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Summary One of the most important components of G1 checkpoint is the retinoblastoma protein (pRB110). The activity of pRB is regulated by
its phosphorylation, which is mediated by genes such as cyclin D1 and p16/MTS1. All three genes have been shown to be commonly altered
in human malignancies. We have screened a panel of 26 oral squamous cell carcinomas (OSCC), nine premalignant and three normal oral
tissue samples as well as eight established OSCC cell lines for mutations in the p16/MTS1 gene. The expression of p16/MTS1, cyclin D1 and
pRB110 was also studied in the same panel. We have found p16/MTS1 gene alterations in 5/26 (19%) primary tumours and 6/8 (75%) cell
lines. Two primary tumours and five OSCC cell lines had p16/MTS1 point mutations and another three primary and one OSCC cell line
contained partial gene deletions. Six of seven p16/MTS1 point mutations resulted in termination codons and the remaining mutation caused
a frameshift. Western blot analysis showed absence of p16/MTS1 expression in 18/26 (69%) OSCC, 7/9 (78%) premalignant lesions and 8/8
cell lines. One cell line, H314, contained a frameshift mutation possibly resulting in a truncated p16/MTS1 protein. pRB was detected in 14/25
(56%) of OSCC but only 11/14 (78%) of these contained all or some hypophosphorylated (active) pRB. In premalignant samples, 6/8 (75%)
displayed pRB, and all three normal samples and eight cell lines analysed contained RB protein. p16/MTS1 protein was undetectable in 10/11
(91%) OSCCs with positive pRB. Overexpression of cyclin D1 was observed in 9/22 (41%) OSCC, 3/9 (33%) premalignant and 8/8 (100%) of
OSCC cell lines. Our data suggest p16/MTS1 mutations and loss of expression to be very common in oral cancer cell lines and less frequent
in primary OSCC tumours. A different pattern of p16/MTS1 mutations was observed in OSCC compared to other cancers with all the detected
p16/MTS1 mutations resulting in premature termination codons or a frameshift. The RB protein was expressed in about half (44%) of OSCCs
and its expression inversely correlated with p16/MTS1 expression. In conclusion, we show that abnormalities of the RB pathway are a
common mechanism of oral carcinogenesis.
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Oral squamous cell carcinoma (OSCC) is the most common
malignancy in South Asia. Carcinogens such as alcohol, tobacco
and nitrosamines contained in areca nut are known to cause the
development of most oral cancers but the molecular mechanisms
involved in the malignant transformation of oral epithelial cells are
still unclear (Johnson, 1991). Aberrations in the  gene have
been shown to be the most common genetic alterations in oral
cancers (Wong et al, 1996). However, about 50% of oral cancers
seem to have wild-type (wt) , suggesting that other genes may
contribute to the development of oral malignancies. Recently,
much attention has been focused on the role of the G1 checkpoint
in human cancer. Apart from , the retinoblastoma (RB) gene
product, pRB110, is another key component of this checkpoint
(Weinberg, 1995). pRB110 was the first of the ‘pocket’ proteins to
be characterized (Goodrich and Lee, 1993). The other known
members of this family of proteins are p130 and p107 (Ewen et al,

1993; Mayol et al, 1993). pRB binds a number of viral proteins
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such as E7 from certain types of papillomaviruses (Li et al, 1993),
large T antigen of SV40, E1A of certain adenoviruses (Wang et al,
1991) and IE2 of cytomegaloviruses (CMV) (Hagemeier et al,
1994). It also binds several cellular proteins including cyclin-
dependent kinases and the E2F transcription factor (Bagchi et al,
1991; Chellappan et al, 1991), suggesting a very important role for
RB in controlling cellular growth. pRB110 activity is regulated by
phosphorylation, which occurs in a cell cycle-dependent manner
(Chen et al, 1989). Dephosphorylation of pRB110 renders it active,
leading to G1 arrest. The phosphorylation and inactivation of pRB
is thought to be induced by successive waves of cyclins D1, D2
and D3 together with CDK4 or CDK6 and cyclin E together with
CDK2. The function of these complexes is counteracted by the
activity of cyclin-dependent kinase inhibitors (CDKIs) (reviewed
by Hunter and Pines, 1994; Sherr, 1994). Two CDKI families
are known, the prototype genes of these families being
p16/CDKN2/MTS1 (Serrano et al, 1993) and p21/WAF1/CIP1
respectively. p21/WAF1 is thought to be a ‘universal’ CDKI,
inhibiting the activity of both Cyclin D-CDK4/6 and Cyclin E-
CDK2 complexes (Xiong et al, 1993) while p16/MTS1 only
inhibits cyclin D1-CDK4/6 complexes (Serrano et al, 1993). The
expression of p16/MTS1 is constantly low during most of the cell
cycle, peaking with a slight increase at G1 phase (Tam et al, 1994;
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Stone et al, 1995). Ectopic overexpression of p16/MTS1 has been
shown to result in G1 arrest (Koh et al, 1995; Lukas et al, 1995;
Serrano et al, 1996). This arrest is dependent on the presence of
(wt) pRB (Medema et al, 1995).

p16/MTS1 is located on 9p21 in humans, a region commonly
deleted in many tumour types (Fountain et al, 1992; Kamb et al
1994). As well as gene deletion (van der Riet et al, 1994; Reed et
al., 1996), point mutations (Zhou et al, 1994; Liu et al, 1995; Arap
et al, 1997), methylation (Gonzalez-Zulueta et al, 1995; Otterson
et al, 1995; Shapiro et al, 1995) and the TAX protein of HTLV1
virus (Suzuki et al, 1996) have been found to inactivate p16/MTS1
in several tumour types including head and neck (Reed et al, 1996;
Olshan et al, 1997; Papadimitrakopoulou et al, 1997).

Cyclin D1/PRAD1/BCL1 is located on 11q13 in humans, a
region commonly amplified in several types of cancer (Berenson
et al, 1989; Bartkova et al, 1995, 1995). As well as amplifica-
tion, mutations which result in the stabilization of cyclin D1
protein have also been suggested to be a mechanism for the
abnormal accumulation of cyclin D1 (Welcker et al, 1996).
Ectopic expression of cyclin D1 results in the acceleration of the
G1/S phase transition, showing that cyclin D1 is rate-limiting
in this step (Jiang et al, 1993; Ohtsubo and Roberts 1993). The
acceleration through the G1 checkpoint due to cyclin D1 over-
expression has been shown to result in an increase in genomic
instability (Zhou et al, 1996).

Despite the importance of pRB110 in regulating the G1 check-
point, mutations in pRB110 are uncommon in head and neck
squamous cell carcinomas (Yoo et al, 1994). This suggests that not
only pRB110, but also the proteins regulating RB function, may be
involved in carcinogenesis of head and neck epithelium.

In this study we have assessed aberrations in genes upstream of
RB including p16/MTS1, cyclin D1 as well as pRB110 itself in a
panel of OSCC and premalignant oral lesions as well as OSCC cell
lines. Our data suggest that loss of expression of p16/MTS1 is very
common in OSCC. Also, cyclin D1 was frequently found to be
overexpressed in malignancies of the oral cavity. While the RB
gene itself seems to be less prone to alterations in this type of
cancer its expression and/or activity is altered by other proteins
such as p16/MTS1, cyclin D1 and possibly E7 of HPV-16.



Sample selection

Fresh oral biopsies were collected from 38 patients with lesions
clinically and histologically diagnosed as OSCCs or premalignant
mucosal lesions from six hospitals in South East England. Three
pathologically normal specimens were also included. The total
panel consisted of 22 male and 16 female and their mean age was
65.6 ± 2.1 years. Histology confirmed that 26 of these were malig-
nant OSCC; nine were keratoses with varying grades of dysplasia
(Tables 1 and 2). OSCC were histologically graded as well,
moderate and poorly differentiated and the severity of dysplasia as
mild, moderate or severe by the Smith and Pindborg criteria
(1969). The samples were stored in the gas liquid phase of liquid
nitrogen until further use. The oral cancer cell lines were gifts
from Profs Stephen Prime, Bristol (H103, H157, H314, H357,
H376, H400) and Barry Gusterson, Sutton (HN5 and HN6). The
cells were grown under the conditions which have been previously
described (Bartkova et al, 1995; Yeudall et al, 1995).
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DNA preparation and mutational analysis

The p16/MTS1 polymerase chain reaction (PCR) was performed
using primers; exon 1 (sense: 5′-CGG CTG CGG AGA GGG
GGA GA-3′, antisense: 5′-CCG CTG CAG ACC CTC TAC CCA
CCT-3′), exon 2 part 1 (sense: 5′-ACA AGC TTC CTT TCC GTC
ATG CCG- 3′, antisense: 5′-CCA GGC ATC GCG CAC GTC
CA-3′) exon 2 part 2 (sense: 5′-TTC CTG GAC ACG CTG GTG
GT-3′, antisense: 5′-TCT GAG CTT TGG AAG CTC TCA G-3′)
exon 3 (sense: 5′-CGC CTG TTT TCT TTC TGC CCT CTG-3′,
antisense: 5′-GAA AGC GGG GTG GGT TGT GG-3′).
Amplification of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was used as an internal PCR control. Oligonucleotide
primers for GAPDH were (sense: 5′-AGT ACG CTG CAG GGC
CTC ACT CC TT-3′, antisense 5′-AAG AGC CAG TCT CTG
GCC CCA GCC A-3′). The PCR reaction consisted of 1 µl of
DNA extract, 25 pmol of each primer, 1X PCR Promega Formula
buffer containing 1.5 mM magnesium, 200 µM dNTPs, 5%
dimethyl sulphoxide (DMSO) and 1.5 U  polymerase
(Advanced Biotechnology) in a total volume of 50 µl. The PCR
mix was denatured at 94°C for 5 min, followed by 30 cycles
(94°C, 30 s; 62°C, 1 min and 72°C, 1 min).

DNA was isolated from 2 × 6 µm cryostat sections from frozen
specimens for which adjacent sections were examined by
microscopy for assessment of the presence of adequate tumour tissue
and the proportion of stromal tissue. All OSCC samples used for
DNA extraction showed > 60% tumour tissue in each case.
Cellular DNA was extracted as we have previously described
(Steingrimsdottir et al, 1997). Briefly, the samples were lysed in
sodium dodecyl sulphate (SDS) buffer [100 mM sodium chloride
(NaCl), 10 nM Tris-HCl, 25 mM EDTA, 0.5% SDS pH 8.0] and
were incubated with 0.1 mg ml–1 proteinase K for approximately
5 h. The lysate was then treated with an equal volume of
phenol–chloroform–isoamyl alcohol pH 8.0 (25:24:1). DNA was
recovered from the aqueous phase by the addition of 2 volumes of
ethanol and was stored in 100 µl TE containing 2 µg RNAse A. For
each PCR reaction, 1 µl DNA extract equal to approximately 100 ng
was used.

PCR amplification and SSCP analysis of the p16/MTS1
gene

For SSCP analysis, the PCR products were labelled after 15 cycles
by the addition of 1 µCi [α-32P]dCTP. A total of 3 µl of the
labelled PCR products were diluted with 4 µl of 95% deionized
formamide containing bromophenol blue–xylene cyanol, 3.7 µl
EDTA (0.5 M) and 26.25 µl water. The PCR mixtures were dena-
tured for 5 min at 95°C, and were snap frozen by placing in liquid
nitrogen. The denatured products (5 µl) were loaded on an 8%
non-denaturing polyacrylamide gel electrophoresis (PAGE) gel
and separated using 1 × TBE in the upper chamber (cathode) and
2 × TBE in the lower chamber (anode). Electrophoresis was
carried out at 350 volts at room temperature overnight. The gels
were dried and exposed to X-ray film developing after 16 h.

For sequencing, 40 µl of the PCR products were electro-
phoresed in a 1% low melting point agarose gel and the target
bands were excised from the gel. The selected agarose fragments
were sliced and digested with Agarase (B-Agarase I, Calbiochem)
according to the manufacturer’s recommendation. The purified
DNA products were then sequenced directly using both 5′ and 3′
primers together with dye terminators in an ABI 373A automated
sequencer.
© Cancer Research Campaign 1999
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Figure 1 Analysis of p16/MTS1 exon 1α by PCR. Exon 1α of p16/MTS1
gene was co-amplified with the internal control GAPDH and 10 µl of PCR
products were separated on a 2% agarose gel. The bands corresponding to
the predicted molecular weights of the GAPDH (474 bp) and p16/MTS1 exon
1α (218 bp) amplicons are indicated on the gel by arrows. Lane numbers
correspond to the sample references in Table 1

Figure 2 Western blot analysis of cyclin D1 and p16 in primary oral lesions
and oral cancer cell lines. Total cell or tissue lysates were separated in a
12.5% SDS-PAGE, transferred to a nitrocellulose membrane and the
membrane was hybridized to antibodies DCS-50 for p16 and DCS-6 for
cyclin D1. The lanes indicated +C. D1 for MCF-7 cell lysate as cyclin D1-
positive control; +p16 for MDAMB 453 cell lysate as p16-positive control. The
rest of the lanes correspond to the sample references in Table 1

2F 3F 6F 13F 14F 24F HN5 HN6

GAPDH

p16 exon 1α

Cyclin D1

p16

+VE +VE 37F 36F 35F 34F 32F 31F 19F 18F 17F 15F
C.D1 p16

Figure 3 Western blot analysis of pRB in oral samples. Total cell or tissue
lysates were separated on a 6% SDS-PAGE and the membrane was
hybridized to antibody 14001A. Samples are marked according to the
sample references in Table 1

H157 H103 HN5 HN6 H376 16F

pRB
Expression analysis

For Western blotting, samples were lysed in Laemmli sample
buffer (Laemmli, 1970), which were then boiled and resolved by
SDS-PAGE, 6–12.5%. The gel was transferred to 0.45 µM nitro-
cellulose membrane (Schleicher and Schuell) as previously
described (Towbin et al, 1992). Probing of the blot and detection
of the antibodies were performed according to the manufacturer’s
instructions for the enhanced chemiluminescent reaction (ECL,
from Amersham). The membrane was blocked for 1 h in 4% milk
powder containing 1% bovine serum albumin (BSA) in TBST
buffer (20 mM Tris pH 8.0, 150 mM NaCl, 0.05% Tween-20). For
p16, the antibody used was DCS-50 and for cyclin D1, DCS-6
(both gifts of Dr Jiri Bartek and Dr Gordon Peters). Both p16
and cyclin D1 antibodies were diluted 1:1000 in TBST. For pRB,
the antibody used was 14001A (Pharmingen), diluted 1:500 in
TBST. Secondary antibodies tagged to horseradish peroxidase
were detected using the enhanced chemiluminescence method
according to the manufacturer’s instructions (ECL, from
Amersham). p16-positive cell line MDAMB 468 and cyclin
D1-positive cell line MCF7 were used as positive controls.



p16/MTS1 gene deletion/mutation analysis

DNA from 26 OSCC tumours, nine premalignant and three normal
samples as well as eight OSCC cell lines was analysed by PCR.
Exons 1α, 2 and 3 of p16/MTS1 were independently amplified
using GAPDH primers in the same reactions as an internal control.
Because of the large size of p16/MTS1 exon 2 (305 bp), this was
amplified as two separate fragments (parts I and II).

Samples 13, 14 and 24 failed to amplify the 218 bp fragment
expected for exon 1α. These samples amplified a 474 bp fragment
corresponding to the GAPDH fragment, albeit a weaker band was
observed for 24 (Figure 1). These results suggested that at least
part of exon 1α is deleted in these three tumours (Figure 1).

To examine the / gene mutations the PCR products
were then analysed by single-stranded conformation polymor-
phism (SSCP) and samples that showed abnormal shifts on the
SSCP gel were subsequently sequenced directly. Point mutations
were detected in 2/26 (8%) of the primary oral tumours, 6 and 15.
Both of these were non-sense mutations at codon 58 (CGA>TGA,
arg>term). Sample 6 also showed a transition at codon 148
(GCG>ACG, ala>thr), which is a known p16/MTS1 polymor-
phism (Tables 1 and 2).

Analysis of the / gene in the cell lines by PCR amplifi-
cation showed deletion of exon 3 in one cell line, HN6. Point
mutations in the / gene were found in 5/8 (63%) of
OSCC cell lines (Tables 1 and 2). We found non-sense mutations
at codons 58 (CGA>TGA, arg>term) in H103 and H357, and
codon 80 (CGA>TGA, arg>term) in H157. In HN5, codon 88 was
mutated substituting GAG>TAG, glu>term. In H314, the deletion
of a single G at codon 69 caused a frameshift. This frameshift
results in several termination codons in the reading frame, the first
one being in codon 119. None of the premalignant or normal
samples showed either deletions or point mutations in the
/ gene.

p16/MTS1 expression

Expression of p16/MTS1 was analysed in primary samples and
OSCC cell lines by Western blotting, using the DCS-50 antibody.
© Cancer Research Campaign 1999
The expression results are summarized in Tables 1 and 2. Absence
of p16 was observed in 18/26 (69%) OSCC, whilst 8/26 (31%)
OSCCs and 2/9 (22%) premalignant lesions expressed p16/MTS1
(Table 1 and Figure 2). All 8/8 (100%) cell lines lacked the expres-
sion of p16/MTS1. Sample 6, which had a p16/MTS1 mutation
resulting in a termination codon (Tables 1 and 2), did not express
normal size p16/MTS1. However, sample 15, which had the same
termination mutation as 6, expressed p16/MTS1 protein. Also,
sample 24 with exon 1 deletion lacked p16/MTS1 expression,
while both samples 13 and 14 with a similar deletion expressed
moderate to high levels of p16/MTS1. Western blot analysis
detected a protein of approximately 25 kDa in the H314 cell line
using C-20 p16/MTS1 antibody (Santa Cruz). However, such
protein was not detected using another p16/MTS1 antibody,
DCS-50.
British Journal of Cancer (1999) 80(1/2), 79–86
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Table 1 Comparison of p16/MTS1 mutation analysis and expression of p16, cyclin D1 and pRB in primary oral lesions

Sample Sample p16 Mutation p16 Cyclin D1 pRB pRB
number histology analysis expression expression expression phosphorylation

status

2 OSCC WT – NA + RB105

3 OSCC WT – – + RB105

4 OSCC WT – NA + RB105

6 OSCC αα58;CGA>TGA – NA – no RB
αα148;GCG>ACG

8 OSCC WT + + + RB110

9 OSCC WT – + – no RB
10 OSCC WT ++ + + RB110

11 OSCC WT + – + RB105/110

13 OSCC deletion exon 1 + – – no pRB
14 OSCC deletion exon 1 ++ + – no RB
15 OSCC αα58;CGA>TGA ++ + NA NA
17 OSCC WT – – + RB105

18 OSCC WT – – + RB105

19 OSCC WT – – – no RB
20 OSCC WT – – + RB105

22 OSCC WT – – + RB105/110

23 OSCC WT – – no pRB
24 OSCC deletion exon 1 – – + RB110

26 OSCC WT – + + RB105

27 OSCC WT – + + RB105

30 OSCC WT – – – no RB
31 OSCC WT + + – no RB
32 OSCC WT + – – no RB
36 OSCC WT – – – no RB
37 OSCC WT – – – no RB
42 OSCC WT – + + RB105/110

1 pre-cancer WT – – + RB105/110

12 pre-cancer WT + + + RB105

16 pre-cancer WT – – + RB105/110

25 pre-cancer WT – + NA NA
34 pre-cancer WT + + – no RB
35 pre-cancer WT – – + RB105

38 pre-cancer WT – – + RB105

40 pre-cancer WT – – + RB105

43 pre-cancer WT – – – no RB
33 normal WT + – + RB105

39 normal WT – + RB105

41 normal WT – – + RB105

The pRB expression column refers to ‘+’ for samples which expressed either, one or both hypo- and hyperphosphorylated
forms of pRB. The pRB phosphorylation column describes the phosphorylation status of pRB. Samples expressing only
dephosphorylated pRB are denoted as ‘RB105’, only phosphorylated pRB as ‘RB110’, no expression as ‘no pRB’ and expression
of both forms as ‘RB105/110’. WT, wild-type sequence, NA, not analysed.
Cyclin D1 and RB expression

Western blot analysis using DCS-6 antibody detected high levels
of cyclin D1 in 9/22 (41%) of the tumours, 3/9 (33%) potential
malignancies and in 100% (8/8) of the OSCC cell lines. Both
normal samples analysed expressed low levels of cyclin D1.

pRB was expressed in 14/25 (56%) of the cancers, 6/8 (75%)
premalignant lesions and all three normals. The level of pRB
phosphorylation varied in different samples. pRB was hyperphos-
phorylated in 3/14 malignant samples (8, 10 and 24), indicating
the presence of an inactive pRB. Surprisingly, all (8/8) cell lines
expressed pRB but in one cell line, H157, mainly the unphospho-
rylated form of pRB was detected (Tables 1 and 2 and Figures 2
and 3).
British Journal of Cancer (1999) 80(1/2), 79–86
Comparison between pRB, cyclin D1 and p16/MTS1
expression

The pRB expression results obtained by Western blotting were
compared to those for p16/MTS1 and cyclin D1. We found an
inverse association between the expression of p16/MTS1 and the
presence of pRB. Lack of p16/MTS1 expression was observed in
10/11 (91%) OSCCs which contained active pRB. Also 5/6 (83%)
of the premalignant lesions which were pRB-positive lacked
p16/MTS1 protein (Table 3) and (8/8) 100% cell lines expressed
pRB but no p16/MTS1. Comparison between cyclin D1 and
p16/MTS1 showed 10/13 (77%) OSCCs and 6/6 premalignant
samples did not express either Cyclin D1 or p16/MTS1 (Table 4).
Cyclin D1 and pRB expression also showed some correlation: 5/6
© Cancer Research Campaign 1999
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Table 2 Comparison of p16/MTS1 mutation/deletion and expression of p16, cyclin D1 and pRB in OSCC cell lines

Cell line p16 p16 Cyclin D1 pRB pRB
mutation expression expression expression phosphorylation
status status

HN5 αα88; – ++ + RB105/110

GAG>TAG
HN6 deletion – ++ + RB105/110

exon 3
H103 αα58; – ++ + RB105/110

CGA>TGA
H157 αα80; – ++ + RB105

H314 αα69; – ++ + RB105/110

deletion of G
H357 αα58; – ++ + RB105/110

CGA>TGA
H376 WT – ++ + RB105/110

H400 WT – ++ + RB105/110

The pRB expression column refers to ‘+’ for samples which expressed either, one or both hypo- and hyperphosphorylated
forms of pRB. The pRB phosphorylation column describes the phosphorylation status of pRB. Samples expressing only
dephosphorylated pRB are denoted as ‘RB105’, only phosphorylated pRB as ‘RB110’, no expression as ‘no pRB’ and expression
of both forms as ‘RB105/110’. WT, wild-type sequence, NA, not analysed.

Table 3 Comparison between expression of p16/MTS1 and active pRB

Samples Positive pRB Negative pRB
Positive p16 Negative p16 Positive p16 Negative p16

OSCC 1/11 (9%) 10/11 (91%) 6/14 (43%) 8/14 (57%)
Pre-cancer 1/6 (17%) 5/6 (83%) 1/2 (50%) 1/2 (50%)

pRB was scored as active if either only the hypophosphorylated or both
hypo- and hyperphosphorylated forms were detected.

Table 4 Comparison between expression of cyclin D1 p16/MTS1 by
Western blotting

Samples Positive cyclin D1 Negative cyclin D1
Positive p16 Negative p16 Positive p16 Negative p16

OSCC 4/9 (56%) 4/9 (44%) 3/13 (23%) 10/13 (77%)
Pre-cancer 2/3 (67%) 1/3 (33%) 0/6 (0%) 6/6 (100%)
(83%) of the premalignant lesions expressed pRB but no cyclin D1
while only 6/9 (67%) of the OSCCs showed that pattern of expres-
sion (Table 5). The number of normal samples in this study was
too small to make any correlation.
© Cancer Research Campaign 1999

Table 5 Comparison between expression of cyclin D1 and activ

Samples Positive pRB
Positive cyclin D1 Negative cyclin D1

OSCC 3/9 (33%) 6/9 (67%)
Pre-cancer 1/6 (17%) 5/6 (83%)

pRB was scored as active if either only the hypophosphorylated o


In order to understand the role of the RB pathway in oral cancer we
studied the expression of pRB as well as its upstream regulators
p16/MTS1 and cyclin D1 in primary oral lesions and oral cancer
cell lines. We also analysed p16/MTS1 mutations in the same
panel. To our knowledge, few studies have analysed the expression
of these three key proteins in primary OSCCs (Andl et al, 1998).

In primary OSCCs, p16/MTS1 point mutations/deletions
occurred relatively frequently (19%) but in the cell lines the
/ gene was altered with a much higher frequency (75%).
No / gene alterations were found in premalignant or
normal samples. This large difference in the frequencies, also
reported by others (Zhang et al, 1994), could be due to instability
of the / gene in the cell lines maintained for long duration
in culture. Mutations in the / gene could also confer a
growth advantage to cells and therefore cells with such mutations
are selected for establishing lines. Another reason for the lower
incidence of p16/MTS1 mutations in primary tumours could be
due to the heterogeneity of the tissues analysed. The presence of
normal cells in the specimens can mask the detection of p16/MTS1
point mutations/deletions.

Mechanisms other than gene mutation have also been shown to
be responsible for down-regulation of the / gene (Hara et
al, 1996). DNA methylation has been shown to play an important
role in silencing / gene transcription (Otterson et al,
1995). In this study, 16/26 (62%) OSCCs, 5/9 (56%) premalignant
British Journal of Cancer (1999) 80(1/2), 79–86
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lesions and 2/8 cell lines which had no detectable p16/MTS1
mutation, lacked p16/MTS1 protein. This indicates that epigenetic
mechanisms such as DNA methylation could be responsible for
inducing gene silencing in these samples.

In three primary tumours p16/MTS1 exon 1α was not amplified
despite amplification of exons 2 and 3 as well as the GAPDH
gene. We interpreted this to be a partial deletion of /
gene. Surprisingly, two of these three samples expressed
p16/MTS1 protein (Tables 1 and 2). This could be due to the
presence of small deletions or point mutations preventing primer
annealing and hence gene amplification, but not affecting the
reading frame and expression of / gene. Alternatively,
this discrepancy could be due to the use of different sections taken
from different parts of the tumour for use in the PCR and Western
blot analyses.

In sample 24, which failed to amplify exon 1α, the level of
GAPDH was also lower, which was probably due to the presence
of less DNA in this particular sample available for the PCR reac-
tion. We checked and confirmed the partial deletions in the
/ gene in these three tumour samples in three indepen-
dent PCR reactions. However, we are aware of the limitations of
the semiquantitative PCR technique for deletion detection, there-
fore we are cautious interpreting our PCR results. To minimize
artefacts, only sections with more than 60% malignant cells were
used for DNA and protein analysis. The option of tissue microdis-
section was also considered, but preliminary experiments showed
that this process greatly increases the risk of tissue contamination
caused by the extensive manipulations performed on the tissues.
The frequency of deletions within or encompassing the /
gene has been found to vary greatly. For example, one study (Reed
et al, 1996) showed homozygous deletions of 9p in 67% of head
and neck tumour samples, whilst Zhang et al (1994) could not
detect any p16/MTS1 deletions in 68 head and neck tumours that
they analysed. Also, it has been shown that deletions on 9p do not
necessarily correlate with loss of p16/MTS1 expression. Indeed, it
has been shown that loss of p16/MTS1 expression can occur at a
much higher frequency than deletion of the / gene
(Gonzalez-Zulueta et al, 1995). The converse is also true: dele-
tions in 9p do not necessarily affect p16/MTS1 expression (Cheng
et al, 1994; Farrell et al, 1997).

Deletions encompassing exon 1α could affect other genes
upstream of /, such as the CDKI p15/MTS2 (Hannon and
Beach, 1994) or p19ARF (Quelle et al, 1995, 1997). Two recent
papers discuss the importance of p19ARF in the regulation of the
p53 pathway (Pomerantz et al, 1998; Zhang et al, 1998). p19ARF

can suppress cellular proliferation in cells bearing wt p53, but not
otherwise (Kamijo et al, 1997). This is thought to occur by virtue
of p19ARF ability to destabilize the MDM2 protein (Pomerantz et
al, 1998; Zhang et al, 1998). The MDM2 protein has also been
shown to play a role in the pRB regulated cell cycle control
(Martin et al, 1995; Xiao et al, 1995). Alterations in p19ARF protein
as a result of p16/MTS1 mutations could affect its function,
leading to pRB deregulation and development of cancer.

Interestingly, we found that all but one of the / gene
point mutations resulted in a termination codon. The remaining
mutation identified in the cell line H314 created a frameshift. This
frameshift results in several termination codons after codon 119,
thus presumably a truncated p16/MTS1 protein is produced. This
observation shows that the spectrum of p16/MTS1 mutation in
oral cancer is different to other tumour types and may be related to
British Journal of Cancer (1999) 80(1/2), 79–86
carcinogens contained in the aetiological factors for oral cancer
such as tobacco and alcohol. For example, most p16/MTS1 muta-
tions in glioblastomas (Kyritsis et al, 1996), oesophageal (Mori
et al, 1994), lung, leiomyosarcoma, chondrosarcoma, prostate and
non-small cell lung cancer cell lines analysed are mis-sense muta-
tions (Liu et al, 1995; Ruas and Peters, 1998). However,
melanomas have also been shown to frequently contain non-sense
mutations in the / gene (Liu et al, 1995). Of the OSCCs
analysed by Zhang et al (1994) only a small percentage contained
non-sense mutations in the / gene, though in other
studies no non-sense mutations were found in the OSCCs analysed
(Yoshida et al, 1995).

Western blot analysis detected pRB in 14/25 (56%) OSCCs, 6/8
(75%) premalignant samples as well as all 8 cell lines. Down-
regulation of pRB expression occurred in about half of the OSCC
primary tumours.

The function of pRB has shown to be normally regulated by
phosphorylation (Chen et al, 1989). Hyperphosphorylation of
pRB, which is controlled by cyclin D1-CDK4/6 renders pRB
inactive. Cyclin-dependent kinase inhibitors such as p16/MTS1
are responsible for inhibiting pRB phosphorylation and thus
induce pRB activity. To understand the role of pRB in the control
of cell growth, it is important to examine not only the level but
also the phosphorylation status of RB protein. We examined the
status of RB phosphorylation in the panel of OSCCs studied and
observed that in most samples both hyper- and hypophosphor-
lated forms of pRB were present. The samples which expressed
both hypo- and hyper- or only hypophosphorylated pRB were
classed as samples containing active pRB; the samples containing
only hyperphosphorylated pRB were classed as having inactive
pRB.

To understand the association between different components of
the pRB pathway, we compared the status of p16, pRB and cyclin
D1. In normal cells both p16 and cyclin D1 are expressed at low
levels throughout the cell cycle. p16 is known to slightly peak at
entry into S phase. Thus in non-malignant cells low or unde-
tectable levels of cyclin D1 and p16 is expected. The absence
or high steady state levels observed in some tumours therefore
indicates the presence of abnormal regulatory mechanisms.

The results shown above suggested an inverse relationship
(91%) between the presence of pRB and p16/MTS1 proteins
(Table 2). Such correlation has previously been reported by Parry
et al (1995) who have shown absence of pRB function to result in
the accumulation of p16. However, our data suggest that the lack
of p16/MTS1 expression is most likely due to its gene aberrations
rather than due to inadequate regulation by pRB.

Cyclin D1 overexpression was found in 9/21 (43%) OSCC and
in 3/9 (33%) premalignant samples. HN5 and HN6 have been
previously reported not to bear amplification of the  gene
(Bartkova et al, 1995). However, when compared to the positive
control cell line MCF7, comparable expression of cyclin D1 was
detected in HN5 and HN6. Thus, the expression of cyclin D1 in
these cell lines was recorded as high. Surprisingly, 100% of the
OSCC cell lines showed high levels of cyclin D1 expression.
These results suggest that cyclin D1 overexpression is very
common and possibly an early event in oral carcinogenesis. Other
studies have shown moderate overexpression of cyclin D1 in up to
40% of OSCC cell lines (Timmermann et al, 1997). Also, amplifi-
cation of the   gene has been observed in 25% of oral
dysplasias (Kyomoto et al, 1997). Overexpression of cyclin D1 in
© Cancer Research Campaign 1999
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our samples could be due to gene amplification. Although we have
not examined cyclin D1 amplification, high frequency of 
 gene amplification (between 30 and 50%) in head and neck
cancers has been previously reported (Bartkova et al, 1995).

When cyclin D1 expression was compared to pRB we found
that 6/9 (67%) malignant tumours and 5/6 (83%) premalignant
lesions had pRB expression but lacked cyclin D1. Whether such
correlation bears any significance is not known.

The cyclin-dependent kinases 4 and 6 are dependent on cyclin
D1 for their activity and regulate the activity of pRB by phos-
phorylation. Two recent reports have shown increased activity of
CDK4 and/or 6 in OSCC cell lines compared to normal
keratinocytes (Patel et al, 1997; Timmermann et al, 1997). It
would have been desirable to include such an analysis in this
study; however, these functional studies were not feasible with the
small amounts of tissue available from our primary tumours.

In this study absence of cyclin D1 expression in 6/6 premalig-
nant and 10/13 (77%) OSCC samples was generally accompanied
by no p16/MTS1 expression. This suggests that both p16/MTS1
and cyclin D1 are tightly regulated in wild-type cells and that
deregulation of one of the components of the G1 checkpoint leads
to rapid accumulation of other abnormalities.

Infection with human papillomavirus can result in the down-
regulation of pRB by virtue of its interaction with the E7 viral gene
product (Li et al, 1993). Comparison of the presence of HPV 16
(Elamin et al, 1998) and pRB protein expression revealed that of
the 15 samples which were HPV 16-positive, eight did not express
pRB, two expressed only hyperphosphorylated pRB, four
expressed only hypophosphorylated pRB and one OSCC sample
expressed both hypo- and hyperphosphorylated pRB. The lack of
functional pRB in 10/16 (63%) samples suggests that inactivation
of pRB by E7 could be a major event in OSCC development.

In conclusion, we found deregulated expression of some of the
components of the ‘pRB pathway’ to be consistent with the notion
that this pathway is important for cell cycle control. Deregulation
of pRB by aberrations in several cellular proteins such as
p16/MTS1 and cyclin D1 and/or viral proteins such as E7 of HPV
16 can lead to the development of oral cancer.
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