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Summary Two recent papers demonstrate that prolactin plays an important role in the induction and progression of mammary tumours.
Retinoids have been shown to be potent inhibitors of breast carcinogenesis. We studied expression of prolactin receptor mRNA in human
breast cancer cell lines MCF-7, SKBR-3, T47D and BT-20 treated with and without retinoids using Northern blot and a quantitative
polymerase chain reaction (PCR) method. In all cell lines, all-trans- and 9-cis-retinoic acid, as well as the retinoic acid receptor γ (RAR-γ)
selective agonists CD2325 and CD437 (1 µM), were able to down-regulate prolactin receptor. After 1 h, a significant reduction was detectable
and maximal effect was achieved after 24 h of treatment. Pretreatment with retinoic acid also reduced the prolactin-/prolactin receptor-
dependent signal transduction and activation of transcription 5 (STAT-5) activation in T47D cells. Cycloheximide failed to abrogate the retinoic
acid-induced decline in prolactin receptor mRNA levels, indicating that this effect was not dependent upon continuing protein synthesis.
Similarly, no change in the stability of prolactin receptor mRNA was observed during 12 h of retinoic acid treatment. In conclusion, our results
demonstrate that retinoids are able to inhibit the expression of prolactin receptor message, which encodes an important growth factor receptor
in breast cancer cells. This action could be responsible for the anti-tumour effects of retinoids.

Keywords: breast cancer; prolactin; prolactin receptor; retinoids; retinoic acid; STAT-5

British Journal of Cancer (1999) 79(2), 204–210
© 1999 Cancer Research Campaign
Endocrine therapy is a hallmark of breast cancer treatment. The
principle of such therapies is primarily based on antagonism of
oestradiol, long considered the only mitogen for human breast
cancers. In addition to steroids, prolactin (PRL) plays an important
role in the induction and progression of mammary tumours
(Welsch and Nagasawa, 1997; Vonderhaar, 1989; Bhatavdekar and
Patel, 1997).

Wennbo and co-workers (Wennbo et al, 1997) showed – using
transgenic mice overexpressing the bovine growth hormone (GH)
and mice overexpressing the rat PRL – that the prolactin receptor
(PRL-R) alone is sufficient for induction of mammary carcinomas
in mice, whereas activation of the GH receptor is not sufficient for
mammary tumour formation.

In vitro, primary cultures of human mammary epithelial cells
display an absolute requirement for prolactin for growth and
passage on tissue culture plastic or inside collagen gels (Malarkey
et al, 1983). Prolactin induces the phosphorylation of tyrosine 694
of STAT-5 (ignal ransduction and ctivation of ranscription),
presumably as a consequence of activation of the JAK2 tyrosine
kinase (Rui et al, 1994), and this has been demonstrated to be a
prerequisite for DNA binding and gene activation (Gouilleux et al,
1994; Goffin and Kelly, 1996 and references therein).
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Recently, it was shown that breast cancer cell lines produce and
secrete PRL and that an auto- or paracrine loop mediated by PRL
and PRL-R may be involved in the regulation of proliferation
(Ginsburg and Vonderhaar, 1995). Not only in benign but also in
malign breast tissue, mRNA for PRL-R and PRL could be found
(Clevenger et al, 1995; Shaw-Bruha et al, 1997). These recent data
may be the explanation why dopaminagonists – inhibitors of the
pituitary prolactin secretion – only showed modest effects in
breast cancer (Anderson et al, 1993). In contrast, it could be shown
that retinoic acid (RA) treatment, not only in vivo but also in vitro,
was able to interfere with the tumour-stimulating activity of PRL:
rats given -methyl--nitrosourea and subsequently treated with
the prolactin secretion-stimulating drug haloperidol responded
with a significant increase in mammary carcinoma development
when compared with control rats. RA treatment of haloperidol-
treated rats significantly (<0.001) blocked the PRL-mediated
stimulatory effect on mammary carcinoma development (Welsch
et al, 1984). In this model, retinoid treatment has no effect on PRL
serum levels, indicating that the anti-tumour effect of retinoids
must occur at the level of tumour cells stimulated by PRL.

In vitro, retinoids have been shown to inhibit the growth of
human breast cancer cells (Koga and Sutherland, 1991; Marth 
et al, 1993; Gottardis et al, 1996; Widschwendter et al, 1997).
Retinoids have been shown to protect against chemically induced
breast carcinoma in animals and to reduce the proliferation of
cultured breast cancer cells (Marth et al, 1986).

Retinoids are known to possess antiproliferative, differentiative
and immunomodulatory properties. The key molecules in retinoid
action are the binding proteins CRABP I and II (cellular retinoic
acid-binding protein), the retinoid receptors (RAR-α, RAR-β,



Modulation of prolactin receptor expression by retinoic acid 205
RAR-γ) and retinoid X receptors (RXR-α, RXR-β, RXR-γ), which
are part of the steroid/thyroid hormone receptor superfamily
(Sporn et al, 1994). A growing body of evidence from clinical
research supports the concept that retinoids are useful substances
in the prevention and treatment of cancer. The RA-provoked
growth effects were synergistically amplified by a combination
with interferon γ (IFN-γ), and this was accompanied by up-
regulation of the mRNA for nuclear receptor RAR-γ (retinoic acid
receptor-γ) (Widschwendter et al, 1995, 1996). Similar effects
were also achieved with the RAR-γ selective agonists CD2325
and CD437 (Widschwendter et al, 1997). In animals, administra-
tion of retinoids inhibits the initiation and promotion of mammary
tumours induced by carcinogens (Moon and Mehta, 1990;
Costa, 1993).

Anzano et al (1994) showed 9--RA alone or in combination
with tamoxifen is a very potent inhibitor of mammary carcino-
genesis induced by -nitroso--methylurea in Sprague–Dawley
rats. On the basis of these results, several clinical trials with
retinoids have been carried out: tamoxifen and retinyl acetate caused
an objective response rate in 39% of 33 patients with advanced
breast cancer. In a phase I/II trial, treatment with tamoxifen plus
fenretinide resulted in improvement or disease stabilization in 12
out of 15 patients (80%), with no significant adverse effects
(Cobleigh et al, 1993). Fenretinide was well tolerated in a preventive
trial for contralateral breast cancer comprising 2972 patients with
minor side-effects observed during 5 years of treatment (Formelli et
al, 1993; Costa et al, 1994). Two large adjuvant studies comparing
tamoxifen plus fenretinide with tamoxifen alone started last year.

The mechanism of anti-tumour effects of retinoids is, however,
not fully understood, and we were interested in whether retinoids
may interact with PRL-mediated effects. We, therefore, studied the
modulation of expression of PRL-R mRNA by retinoids in the
human breast cancer cell lines MCF-7, SKBR-3, T47D and BT-20
applying Northern blot and a quantitative polymerase chain
reaction (PCR) method. Because one of the most important
mediators of PRL-regulated genes is STAT-5 (Welte et al, 1994),
we were interested in whether this transcription factor is also
modulated by RA.



Reagents

9-cis-Retinoic acid and ATRA (all--retinoic acid) were kindly
provided by Professor Bollag (Hoffmann-La Roche, Basle,
Switzerland). The RAR-γ selective agonists CD2325 and CD437
were donated by Professor Reichert (CIRD Galderma, Sophia
Antipolis, France). For all experiments, 1 mM solutions were
prepared in DMSO and further diluted in complete culture
medium.

Cell culture

The MCF-7, BT-20, SKBR-3 and T47D human breast cancer cell
lines were cultured as described previously (Widschwendter et al,
1995). The cell lines used in this study were generous gifts from
Dr GC Buehring, School of Public Health, Berkley, CA, USA, and
Dr NE Hynes, F Miescher Institute, Basle, Switzerland. Briefly,
the cells were maintained in modified Eagle medium (MEM)
containing 10% fetal bovine serum (both from Eurobio, Paris,
France), 100 U ml–1 penicillin and 100 µg ml–1 streptomycin. Cells
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were maintained at 37°C in a humidified atmosphere of 5% carbon
dioxide in air. Exponentially growing cells (1×106) were plated in
25 ml medium per 100-cm2 flask. After reaching 80% confluence,
cells were treated with substances or vehicle alone as control for
indicated time and concentrations, detached with the help of
trypsin (0.05%)–EDTA (0.02%) in Dulbecco’s phosphate-buffered
saline (PBS), washed and pelleted.

Northern blot analysis

Northern blot analysis was carried out as recently described
(Widschwendter et al, 1995). Briefly, total cellular RNA was
extracted by the guanidine thiocyanate method. Ten micrograms of
total RNA mixed with ethidium bromide was run on denaturing
1% agarose–formaldehyde gels and transferred to nylon
membranes (Stratagen Flash Nylon Membranes, La Jolla, CA,
USA) by Northern blotting. The sheet thus prepared was fixed and
photographed under UV light (to demonstrate comparable RNA
levels) and hybridized with the digoxigenin-labelled 310-bp DNA
fragment which codes for the extracellular domain of the PRL-R
(described below). Detection of digoxigenin-labelled nucleic 
acids by chemiluminescence enzyme immunoassay on nylon
membranes was carried out following manufacturer’s instructions
(DIG Luminescent Detection Kit, Boehringer Mannheim
Biochemica, Vienna, Austria). Filters were exposed to autoradio-
graphic films (Hyperfilm, Amersham, CEAB, Sweden) for 5 h.

Quantitation of RNA

Total RNA was isolated as previously described (Widschwendter
et al, 1995). Quantitation of RNA was performed as described
previously (Doppler et al, 1991). Briefly, an aliquot corresponding
to 400 ng of RNA was reverse transcribed. PCRs were performed
in a volume of 25 µl. The primers used were: 5′-TGC ACC ACC
AAC TGC TTA GCA-3′ and 5′-GAA GTC AGA GGA GAC CAC
CTG-3′ for glyceraldehyde phosphate dehydrogenase (GAPDH),
yielding a 405-bp fragment spanning positions 513–918 of human
cDNA (Tso et al, 1985), and 5′-ACT TAC ATA GTT CAG CCA
GAC C-3′ and 5′-TGA ATG AAG GTC GCT GGA CTC C-3′ for
PRL-R, yielding a 310-bp fragment spanning positions 363–673
of human cDNA and recognizing the extracellular form of PRL-R
(Boutin et al, 1989). Thirty cycles were performed in a thermo-
cycler. The amplification profile involved 30 s at 94°C, 15 s at
95°C, 75 s at 55°C and 1 min at 73°C. From the 21st cycle, the
73°C step was extended by 10 s every cycle. PCR products were
run on a 2% agarose gel containing ethidium bromide.
Quantification of yield was performed by video imaging using the
Bioprofil Program (Version 4.01; Vilber Lourmat).

Results of PRL-R were then normalized against the amount of
GAPDH cDNA detected in the corresponding samples.

Statistics

Differences in the median yield of cDNA were analysed by the
Wilcoxon -test (Sachs, 1992).

PRL-R protein determination

PRL-R protein was determined by incubating membrane proteins
of MCF-7 cells with 100 000 c.p.m. iodinated human growth
hormone, in the presence or absence of a 1000-fold excess of 
British Journal of Cancer (1999) 79(2), 204–210
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unlabelled ovine PRL according to an assay described by
Bonneterre et al 1987). Specific binding was calculated as the
difference between the c.p.m. bound in the absence and the 
presence of the excess unlabelled PRL.

Whole-cell extracts

Cells were scraped off the dishes in cold PBS, pelleted and
extracted by three cycles of freezing and thawing in 2–3 volumes
of 10 mM sodium phosphate, pH 7.4, 1 mM EDTA, 1 mM dithio-
threitol, 400 mM potassium chloride, 10% glycerol supplemented
with 5 µg ml–1 aprotinin, 5 µg ml–1 leupeptin, 1 µM pepstatin, 
1 mM phenylmethylsulphonyl fluoride (PMSF), 5 µM sodium 
fluoride, and 0.5 µg ml–1 okadeic acid. Extracts were clarified at 
17 000  for 15 min. Protein concentrations were 2–7 µg µl–1.

Electrophoretic mobility shift assays

Assays were performed by a method similar to that described by
Welte et al (1994). Oligonucleotides were purified by polyacryl-
amide gel electrophoresis, radioactively labelled with [γ-32P]ATP
(>6000 Ci mmol–1) and T4 polynucleotide kinase, and purified by
phenol extraction and Sephadex G50 chromatography. After treat-
ment for 5 min at 95°C, complementary oligonucleotides were
annealed. Cellular extracts were incubated with oligonucleotide
(25 000 c.p.m., 10–35 fmol) on ice (30 min) in a 20-µl reaction
volume containing 10 mM Hepes, pH 7.6, 2 mM sodium phos-
phate, 0.25 mM EDTA, 1 mM dithiothreitol, 5 mM magnesium
chloride, 80 mM potassium chloride, 2% glycerol, 0.25 nM

unlabelled single-stranded oligonucleotide and 50 µg ml–1 poly-
(dI–dC). The single-stranded oligonucleotide was included to
compete for the binding of unspecific proteins binding to single-
stranded DNA. Two microlitres of loading buffer (25% Ficoll 400,
0.25% bromophenol blue) was added. Binding of STAT-5 was
analysed on a 4% polyacrylamide gel in 0.25 × TBE. Prerun and
electrophoresis of 3 h were each performed at room temperature at
10 V cm–1 with recirculation of electrophoresis buffer.



Effects of retinoids on expression of PRL-R mRNA

We detected PRL-R mRNA expression in all four cell lines evalu-
ated. Expression level was highest in T47D cells, lower in MCF-7
and SKBR-3 and lowest in BT-20 cells (results not shown). Major
PRL-R mRNA transcripts of 13.7, 3.4 and 2.6 kb were detected in
the T47D cell line (Figure 1A). Treatment of the breast cancer cell
lines with 1 µM of four different retinoic acid analogues (ATRA, 9-
-RA, CD2325 and CD437) for 24 h resulted in a significant
reduction of PRL-R mRNA (<0.01) (Figure 1A and B). The
activity of the four different retinoids was statistically not distin-
guishable.

Regulation of PRL-R mRNA in MCF-7 cells

Time- and dose-dependent regulation of PRL-R mRNA was
observed (Figure 2A and B). A marked drop of message was
detected even after treatment for only 1 h using 1 µM 9--RA or
after treating cells with 10–10 M 9--RA for 24 h. To examine
whether the retinoid-induced decrease in PRL-R expression was
dependent on continuing protein synthesis, cycloheximide was
British Journal of Cancer (1999) 79(2), 204–210
introduced in our experiments (Figure 2C). Cycloheximide alone
caused a slight decrease in mRNA expression to 90% of vehicle-
treated control. Treatment with 9--RA for 3 h decreased PRL-R
mRNA levels to a similar extent in the absence and presence of
cycloheximide, which demonstrated that, over this time frame,
inhibition of expression by 9--RA does not require continuing
protein synthesis. Retinoids may also potentially destabilize PRL-
R mRNA. To examine this possibility, cells were treated with the
transcription inhibitor actinomycin D in the presence and absence
of 1 µM 9--RA, and the rate of the resulting decline in PRL-R
mRNA levels was measured over a 12-h period (Figure 2D). The
rate of decline in PRL-R mRNA levels was almost identical in
vehicle- and RA-treated cells, which indicated that the decline in
PRL-R mRNA levels could not be accounted for by a RA-induced
destabilization of PRL-R mRNA.

Regulation of PRL-R protein by 9-cis-RA in MCF-7 cells

To evaluate whether retinoid-induced suppression of PRL-R
mRNA results in a diminished concentration of PRL-R protein 
on the cell surface, we performed radioligand binding assays.
Treating cells for either 24 or 48 h with 1 µM 9--RA resulted in
at least a 40% decrease of PRL-R protein (Figure 3).

Effects of pretreatment of T47D cells with 9-cis-RA on
PRL-induced STAT-5 activation

To demonstrate that suppression of PRL-R mRNA and protein is
also functionally important for PRL-dependent intracellular events,
we studied modulation of STAT-5 activation, which is known to be
triggered by the hormone-bound PRL-R. Using band-shift assays, a
15-min PRL pulse activates STAT-5. Pretreatment of T47D cells
with 9--RA for 1, 5 and 10 h suppresses PRL-mediated STAT-5
activation in a time-dependent fashion (Figure 4).



This study showed that retinoids suppress PRL-R expression. PRL
plays a major role in the induction and progression of mammary
tumours in rodents (Welsch and Nagasawa, 1997; Wennbo et al,
1997) and in primates (Ng et al, 1997). In addition, human breast
cancer cell lines regularly express PRL-R, and proliferation is
induced by PRL in bovine lactogen-depleted culture medium
(Biswas and Vonderhaar, 1987). In addition to its role as a lactogenic
hormone, PRL is also known to trigger, together with other steroidal
hormones, the proliferation of normal breast tissue, and has been
described as activating the transcription of growth-related genes
(Doppler et al, 1994). Most recently, it was reported that breast
cancer cell lines synthesize and secrete biologically active PRL
(Clevenger et al, 1995; Ginsburg and Vonderhaar, 1995). Therefore,
an auto- or paracrine loop mediated by PRL and PRL-R may be
involved in the regulation of proliferation of human breast cancer
cells (Bhatavdekar and Patel, 1997; Shaw-Bruha et al, 1997). In
organ culture experiments, this auto/paracrine effect of PRL could
be confirmed (Wennbo et al, 1997). Looking for substances inter-
fering with this autostimulating system, we found retinoids to down-
regulate PRL-R mRNA and protein in breast cancer cell lines. The
same effect has been observed for sodium butyrate (Ormandy et al,
1992) and phorbol ester (Ormandy et al, 1993), both substances
known to be antiproliferative in breast cancer cell lines. RA and
analogues are known to inhibit growth of breast cancer cells alone or
© Cancer Research Campaign 1999
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Figure 1 Effects of retinoids on the expression of PRL-R mRNA in human breast cancer cell lines. (A) T47D cells
were treated for 24 h either with the vehicle as control or with the retinoids indicated (1 µM). Northern blotting was
performed as described in the Materials and methods section. Staining of total RNA with ethidium bromide (shown at
the bottom of the blot) confirmed the integrity of RNA and showed comparable RNA loading in each lane. The data are
representative of three seperate experiments. (B) Cells were treated for 24 h either with the vehicle as control or with
the retinoids indicated (1 µM). Reverse transcription polymerase chain reaction (RT-PCR) and quantification were
performed as described in Materials and methods. Data are expressed as percentages of vehicle-treated controls.
Each bar represents the mean value of three independent experiments; error bars represent the s.e.m. of triplicate
determinations
in combination with other biological response modifiers amplifying
their antiproliferative potency (Marth et al, 1986). Recently, we and
others (Widschwendter et al, 1995; Fanjul et al, 1996) demonstrated
RAR-γ to be involved in retinoid-mediated antiproliferative effects.
Synthetic retinoid analogues CD437 and CD2325, which demon-
strated RAR-γ selectivity and a strong antiproliferative potency in
breast cancer cells (Shao et al, 1995; Widschwendter et al, 1997),
showed the same effect on PRL-R expression as did natural
substances.

In a paracrine autocrine loop, it is difficult to verify that the
retinoid-mediated down-regulation of the PRL-R is responsible
for the proliferation inhibition, but comparing PRL-R expression
levels and responsiveness to RA treatment we could find the
© Cancer Research Campaign 1999
following: in this study, we used two oestrogen receptor-positive
(T47D and MCF-7) and two oestrogen receptor-negative breast
cancer cell lines (SKBR-3 and BT20). The SKBR-3 cell line is the
only known oestrogen receptor-negative breast cancer cell line
which is RA sensitive. The SKBR-3 and MCF-7 cell lines have
similar PRL-R expression levels and response patterns to treat-
ment with RA, whereas the second oestrogen receptor-negative
cell line, BT-20, expresses the PRL-R at a very low level and is not
responsive to treatment with RA. This fact supports our hypoth-
esis that RA-mediated PRL-R down-regulation is in part respon-
sible for the retinoid-mediated proliferation inhibition.

RA treatment, not only in vitro but also in vivo, was able to
interfere with the tumour-stimulating activity of PRL: rats given
British Journal of Cancer (1999) 79(2), 204–210
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Figure 2 Regulation of PRL-R mRNA expression in MCF-7 breast cancer cell line. (A) MCF-7 cells were treated with 1 µM

9-cis-RA for indicated times. (B) Dose dependency of the 9-cis-RA action after 24 h. (C) MCF-7 cells were treated for 3 h
with vehicle, 1 µM 9-cis-RA, 20 µg ml–1, CHX or with the combination 9-cis-RA and CHX. (D) MCF-7 cells were treated with 
5 µg ml–1 actinomycin D (ActD) and vehicle (n) or 5 µg ml–1 ActD and 1 µM 9-cis-RA (ll) for various times. PRL-R mRNA was
measured as described in Materials and methods
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Figure 3 Effects of 9-cis-RA on PRL-R protein expression in MCF-7 breast
cancer cell line. MCF-7 cells were treated for 24 or 48 h with vehicle for
control or 1 µM 9-cis-RA before measurement of PRL-R protein as described
in the Materials and methods section. Results are expressed as c.p.m. mg–1
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compared with control rats. RA treatment of haloperidol-treated
rats significantly (<0.001) blocked the PRL-mediated stimula-
tory effect on mammary carcinoma development (Welsch et al,
1984). In this model, retinoid treatment has no effect on PRL
serum levels, indicating that the anti-tumour effect of retinoids
must occur at the level of tumour cells stimulated by PRL. Very
recently, a paper was published by Ng et al (1997) in which they
report the following: treatment of ageing monkeys with growth
hormone (GH) resulted in a fourfold increase in mammary glan-
dular size and epithelial proliferation index. GH activates the GH
receptor and the PRL-R. The GH receptor was not detected in
mammary epithelium, whereas the PRL-R concentrates in the
mammary epithelium. This group could not distinguish whether
GH could stimulate proliferation directly by acting through the
epithelial PRL-R, or indirectly by increasing insulin-like growth
factor I (IGF-I) which then acts through its cognate receptor in
mammary epithelium. The theory that PRL-R mediates prolifera-
tion was very recently supported by Wennbo et al (1997). They
showed – using transgenic mice overexpressing the bovine GH
and mice overexpressing the rat PRL – that the PRL-R alone is
sufficient for induction of mammary carcinomas in mice, whereas
activation of the GH receptor is not sufficient for mammary
© Cancer Research Campaign 1999
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Figure 4 Effects of 9-cis-RA pretreatment on STAT-5 induction. T47D cells
were kept on confluency for 1 day. 9-cis-RA was added to the culture
medium 1 h (lane 3), 5 h (lane 4) or 10 h (lane 5) before PRL stimulation
(5 µg ml–1, 15 min, lanes 2–5). Extracts were derived and equal amounts
were compared in electrophoretic mobility shift assays. Lane 6, STAT-5A
expressed in COS-7 cells (T. Welte and W. Doppler, unpublished data). Lane
7, supershift (ss) STAT-5A and anti-STAT-5A (antibody against the C-terminal
end, Santa Cruz Biotechnology, CA, USA). The data are representative of
two separate experiments
tumour formation. These recent data gave, at least in part, some
evidence that suppression of PRL-R by retinoids could play an
important role in the prevention or treatment of breast cancer. The
only strategy to test whether retinoic acid has an impact on the in
vivo situation would be to treat the monkeys concomitantly with
retinoic acid to measure breast size, proliferation index and PRL-R
expression.

Suppression of PRL-R mRNA by retinoids will probably appear
to be on the level of transcription because it occurs independent 
of protein de novo synthesis or modulation of mRNA stability.
Sodium butyrate and phorbol ester also inhibit PRL-R gene
expression by a transcriptional mechanism that does not require
continuing protein synthesis (Ormandy et al, 1992, 1993). The
mechanism of this transcriptional regulation is still unclear. A
recent study by Møldrup et al (1996) showed that the PRL-R
promoter contains a perfect repeat of a motif, AGGTCA, common
among the nuclear receptors; it is separated by one nucleotide.
Nuclear factors (e.g. hepatocyte nuclear factor 4) are thought to
bind as homodimers to this element, often in competition with
other nuclear receptors (RARs and RXRs). One attractive model
explaining the rapid suppression of PRL-R, even at very low doses
of RA, could be the interference between the above-mentioned
nuclear pathways. To investigate the functional importance of this
process, we studied the modulation of a PRL-dependent intracel-
lular signal transduction pathway by retinoids, namely the activa-
tion of STAT-5, a factor known to be activated by PRL (Welte et al,
1994). Pretreatment of T47D cells with 9--RA suppresses PRL-
mediated STAT-5 activation, demonstrating a functional effect of
RA-mediated down-regulation of PRL-R.

We have demonstrated that retinoids are able to down-regulate
PRL-R in breast cancer cells. The functional importance of this
process was shown by suppressing PRL-induced activation of
STAT-5 by RA pretreatment. In view of previous data demon-
strating PRL to be an important growth factor in breast cancer
cells, we hypothesize that down-regulation of PRL-R is, in part,
© Cancer Research Campaign 1999
responsible for RA-dependent proliferation inhibition in breast
cancer cell lines.
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