to gelatinolytic enzymes, MMP-9 was,
like MMP-13, most highly expressed in the normal epithelial cells
associated with the tumour rather than in the tumour cells or the
surrounding stroma. On the other hand, MMP-2 was expressed
throughout the stroma as well as in both the normal and malignant
epithelium. These observations on distribution of the gelatinases
are consistent with previous findings of others (Levy et al, 1991;
Pyke et al, 1992; Shima et al, 1992; Karelina et al, 1993;
Kobayashi et al, 1996). The implication of these findings is that
there are multiple cellular sources for the collagenolytic and
gelatinolytic MMPs detected in the tumour tissue. Past studies
have focused on interactions between tumour cells and the
surrounding stroma in regard to enzyme expression (Saarialho-
Kere et al, 1993; Uria et al, 1997). Based on the present work,
normal epithelial cells adjacent to the tumour and even circulating
or tissue-infiltrating inflammatory cells should be considered as
well.

Whether the cells expressing these various MMPs in the tissue
are responsible for their synthesis is not clear. Our presumption is
© 2000 Cancer Research Campaign
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that resident cells in the epidermis and stroma are responsible for
elaborating most of the MMPs (specifically, MMP-1, MMP-2,
MMP-9 and MMP-13) detected in the skin. The source of MMP-8
is more problematic. MMP-8 was detected only in the stroma,
where it was diffusely present throughout. Neutrophils are a major
source of this enzyme (Grams et al, 1995), and it is reasonable to
suggest that circulating neutrophils present in the tissue at the time
of biopsy might be responsible for this enzyme. Alternatively,
recent reports have indicated that in pathological conditions such
as rheumatoid arthritis, chondrocytes, synovial fibroblasts and
vascular endothelial cells elaborate MMP-8 mRNA and protein
(Chubinskaya et al, 1996; Hanemaaijer et al, 1997). Of interest, the
higher molecular weight forms associated with neutrophil MMP-8
(e.g. 68 kDa latent/58 kDa active) were not seen in the rheumatoid
tissue. Rather, a form of approximately 50-kDa in size was the
predominant species (Hanemaaijer et al, 1997). Since a similar-
sized moiety was identified in culture fluids from the basal cell
carcinomas (as well as in normal skin specimens), in situ bio-
synthesis in the skin is possible. Arguing against this, however, is
the fact that we detected no MMP-8 reactivity by Western blotting
in culture fluids from either dermal fibroblasts or dermal
microvascular endothelial cells grown in monolayer culture
(Figure 2). Under the same conditions, MMP-1 and MMP-13 reac-
tivity was detected. Furthermore, it was observed by Hanemaaijer
et al (1997) and by us (unpublished observation) that a 50 kDa
fragment could also be detected in neutrophil releasate by Western
blotting. In our studies there was no detectable caseinolytic
activity associated with this moiety. Based on these considerations,
we favour the hypothesis that neutrophils present in the blood or
tissue at the time of surgery constitute the major source of the
stromal MMP-8 reactivity and that the 50-kDa species represents a
stable – but enzymatically not very active – form of the protein.
This does not rule out contributions by resident cells.

Perhaps the most interesting aspect of the present study is the
relationship between enzyme/inhibitor profile and specimen type.
The profile of enzymes and inhibitors in the tumour specimens
was clearly different from the pattern expressed in normal human
skin maintained under the same serum-free, growth factor-free
conditions (present study and Varani et al, 1995; Zeigler et al,
1996b; Chi et al, 1999). Specifically, the tumour specimens
expressed high levels of MMP-1 and MMP-9 (with active forms of
both enzymes predominating), while lower levels of the same two
enzymes (primarily latent forms) were expressed in normal skin.
Additional distinguishing features included the presence of
detectable MMP-13 reactivity (by Western blotting and immuno-
staining) in the tumour specimens but a lack of reactivity associ-
ated with the normal skin, and the presence of active MMP-2 in the
tumour specimens while much of the MMP-2 in the normal skin
specimens was in the latent form. On the other hand, the tumour
specimens and normal tissue specimens demonstrated comparable
MMP-8 reactivity by Western blotting and expressed similar levels
of MMP inhibitor activity (reflective of the presence of TIMP-1
but not TIMP-2 in both cases). The high level of MMP activity in
tumour tissue as compared to that seen in normal skin (without a
corresponding change in MMP inhibitor activity) is consistent
with the hypothesis that these enzymes contribute to tissue
destruction and local tumour invasion in basal cell carcinoma.

Although differences in MMP expression between basal cell
carcinomas and normal skin support a role for these enzymes in
local invasion by basal cell tumours, these findings do not prove
© 2000 Cancer Research Campaign
‘cause and effect’. Of interest in this regard, however, we have
previously reported that the MMP profile in normal skin is altered
when the tissue is exposed to exogenous growth factors in organ
culture growth medium (Varani et al, 1995; Zeigler et al, 1996b;
Chi et al, 1999). Under the influence of exogenous growth factors,
there is up-regulation and activation of MMP-1 and MMP-9,
concomitant with activation of MMP-2, but without a change 
in expression of TIMP-1 or TIMP-2. Thus, the pattern of
MMP/MMP inhibitor expression is altered in growth factor-treated
normal skin so as to resemble the profile expressed endogenously
by the malignant tumours. Concomitantly it has been shown that
the same growth factors that up-regulate and activate MMPs in
normal skin also promote stromal invasion by the epithelium in
this tissue (Fligiel and Varani, 1993; Zeigler et al, 1996a). Stromal
invasion in growth factor-treated skin is inhibitable with the MMP
inhibitor, TIMP-2 (Zeigler et al, 1996b). Taken together with these
previously published data, the present findings indicate that MMP
up-regulation and activation without a concomitant change in
MMP inhibitor expression is associated with local tumour invasion
in both the experimental invasion model and in actual malignant
tumours of skin. Of interest, the ability to maintain tumour tissue
in organ culture should allow us to directly assess whether treat-
ments which interfere with MMP induction (Zeigler et al, 1999) or
function (Zeigler et al, 1996b) modulate the histopathological
changes that occur during culture. A major advantage of organ
culture is that while it allows for maintenance of tissue under ‘in
situ’ conditions, it is, in fact, an in vitro system, and can be manip-
ulated as readily as other in vitro culture systems.

Although there was a large difference between normal skin and
basal cell carcinomas in enzyme/inhibitor profile, we were unable
to clearly distinguish tumours defined as aggressive growth pattern
basal cell carcinoma from tumours with less aggressive growth
patterns on the basis of enzyme/inhibitor profile. Clinical studies
have demonstrated that tumours identified as aggressive growth
pattern types tend to invade more deeply, and have a higher recur-
rence rate (perhaps not surprisingly) than nodular or superficial
basal cell tumours (Salasche and Amonette, 1981; Lang and
Maize, 1986). Additionally, the more aggressive tumours tend to
be surrounded by a discontinuous basement membrane, in contrast
to nodular or superficial types of basal cell carcinomas, which
often have an intact basement membrane (Johnson et al, 1993).
The question arises then that if the collagenases and gelatinases
studied here are not responsible for the differences in aggressive-
ness among various basal cell carcinomas, what is. There are a
number of possibilities. Aggressive growth pattern may reflect
differences in levels of MMPs other than those examined here. In
regard to this, we previously demonstrated no differences in
stromelysin expression between aggressive growth pattern basal
cell carcinomas and the more indolent types (Majmudar et al,
1994), while differences between normal skin and basal cell
tumours of all types was large. Another possibility is that tumour
aggressiveness may reflect differences in matrix synthesis rather
than breakdown. Reduced matrix production is a hallmark of many
types of tumours, although squamous epithelial cell tumours may
not follow this pattern (Varani et al, 1991). Another possibility is
that aggressiveness may reflect characteristics of the host rather
than the tumour. Additional studies will be needed to address these
various possibilities.

In closing, it should be pointed out that while MMP up-regula-
tion and activation is a consistent finding in basal cell carcinomas,
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664 J Varani et al
it is not unique to skin tumours. Quite the opposite; enhanced
MMP production occurs in other skin conditions where home-
ostasis is upset (Kahari and Saarialho-Kere, 1997). Our own
studies have shown that MMP-1 and MMP-9 are induced in two
other conditions of the skin – i.e. in psoriasis (Varani et al, 1998)
and after acute exposure to ultraviolet light (Fisher et al, 1996,
1997). In both conditions, damage to the extracellular matrix
occurs but in neither is stromal invasion by epithelial cells a
prominent feature. Thus, MMP expression is strongly correlated
with damage to the extracellular matrix rather than with invasion
per se.
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