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Summary Flavone acetic acid (FAA) is a synthetic flavonoid that demonstrated extraordinary anti-tumour properties in murine models but
was not effective in clinical trials. In an effort to better understand the molecular mechanisms by which FAA asserts its tumouricidal activities,
we have examined the effect of FAA on the cell cycle. We observed FAA-mediated G2/M cell cycle arrest in mammary carcinoma cells at a
concentration previously demonstrated to have anti-tumour effects in rodent models. The cell cycle arrest was accompanied by an increase
in the P34cdc2 (cdc2) cyclin-dependent kinase activity. Morphological cytogenetic analysis demonstrated a colcemid-like effect of FAA on
cytokinesis by causing accumulation of condensed C-metaphases of a sustained mitotic block. The cell cycle effect was blocked by the
antioxidants ADPC and ascorbate, the superoxide scavenger Tiron, and the sphingosine kinase inhibitor L-cycloserine, but not by inhibitors of
nitric oxide synthase. Based on these data, we propose that FAA may induce cell cycle arrest by stimulating the activity of acidic
sphingomyelinase leading to the generation of reactive oxygen species.
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Flavone acetic acid (FAA, NSC 347512) is a synthetic flavonoid
that possesses striking anti-tumour activity in a wide variety of
solid tumours in murine models of cancer (Finlay et al, 1988;
Cummings and Smyth, 1989; Hill et al, 1991; Bowler and Pearson,
1992). Experimental evidence suggests that FAA kills tumour cells
indirectly by reducing tumour blood flow causing ischaemic
conditions within the tumour (Bibby et al, 1989; Zwi et al, 1989;
Madhevan and Hart, 1991) without effecting systemic blood flow
(Bibby and Double, 1993). In addition to vascular collapse, the
release of cytokines such as tumour necrosis factor (TNF)-α,
interferon-α and interferon-γ by immune system cells plays an
important role in the tumouricidal properties of FAA (Ching and
Bagueley, 1987; Pratesi et al, 1990; Futami et al, 1991; Chabot
et al, 1993). Furthermore, ample data exist suggesting that nitric
oxide (NO) production within the tumour may also contribute to
the cytotoxic activity of FAA either by direct toxicity to tumour
cells or by altering tumour blood flow (Thomsen et al, 1990, 1991,
1992; Harris and Thorgeirsson, 1997). Unfortunately, FAA failed
to illicit a similar response in human clinical trials, leading to a
decreased interest in examining the molecular pathways involved
in its anti-tumour properties in the mouse. A greater understanding
of the molecular pathways involved in the anti-tumour actions of
FAA might suggest rational structural modifications to FAA,
combination strategies, and/or identify novel molecular targets for
anti-tumour therapies.

In this study, we have chosen to examine the anti-proliferative
effects of FAA. While the effects of other flavonoids on the cell
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cycle progression have been examined to extent, surprisingly no
similar study has been performed with FAA. The flavonol
quercetin arrests human gastric cancer cells at the G1/S boundary
(Yoshida et al, 1990) whereas the isoflavone genistein blocks
proliferation of the same cell line in G2/M (Matsukawa et al,
1993). The flavone apigenin has been shown to arrest mouse
keratinocytes in G2/M (Sato et al, 1994; Lepley et al, 1996), while
the flavone flavopirodol is capable of blocking cell proliferation in
both G1 and G2 in A549 lung carcinoma cells (Bible and
Kaufman, 1996; Carlson et al, 1996). Hence, there is no clear link
between flavonoid structure and their ability to arrest cell growth
in a particular phase of the cell cycle. We have found that FAA
causes rat mammary carcinoma cells (and other cell types) to
arrest in G2/M and that this effect is accompanied by increased
cdc2 kinase activity.



Cell culture

NMU cells (ATCC, Rockville, MD, USA) were obtained at
passage number 21. Cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) containing 4 mM glutamine and
4.5 g glucose l–1, and supplemented with 10% fetal bovine serum,
100 units penicillin ml–1, 100 µg streptomycin ml–1 and 25 mM

HEPES buffer (Biofluids, Rockville, MD, USA). All experiments
were conducted using cells between passages 25 and 48.

For all experiments, confluent flasks of NMU cells were
trypsinized and split 1:10, 2–3 days prior to FAA treatment.
Floating and adherent cells for flow cytometry were pelleted by
centrifugation at 600 g for 5 min. For experiments involving the
MTS/PMS assay, 2000 cells were seeded per well in replicates of
six per experimental treatment in 96-well plates.
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Chemicals

Flavone 8-acetic acid (FAA) was obtained from the NIH Drug
Synthesis Branch. Ammoniumpyrrolidinedithiocarbamate (ADPC)
was obtained from Alexis Corporation (San Diego, CA, USA). 
S-ethylisothiourea-HBr (SEIU) and L-cycloserine were obtained
from Biomol Research Laboratories (Plymouth Meeting, PA,
USA). Radiolabelled [γ-32P]ATP was obtained from Amersham
Life Science, Inc. (Arlington, IL, USA). All other chemicals 
were obtained from Sigma Chemical Co. (St Louis, MO, 
USA).

Flow cytometry

Cell pellets were resuspended in 0.5 ml of HBSS and then fixed by
adding 4.5 ml of ice-cold 70% ethanol. Cells were stained with
propidium iodide for cell cycle analysis using the Becton
Dickinson Cycle Test Plus DNA Reagent Kit (Becton Dickinson,
San Jose, CA, USA) and filtered through a 48 mM nylon mesh
(Tetko, Briarcliff Manor, NY, USA). Samples of 25 000 events
were collected on a Becton Dickinson FACSort (Becton
Dickinson) using the Cell Quest software package (Version # 1.0)
and gated to remove doublets and debris.

Cell proliferation assay

Cell proliferation was quantitated using the MTS (3-(4,5-di-
me-thylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sul-
phonyl-2-H-tetrazolium, inner salt)–PMS (phenazine methosul-
phate) method (Promega, Madison, WI, USA). Briefly, 20 µl of an
MTS–PMS mixture (20:1) was added to 96-well plates containing
100 µl of culture media per well. Plates were incubated at 37°C for
1 h and absorbance read at 490 nm. Each well was run in replicates
of six wells, with the high and low absorbances rejected and
averages of the remaining four wells used to calculate cell prolifer-
ation.

Immunoblot analysis

Cell pellets were resuspended in 50 µl of loading buffer (Novex,
San Diego, CA, USA), sonicated (2 × 10-second pulses), vortexed
briefly, snap-frozen in liquid nitrogen and stored at –80°C until
assayed. Protein concentrations were quantitated using the BCA
method (Pierce, Rockford, IL, USA) and 20-µg aliquots of total
protein were loaded in each lane, electrophoresed and transferred
to a nitrocellulose membrane. The membrane was placed in 5%
milk (BioRad) in TBS (Tris-buffered saline) for 8 h, rinsed three
times in TTBS (0.05% Tween-20 in TBS), followed by 16-h incu-
bation in SuperBlock (Pierce). Incubation with 1:1000 dilution of
rabbit anti-rat cyclin B1 (Santa Cruz, Santa Cruz, CA, USA)
was carried out for 8 h, washed three times with TTBS, incubated
in biotinylated goat anti-rabbit antibody (1:2000 in TTBS) for
1 h, washed three times with TTBS, incubated with strepavidin–
biotinylated alkaline phosphatase complex (1:3000 in TTBS) for
1 h, and washed again three times with TTBS. Bands were
detected using Bio-Rad AP Color Development kit.

Mitotic index and cytogenetic analysis

Exponentially growing NMU cells were treated with FAA 
(250 µg ml–1) or colcemid (0.5 µg ml–1). This concentration of
British Journal of Cancer (1999) 80(12), 1905–1911
FAA was chosen because it was shown by flow cytometry to be
the most effective in causing a sustained G2/M block. Mitotic
indices and chromosome ploidy were determined after 8, 16, 24,
36 and 48 h of FAA or colcemid treatment. For the mitotic indices
the cells were cultured on glass coverslips. At the indicated time
points, the medium was removed, the cells were washed in PBS,
fixed in absolute methanol, stained with DAPI or Giemsa, and
mounted. Two coverslips (1000 cells per coverslip) were exam-
ined for each time point. Chromosome ploidy was determined in
exponentially growing cells, cultured in 100-mm petri dishes. The
chromosomes were prepared by a standard technique, using hypo-
tonic potassium chloride treatment, acetic acid–methanol fixation,
and air-drying of the slides. For each time point, 200 Giemsa-
stained metaphases with minimal chromosome overlapping were
recorded and the chromosomes were counted on the screen.

RNA blotting

Total cellular RNA was obtained from the cell pellets using
Qiagen Rneasy Kit (Qiagen, Chatsworth, CA, USA), quantitated
using the GENE Quant II (Pharmacia, Piscataway, NJ, USA) and
concentrated by use of a SpeedVac. Twenty micrograms of total
RNA were denatured in formaldehyde and formamide and elec-
trophoresed through a 1% agarose gel containing formaldehyde
alongside the appropriate RNA molecular weight ladder (Gibco-
BRL, Gaithersburg, MD, USA). Ethidium bromide-stained gels
were photographed to confirm RNA quality and equal loading of
lanes. Gels were washed four times in DEPC water and transferred
to a nylon-supported nitrocellulose membrane. The membrane
was pre-hybridized with ExpressHyb (Clontech, Palo Alto, CA,
USA) for 60 min at 68°C, followed by hybridization with a cyclin
B1 probe made by random primer labelling of a 400 bp rat cyclin
B1 cDNA (kind gift of Dr Michael Jensen, NCI) for 60 min at
68°C, washed in 2 × sodium–saline citrate (SSC)/0.05% sodium
dodecyl sulphate (SDS) (3 × 10 min, room temperature), 0.1 ×
SSC/0.1% SDS (10 min, 50°C), and 0.1 × SSC/0.1 % SDS (30
min, 50°C). Membranes were exposed to a phosphoimaging
screen for 48–72 h and images captured and band intensities quan-
tified using a Storm phosphoimager. Dehybridization of probes
from the membranes was achieved by washing in 0.5% SDS
(10 min, 90°C). Membranes were then re-hybridized and intensi-
ties were quantitated using a glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) cDNA probe (kind gift of Dr E Fernandez-Salas
and Dr S Yuspa, NCI) as described above.

Cdc2 kinase activity assay

Cell pellets were obtained as described above. P34cdc2 kinase
activity was determined using the SignaTECT cdc2 Protein Kinase
Assay System (Promega). Each sample was assayed in triplicate
(5 µl per replicate) as described by Promega. Protein concentra-
tions were determined using the Pierce BCA method.



FAA induces a G2/M cell cycle arrest

Figure 1 shows the effect of FAA on the cell cycle of the NMU rat
mammary carcinoma cells as a function of concentration and time.
A sustained G2/M cell cycle arrest was observed at 250 µg ml–1 of
FAA over a 24-h time period while no effect was observed at 
© 1999 Cancer Research Campaign
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Figure 1 FAA-mediated cell cycle effects on rat mammary carcinoma cells, analysed by flow cytometry

150

125

100

75

50

25

0
24 h 48 h 72 h

FAA removed
250 µg ml–1 FAA

C
el

l p
ro

lif
er

at
io

n
(%

 o
f u

nt
re

at
ed

 c
on

tr
ol

)

Figure 2 Recovery of rat mammary carcinoma cell proliferation after removal
of FAA. At 72 h after removal of FAA, cellular proliferation was statistically
identical to that of the untreated control (P < 0.05, n = 3). Error bars
represent standard error of the means

-

100 µg ml–1. Interestingly, 200 µg ml–1 of FAA caused a transient
G2/M cell cycle arrest which was apparent at 8 h but had reversed
towards the control level at 24 h. To determine if the cell cycle
arrest was reversible after the NMU cells were exposed to 
250 µg ml–1 FAA for 24 h, cell proliferation was measured after
the removal of the FAA, using the MTS–PMS method. Figure 2
shows that cell proliferation recovered to levels of the untreated
control 72 h after the removal of FAA.

Cyclin B1 levels in NMU cells exposed to FAA

Northern blot analysis showed 1.6 and 2.4 kb transcripts for cyclin
B1. Densitometric readings showed no changes in the cyclin B1
RNA levels (Figure 3A) and immunoblot analysis showed no
differences following 24-h exposure to FAA (250 µg ml–1)
(Figure 3B).
British Journal of Cancer (1999) 80(12), 1905–1911
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Figure 3 Effects of FAA on cyclin B1 levels. (A) Northern blot analysis of
cyclin B1 RNA expression. Cyclin B1 expression is represented by 1.6- and
2.4-kDa transcripts. To evaluate the quantity and quality of the RNA, the blots
were rehybridized with a GADPH probe and stained with ethidium bromide.
(B) Immunoblot analysis for cyclin B1. The percentage of cells in the G2/M
phase are shown below the blots
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Figure 4 Cdc2 kinase activity in FAA-treated NMU cells. Cdc2 kinase activity
was significantly increased after a 12-h exposure to 250 µg ml–1 FAA
(P < 0.05, n = 3). Error bars represent standard error of the means
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Figure 5 Representative metaphases from the FAA-treated NMU rat mammary carcinoma cells: (A) triploid metaphases; (B) hexaploid metaphases; 
(C) C-mitosis with centromeres still attached; (D) C-mitosis with centromeres completely separated. Arrows indicate large acrocentric chromosomes which 
were characteristic for the NMU rat mammary carcinoma cells
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Figure 6 Mitotic indices and ploidy in the NMU rat mammary carcinoma
cells, treated with FAA or colcemid for 8, 16, 24, 36 and 48 h. (A) Mitotic
indices at indicated time points of FAA (dotted line) and colcemid (solid line)
treatment. (B) Chromosome ploidy was determined in FAA (F) and colcemid
(C) treated cells at indicated time points as per cent (%) triploid (3n) and
hexaploid (6n) metaphases. The columns representing metaphases from the
FAA-treated cells are: triploid (solid black); hexaploid (heavy stripes). The
columns representing metaphases from the colcemid treated cells are (heavy
stripes); hexaploid (light stripes)
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Figure 7 Inhibitory effects of the sphingosine kinase inhibitor, L-cycloserine,
on the FAA-mediated cell cycle effect, analysed by flow cytometry
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Cdc2 kinase activity is increased by FAA

Figure 4 shows cdc2 kinase activity in control and FAA-treated
NMU cells 6 and 12 h after 250 µg ml–1 FAA treatment.
Insignificant increase in the kinase activity was observed at 6 h,
whereas a statistically significant threefold increase was observed
after a 12-h exposure to 250 µg ml–1 FAA.

Cytogenetic analysis

The NMU rat mammary carcinoma cell line displayed an aneu-
ploid chromosome constitution with an abnormal chromosome
number and structural abnormalities (Figures 5A,B and 6). A
predominant population (92% of the cells) had a triploid number,
ranging from 65 to 74 chromosomes (3n). A minor cell population
had near hexaploid number, ranging from 130 to 146 (6n). The
triploid cells had a distinctive large abnormal acrocentric chromo-
some which was duplicated in the hexaploid cells (Figure 5A,B).
Morphological analysis was carried out on the FAA-G2/M blocked
cells and compared with cells treated with colcemid, an effective
mitotic arrestant. There were minor differences in the mitotic
indices between the FAA and colcemid treated cells with a peak
© 1999 Cancer Research Campaign
mitotic accumulation for both compounds at the 24-h time point
(Figure 6A).

To determine the nature of the mitotic block, chromosomes were
examined after 8, 16, 24, 36 and 48 h of FAA or colcemid treat-
ment. The two compounds showed a similar distribution of triploid
and hexaploid cells up to 16 h (Figure 6B). Thereafter, the inci-
dence of hexaploidy increased significantly in the colcemid treated
cells and became the predominant population at 48 h. In the FAA
treated cells, however, only a small increase in the incidence of
hexaploid cells occurred after the 16th time point (Figure 6B). This
suggests that only a small fraction of the cells at higher DNA
ploidy, which are reflected in the G2/M peak of the histograms
(Figure 1), are G1 cells. When FAA was removed after 6 h
exposure, there was no increase in hexaploid cells for a period
up to 48 h (data not shown).

Metaphases with diplochromosomes, reflecting endoreduplica-
tion, were observed in 2–3% of the colcemid-treated cells, but in
none of the FAA-treated cells (Figure 6). A striking feature of the
cells arrested in metaphase after FAA treatment was the appear-
ance of C-mitosis, known to be caused by colcemid and named
accordingly (Therman, 1980). C-metaphases exhibited separated
British Journal of Cancer (1999) 80(12), 1905–1911
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chromatids with the centromere still attached in most mitotic
figures and complete separation in some metaphases (Figure 5C,
D). The incidence of C-metaphases increased from 20% at 8 h to
40% and 70% at 16 h and 24 h of FAA treatment. A similar
frequency of C-mitosis was observed in the colcemid treated
cultures. C-mitosis was not observed in cultures exposed to either
chemical for 3–4 h prior to cell harvest.

L-cycloserine, an inhibitor of sphingosine biosynthesis,
blocks the ability of FAA to arrest cell proliferation

Co-administration of L-cycloserine with FAA blocked the cell
cycle arrest in a dose-dependent manner (Figure 7). At 25 µg ml–1,
L-cycloserine had little effect on the FAA-induced cell cycle arrest.
However, at 100 µg ml–1 L-cycloserine blocked the FAA-induced
G2/M cell cycle arrest.



Previous research conducted in our laboratory has demonstrated
the ability of FAA to inhibit the proliferation of human umbilical
vein endothelial cells (HUVEC) and human lung microvascular
endothelial cells (HMVEC-L) in vitro (Lindsay et al, 1996). While
the present study has mainly focused on mammary carcinoma
cells, we observed a G2/M cell cycle arrest in other cell types
tested, including HUVEC and HMVEC-L, as well as rat liver
epithelial cells (RLE) and v-raf/v-myc transformed RLE (unpub-
lished observations). The G2/M arrest in mammary carcinoma
cells in vitro occurred at doses previously shown to have anti-
tumour effects in rodents.

Major cell cycle transitions are regulated by a family of
serine/threonine kinases known as cyclin-dependent kinases. cdc2
regulates the G2/M transition by phosphorylating a key group of
proteins (Mitra et al, 1996; Wu et al, 1996). Protein levels of cdc2
remain constant throughout the cell cycle and its kinase activity is
therefore not regulated at the level of transcription but rather by its
association with cyclin B and by its phosphorylation state (Draetta
and Beach, 1988). Formation of cdc2–cyclin B complex is neces-
sary for the G2/M transition to take place and the cells to enter
mitosis. The FAA-mediated cell cycle arrest was not associated
with decreased cyclin B1 levels. Thus it would appear that the
observed G2/M cell cycle arrest was not the result of decreased
cyclin B1 levels. Suppressed cyclin B levels have been observed in
the G2/M arrest of mouse keratinocytes treated with the flavonoid
apigenin (Lepley et al, 1996) and the G2/M arrest in HeLa cells
following ionizing radiation (Muschel et al, 1991, 1993).

Interestingly, there was an increase in cdc2 kinase activity after
a 12-h exposure to FAA. Elevated levels of cdc2 kinase activity
have been observed in HeLa cells treated with colcemid,
nocodozole or taxol, each of which causes cells to arrest in G2/M,
and that this cdc2 hyperactivation may be necessary for taxol-
induced apoptosis (Kung et al, 1990; Donaldson et al, 1994).

Cytogenetic analysis of the NMU rat mammary carcinoma cells
showed that FAA had colcemid-like effect with accumulation of
C-metaphases. A recent report on mutations of mitotic checkpoint
genes in human colorectal cancer cell lines has provided a new
insight into the understanding of chromosomal instability which
leads to aneuploidy in cancer (Cahill et al, 1998). Colorectal
cancer cell lines with chromosomal instability were found to be
unresponsive to a mitotic block by colcemid due to a mutational
British Journal of Cancer (1999) 80(12), 1905–1911
inactivation of the human homologue of the yeast BUB1 gene
(Cahill et al, 1998). In our study, the aneuploid NMU rat
mammary carcinoma cells showed a normal response to colcemid
and were also arrested by FAA. Further characterization of the cell
cycle effect of FAA in near diploid versus aneuploid cancer cell
lines may reveal important new findings on the cell cycle effect of
FAA, which could resurrect an interest in this previously failed
chemotherapeutic agent.

It has been proposed that FAA may act as a free radical and
possess pro-oxidant properties (Candeias et al, 1993; Cao et al,
1997; Hodnick et al, 1997). This is supported by our findings
showing that the antioxidants ADPC and the superoxide scavenger
Tiron block the FAA-mediated cell cycle arrest (data not shown).
We also considered the possibility that FAA as a free radical and a
stimulator of pro-inflammatory cytokines could act through stimu-
lation of acidic pH-dependent sphingomyelinase (ASMase)
(Feinstein et al, 1995; Adam et al, 1996). L-cycloserine, an
ASMase inhibitor, was found to block the FAA-mediated cell
cycle effect. Studies by Pahan et al (1998) have shown that simul-
taneous treatment of astrocytes with ASMase and cytokines
resulted in increased levels of NO. Hence, we asked the question if
ASMase was involved in the cell cycle arrest through stimulation
of the NO pathways. It was particularly relevant since our previous
study on FAA-mediated anti-tumour effect on the mouse tumours
implicated involvement of NO (Harris et al, 1997). However, NOS
inhibitors had no effect on the FAA-mediated cell cycle arrest in
the present study (not shown), suggesting the NO was not
involved.

We have demonstrated that FAA induces a sustained G2/M
arrest comparable to that caused by colcemid in rat mammary
carcinoma cells. The data indicate that cdc2 is targeted by the
growth arresting effect of FAA and that generation of reactive
oxygen species may play a role.

REFERENCES

Bibby MC and Double JA (1993) Flavone acetic acid: from laboratory to clinic and
back. Anti-Cancer Drugs 4: 3–13

Bibby MC, Double JA, Loadman PM and Duke CV (1989) Reduction of tumor
blood flow by flavone acetic acid: a possible component of therapy. J Natl
Cancer Inst 81: 216–220

Bible KC and Kaufman SH (1996) Flavopiridol: a cytotoxic flavone that induces cell
death in noncycling A549 human lung carcinoma cells. Cancer Res 56:
4856–4861

Bowler K and Pearson JA (1992) Long term effects of flavone acetic acid on the
growth of a rat tumor. Anticancer Res 12: 1275–1280

Cahill DP, Lenguaer C, Yu J, Riggins GJ, Wilson KV, Markowitz SD, Kinzler KW,
and Vogelstein B (1998) Mutations of mitotic checkpoint genes in human
cancers. Nature 392: 300–303

Candeias LP, Everett SA and Wardman P (1993) Free radical intermediates in the
oxidation of flavone-8-acetic acid: possible involvement in its antitumor
activity. Free Radical Biol Med 15: 385–394

Cao G, Sofic E and Prior RL (1997) Antioxidant and prooxidant behavior of
flavonoids: structure–activity relationships. Free Radical Biol Med 22:
749–760

Carlson BA, DuBay MM, Sausville EA, Brizuela L and Worland PJ (1996)
Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase
(CDK)2 and CDK4 in human breast carcinoma cells. Cancer Res 56:
2973–2978

Chabot GG, Branellec D, Sassi A, Armand JP, Gouyette A, Chouaib S (1993)
Tumour necrosis factor-alpha plasma levels after flavone acetic acid
administration in man and mouse. Eur J Cancer 29A(5): 729–733

Ching LM and Baguley BC (1987) Induction of natural killer cell activity by the
antitumor compound flavone acetic acid (NSC 347512). Eur J Cancer Clin
Oncol 23: 1047–1050
© 1999 Cancer Research Campaign



Flavone acetic acid arrests cell cycle in breast carcinoma 1911
Cummings J and Smyth JF (1989) Flavone 8-acetic acid: our current understanding
of its mechanism of action in solid tumours. Cancer Chemother Pharmacol 24:
269–272

Donaldson KL, Goolsby GL, Kiene PA and Wahl AF (1994) Activation of p34cdc2

coincident with taxol-induced apoptosis. Cell Growth Diff 5: 1041–1050
Draetta G and Beach D (1988) Activation of cdc2 kinase during mitosis in human

cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54:
17–26

Feinstein E, Kimchi A, Wallach D, Boldin M and Varfolomeev E (1995) The death
domain: a module shared by proteins with diverse cellular functions. Trends
Biochem Sci 20: 342–344

Finlay GJ, Smith GP, Fray LM and Baguley BC (1988) Effect of flavone acetic acid
on Lewis lung carcinoma: evidence for an indirect effect. J Natl Cancer Inst
80: 241–245

Futami H, Eader LA, Komschlies KL, Bull R, Gruys ME, Ortaldo JR, Young HA,
and Wiltrout RH (1991) Flavone acetic acid directly induces expression of
cytokine genes in mouse splenic leukocytes but not in human peripheral blood
leukocytes. Cancer Res 51: 6596–6602

Harris SR and Thorgeirsson UP (1997) Flavone acetic acid stimulates nitric oxide
and peroxynitrate production in subcutaneous mouse tumors. Biochem Biophys
Res Commun 235: 509–514

Hill SA, Williams KB and Denekemp J (1991) Studies with a panel of tumours
having a variable sensitivity to FAA, to investigate its mechanism of action. Int
J Radiat Biol 60: 379–384

Hodnick WF, Duval DL and Pardini RS (1994) Inhibitor of mitochondrial respiration
and cyanide-stimulated generation of reactive oxygen species by selected
flavonoids. Biochem Pharmacol 47: 573–580

Kung AL, Sherwood SW and Schimke RT (1990) Cell line-specific differences in
the control cell cycle progression in the absence of mitosis. Proc Natl Acad Sci
USA 87: 9553–9557

Lepley DM, Li B, Birt DF and Pelling JC (1996) The chemopreventive flavonoid
apigenyin induces G2/M arrest in keratinocytes. Carcinogenesis 17: 2367–2375

Lindsay CK, Gomez DE and Thorgeirsson UP (1996) Effect of flavone acetic acid
on endothelial cell proliferation: evidence for antiangiogenic properties.
Anticancer Res 16: 425–432

Madhevan V and Hart IR (1991) Divergent effects of flavone acetic acid on
established versus developing tumour blood flow. Br J Cancer 63: 889–892

Matsukawa Y, Marui N, Sakai T, Satomi Y, Yoshida M, Matsumoto K, Nishino H
and Aoike A (1993) Genistein arrests cell cycle progression at G2-M. Cancer
Res 53: 1328–1331

Mitra J and Schultz RM (1996) Regulation of the acquisition of meiotic competence
in the mouse: changes in the subcellular localization of cdc2, cyclin B1, cdc25
© 1999 Cancer Research Campaign
and weel, and in the concentration of these proteins and their transcripts. J Cell
Sci 109: 2407–2415

Muschel RJ, Zhang HB, Iliakis G and McKenna WG (1991) Cyclin B expression in
HeLa cells during the G2 block induced by ionizing radiation. Cancer Res 51:
5113–5117

Muschel RJ, Zhang HB and McKenna WG (1993) Differential effect of ionizing
radiation on the expression of cyclin A and cyclin B in HeLa cells. Cancer Res
53: 1128–1135

Pahan K, Sheikh FG, Khan M, Namboodiri AM and Singh I (1998)
Sphingomyelinase and ceramide stimulate the expression of inducible nitric
oxide synthase in rat primary astrocytes. J Biol Chem 273: 2591–2600

Pratesi G, Rodolpho M, Rovetta G and Parminiani G (1990) Role of T cells and
tumour necrosis factor in antitumor activity and toxicity of flavone acetic acid.
Eur J Cancer 26: 1079–1083

Sato F, Matsukawa Y, Matsumoto K, Nishino H and Sakai T (1994) Apigenin
induces morphological differentiation and G2-M arrest in rat neuronal cells.
Biochem Biophys Res Commun 204: 578–584

Therman E (1980) Human Chromosomes: Structure, Behavior, Effects. Springer-
Verlag: New York

Thomsen LL, Ching LM and Baguley BC (1990) Evidence for the production of
nitric oxide by activated macrophages treated with the antitumor agents
flavone-8-acetic and xanthenone-4-acetic acid. Cancer Res 50: 6966–6970

Thomsen LL, Ching LM, Zhuang L, Gavin JB and Baguley BC (1991) Tumor-
dependent increased plasma nitrate concentrations as an indication of the anti-
tumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res 51:
77–81

Thomsen LL Ching LM, Joseph WR, Baguley BC and Gavin JB (1992) Nitric oxide
production in endotoxin-resistant C3H/HeJ mice stimulated with flavone-8-
acetic acid and xanthenone-4-acetic acid analogues. Biochem Pharmacol 43:
2401–2406

Wu L, Shiozaki K, Aligue R and Russell P (1996) Spatial organization of the Nim1-
Wee1-cdc2 mitotic control network in Schizosaccharomyces pombe. Mol Biol
Cell 7: 1749–1758

Yoshidia M, Sakai T, Hosokawa N, Marui N, Matsumoto K, Fujioka A, Nishino H
and Aoike A (1990) The effect of quercetin on the cell cycle progression and
growth of human gastric cancer cells. FEBS Lett 260: 10–13

Zwi LJ, Baguley BC, Gavin JB and Wilson WR (1989) Blood flow failure as a major
determinant in the antitumor action of flavone acetic acid. J Natl Cancer Inst
81: 1005–1013

Zwi LJ, Baguley BC, Gavin JB and Wilson WR (1990) The use of vascularised
spheroids to investigate the action of flavone acetic acid on tumor blood
vessels. Br J Cancer 62: 231–237
British Journal of Cancer (1999) 80(12), 1905–1911


	Flavone acetic acid induces a G2/M cell cycle arrest inmammary carcinoma cells
	Materials and Methods
	Cell culture
	Chemicals
	Flow cytometry
	Cell proliferation assay
	Immunoblot analysis
	Mitotic index and cytogenetic analysis
	RNA blotting
	Cdc2 kinase activity assay

	Results
	FAA induces a G2/M cell cycle arrest
	Figure-1
	Figure-2
	Cyclin B1 levels in NMU cells exposed to FAA
	Figure-3
	Figure-4
	Figure-5
	Figure-6
	Figure-7
	Cdc2 kinase activity is increased by FAA
	Cytogenetic analysis
	L-cycloserine, an inhibitor of sphingosine biosynthesis,
	blocks the ability of FAA to arrest cell proliferation

	Discussion
	References


