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Summary We and other researchers have previously found that colony-stimulating factors (CSFs), which generally include granulocyte
colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor
(M-CSF), promote invasion by lung cancer cells. In the present study, we studied the effects of these CSFs on gelatinase production,
urokinase plasminogen activator (uPA) production and their activity in human lung cancer cells. Gelatin zymographs of conditioned media
derived from human lung adenocarcinoma cell lines revealed two major bands of gelatinase activity at 68 and 92 kDa, which were
characterized as matrix metalloproteinase (MMP)-2 and MMP-9 respectively. Treatment with CSFs increased the 68- and 92-kDa activity and
converted some of a 92-kDa proenzyme to an 82-kDa enzyme that was consistent with an active form of the MMP-9. Plasminogen activator
zymographs of the conditioned media from the cancer cells showed that CSF treatment resulted in an increase in a 48–55 kDa plasminogen-
dependent gelatinolytic activity that was characterized as human uPA. The conditioned medium from the cancer cells treated with CSFs
stimulated the conversion of plasminogen to plasmin, providing a direct demonstration of the ability of enhanced uPA to increase plasmin-
dependent proteolysis. The enhanced invasive behaviour of the cancer cells stimulated by CSFs was well correlated with the increase in
MMPs and uPA activities. These data suggest that the enhanced production of extracellular matrix-degrading proteinases by the cancer cells
in response to CSF treatment may represent a biochemical mechanism which promotes the invasive behaviour of the cancer cells.
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The complicated process of metastasis requires tumour cells to
successfully traverse a number of barriers including tumour and
host vasculature, basement membranes of blood vessels and organ
parenchyma, and the interstitial stroma. These steps involve
adhesion, local proteolysis, migration and growth (Liotta et al,
1991). Several tumour and normal cell-derived cytokines such as
hepatocyte growth factor (Jeffers et al, 1996; Weimar et al, 1997),
transforming growth factor (Teti et al, 1997), and epidermal
growth factor (Zhang et al, 1997) have been shown to stimulate
tumour cell adhesion and proteolysis as well as migration (Herlyn
and Malkowicz, 1991; Ries and Petrides, 1995).

Matrix-degrading proteinases are essential to successful tumour
cell metastasis. Secretion of matrix metalloproteinases (MMPs)
and plasminogen activators (PAs) into the surrounding microenvi-
ronment is essential for facilitating tumour cell invasion and
metastasis via proteolytic degradation of the extracellular matrix
(ECM), and tumour aggressiveness has been positively correlated
with the level of secreted proteinases (Stetler-Stevenson, 1990;
Testa and Quigley, 1990; Liotta et al, 1991).

Colony-stimulating factors (CSFs), classically considered to
function in the regulation of haematopoiesis, are secreted by
haematopoietic cells and some non-haematopoietic cells (Young et
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al, 1993; Harmenberg et al, 1994; Chambers et al, 1995; Pei et al,
1996). Their receptors were also found to be expressed on non-
haematopoietic tumour cells. Granulocyte–macrophage colony-
stimulating factor (GM-CSF) and macrophage colony-stimulating
factor (M-CSF) have been reported to stimulate the metastatic
properties of lung carcinoma cell lines (Young et al, 1993;
Chambers et al, 1995). Recently, we demonstrated that granulo-
cyte colony-stimulating factor (G-CSF), another colony-stimu-
lating factor, also promoted invasion by human lung cancer cell
lines in vitro (Pei et al, 1996). However, the role of these CSFs in
regulating proteinase production and activity in human lung
cancer cells has not been well documented.

ECM degradation must involve the action of an array of
hydrolytic enzymes such as serine proteinases, metalloproteinases
and cysteine proteinases. The expression of these enzymes is regu-
lated by several agents, including tumour promoters, oncogenes,
growth factors and cytokines (Stetler-Stevenson, 1990; Testa and
Quigley, 1990; Mignatti and Rifkin, 1993). These enzymes appear
to act in concert via a cascade of proteolytic events whose end
result is the generation of a broad spectrum of proteolytic activi-
ties. The PA–plasmin system appears to play a pivotal role in this
cascade. An important feature of the PA–plasmin modulatory
system is the amplification achieved by the conversion of plas-
minogen to plasmin. The concentration of circulating plasminogen
is relatively high (~200 µg ml–1), and in humans ~40% of the plas-
minogen is located in extravascular sites (Mignatti and Rifkin,
1993). Thus, the production of small amounts of PA can result in
high local concentrations of plasmin. PAs are secreted as single-
chain proenzymes [pro-urokinase plasminogen activator or pro-
tissue plasminogen activator (pro-uPA or pro-tPA)] that are
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converted to the two-chain form by limit proteolysis. Trace
amounts of plasmin are able to activate pro-uPA (Petersen et al,
1988), thus generating a self-maintained feedback mechanism of
pro-uPA and plasminogen activation. Plasmin degrades several
ECM components and at the same time activates the procol-
lagenases and prostromelysins. Thus, production of even small
amounts of PA results in the generation of high local concentration
of broad-spectrum enzymes.

In the present study, we showed that CSFs promoted invasion by
human lung cancer cells. We characterized the PA and MMP activ-
ities of the cancer cells and found that treatment with CSFs
enhanced production of specific PA and MMPs by these cells. The
enhanced proteolytic capability of the tumour cells suggests a
biochemical mechanism by which increased invasion stimulated
by CSFs may be mediated.

MATERIALS AND METHODS

Cells and chemicals

Human lung adenocarcinoma cell lines, PC-9 and A549, were
maintained in RPMI-1640 medium containing 5% fetal bovine
serum (FBS, CC Laboratories, Cleveland, OH, USA). A human
lung fibroblast cell line, MRC-5, was grown in basal medium
Eagle (BME) medium supplemented with 10% FBS. Before and
during the experiments, cell viability was determined by trypan
blue exclusion. Only cell suspensions exhibiting > 95% viability
were used. Nartograstim, human recombinant granulocyte colony-
stimulating factor, was obtained from Kyowa Hakko Kogyo
(Tokyo, Japan). The other agents kindly provided were; rhGM-
CSF (Kirin Brewery, Tokyo, Japan), M-CSF (Morinaga Milk
Industry, Tokyo, Japan). Gelatin was purchased from Sigma (MO,
USA). Plasminogen was from Gelco Diagnostics (Shreveport, LA,
USA). Monoclonal antibodies to MMPs, corresponding to the
amino acid sequences of the carboxy-terminal domains (residues
524–539, VTPRDKPMGPLLVATF for MMP-2; and residues
624–644, RSAEVDRMFPGVPLDTHD for MMP-9), were from
Fuji Chemical Industries (Fukuyama, Japan). Polyclonal anti-
bodies directed against uPA and tPA from TechnoClone (Vienna,
Austria). Human uPA standard from JCR Pharmaceuticals (Kobe,
Japan). Hybond ECL nitrocellulose membrane and ECL photo-
detection kit were purchased from Amersham Life Science
(Buckinghamshire, UK). NuSerum (10%) were from Becton
Dickinson (Bedford, MA, USA). The Biocoat Matrigel Invasion
Chamber (Becton Dickinson) consists of Falcon cell culture inserts
containing 8-µm pore size polyethylene terephthalate (PET)
membrane coated with Matrigel basement membrane matrix. Diff
Quick staining solution was from International Reagents
(Kobe, Japan). Every reagent was resuspended as indicated by its
manufacturer.

Conditioned medium

In every experiment, cells were initially plated at a density of
2 × 106 per 5 ml per flask in RPMI-1640 supplemented with 5%
FBS for 24 h. After this incubation, the cells were washed once
with serum-free medium. The medium was then replaced with
serum-free RPMI-1640 and the cells were incubated for 24 h at
37°C. If an experiment involved the addition of colony-stimulating
factors, the latter were added after the wash with serum-free
medium. Culture medium was collected and centrifuged at 300 g
© Cancer Research Campaign 1999
for 10 min to remove cell debris. Conditioned medium was
concentrated ten fold using an Amicon ultrafiltration apparatus
(MA, USA).

Zymography

Zymographic analysis was performed as previously reported
(Murphy and Crabbe, 1995). Briefly, proteinase activity was assayed
by electrophoresing an aliquot of conditioned medium on 9% sodium
dodecyl sulphate (SDS)-polyacrylamide gel co-polymerized with
0.1% gelatin (gelatin zymography) or 0.1% gelatin and 13 µg ml–1

plasminogen (PA zymography). After electrophoresis at 4°C, gels
were washed in 2.5% Triton X-100 for 30 min to remove SDS.
Gelatin gels were then incubated for 16 h at 37°C in 50 mM Tris-HCI,
pH 8.0, 0.2 M sodium chloride, 10 mM calcium chloride and Triton
X-100 (activation buffer). Gels containing plasminogen were incu-
bated in 0.1 M glycine–sodium hydroxide, pH 8.3, for 16 h at 37°C.
Gels were stained with 1% Coomassie brilliant blue R-250 and
proteinase activity in conditioned medium was visualized as a clear
zone against a blue background.

Organomercurial activation of prometalloproteinases was
achieved by incubating conditioned medium with 1 mM APMA for
1 h at 37°C before adding reducing agent-free sample buffer, and
then processed for zymography. To study inhibition of metallopro-
teinase activity, samples were electrophoresed through gelatin-
containing gels, washed twice for 30 min in 2.5% Triton X-100,
rinsed with 10 mM Tris-HCI, pH 8.0, and incubated in activation
buffer in the presence or absence of 1 mM 1,10-phenanthroline or
10 mM EDTA for 16 h at 37°C. The gels were then stained with
Coomassie brilliant blue R-250 as described above.

Enzyme activities in the gel slabs were quantified using image
analysis (image analysis program NIH Image 1.52 Macintosh),
which quantified both the surface area and the intensity of
lysis bands. The amount of proteinase activity is expressed as arbi-
trary densitometric units relative to the control cells assigned a
value of 1.0.

Western Blot

Aliquots of conditioned medium were applied to SDS-PAGE
under reducing conditions. The separated proteins were transferred
to a nitrocellulose membrane. The membrane was blocked
overnight in 5% skimmed milk in Tris-buffered saline/Tween 20
solution. After multiple washes in Tris-buffered saline/Tween 20
solution, the membranes were incubated with the corresponding
primary antibodies (1: 1000 dilution for 2 h). Multiple washes in
Tris-buffered saline/Tween 20 solution were performed before
application of the secondary anti-mouse antibody (1: 1000 dilution
for 1 h). After further washes in Tris-buffered saline/Tween 20
solution, MMP-2 and MMP-9 protein were detected using the
ECL Western blotting analysis system.

Invasion assay

Invasiveness was measured by use of the Biocoat Invasion
Chamber (Pei et al, 1996). Before seeding, cells were starved in
serum-free medium for 24 h and subsequently incubated with
RPMI-1640 plus 10% NuSerum in the presence of various concen-
trations of CSFs for another 24 h. NuSerum replaced FBS in the
invasion assay because it contains standardized growth factors and
British Journal of Cancer (1999) 79(1), 40–46
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Figure 1 (A) Effect of CSFs on gelatinase activity in PC-9 cells. After
incubation with G-CSF (1 µg ml–1), GM-CSF (10 ng ml–1) or M-CSF
(1000 IU ml–1), conditioned media were collected and analysed by gelatin
zymography and compared with untreated control (lane 1). (B) Quantitative
analysis of gelatinase activity in the conditioned medium of PC-9 cells. The
gelatinolytic bands of 92 kDa, 82 kDa and 68 kDa were scanned in three
positions by densitometry, and the peak areas were averaged to give the
values presented. The data are shown as mean values ± s.d. of three
different experiments. Units of peak area are arbitrary. (C) Confirmation of
MMP-2 and MMP-9 secreted by PC-9 cells. The conditioned media were
incubated (37°C) without (lane 1) or with 1 mM APMA for 1 h (lane 2). The
samples were then analysed by gelatin zymography. Zymogram of PC-9 cells
was incubated in the presence of 1, 10-phenanthroline (1 mM) (lane 3) or
EDTA (10 mM) (lane 4) for 16 h at 37°C. The conditioned medium was
analysed by Western blotting using monoclonal antibodies to MMP-9 (lane 5)
and MMP-2 (lane 6) respectively
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Figure 2 Effect of CSFs on gelatinase activity in A549 and MRC-5 cells.
After incubation with G-CSF (1 µg ml–1), GM-CSF (10 ng ml–1) or M-CSF
(1000 IU ml–1), conditioned media derived from A549 cells or MRC-5 cells
were collected and analysed by gelatin zymography and compared with
untreated control
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less protease inhibitors. Cells were removed from the cell culture
flask and suspended in NuSerum. Two millilitres of cell suspen-
sion (1 × 105 cells ml–1) was placed in the upper well. Lower wells
were also filled with RPMI-1640 supplemented with 10%
NuSerum and the plates were incubated for 24 h. The cells that
invaded the Matrigel-coated filters and floated in the medium of
British Journal of Cancer (1999) 79(1), 40–46
the lower well were collected. These samples were stored in a
culture tube on ice and the lower well was filled with 2 mM EDTA.
After 10 min incubation at room temperature, cells which had
passed through the filter and adhered to the bottom surface were
collected. After the cells were trapped with a Cell Culture Insert
(3 µm), they were stained with Diff Quick and counted. The inva-
siveness of the cells was evaluated as per cent invasion. It was
derived from the following formula:

total no. of invading cells (lower well sample)
total no. of seeded cells (upper well sample)

× 100

Statistical analysis

The data were analysed for significance using Student’s t-test.

RESULTS

Effect of CSFs on MMPs secretion and activity

To study the effects of CSF on MMP-2 and MMP-9 secretion,
conditioned media of the tumour cells cultured in the presence or
absence of different CSFs for 24 h were subjected to zymography
(Figure 1A). Two bands with molecular weights of 92 000 and
68 000 were common to PC-9 cells treated with or without CSFs.
The enzyme activities of Mr 68 000 and Mr 92 000 were significantly
enhanced in the presence of CSFs. The levels of the 68-kDa and the
92-kDa gelatinase activity in the conditioned media were quanti-
tated by densitometric analysis. Figure 1B shows a 3.5-fold increase
in 68-kDa gelatinase after treatment with G-CSF, and a 9.3- and
8.2-fold increase after treatment with GM-CSF and M-CSF respec-
tively. To a much lesser degree, a 1.5-, 2.7- and 2.1-fold increase in
92-kDa gelatinase occurred, in response to G-CSF, GM-CSF and
M-CSF respectively. Further, in the presence of CSFs, an additional
band at Mr 82 000 was also found. This was consistent with the band
caused by APMA treatment (Figure 1C). Quantitative analysis of
the 82-kDa gelatinase revealed a 1.4-, 4.4- and 3.3-fold increase in
response to G-CSF, GM-CSF and M-CSF. Doses of CSFs we chose
were based on previous studies (Young et al, 1993; Harmenberg et
al, 1994; Chambers et al, 1995; Pei et al, 1996) and the data derived
from the invasion assay in the present report.

When the effects of various proteinase inhibitors on these
activities were examined, 1 mM 1, 10-phenanthroline and 10 mM
© Cancer Research Campaign 1999
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Figure 3 (A) Effect of CSFs on uPA activity in PC-9 cells. Media samples
from the same experiment as Figure 1A were analysed by plasminogen-
activator zymography as described in Materials and methods. (B)
Quantitative analysis of uPA activity in PC-9 cells. The plasminogen-
dependent gelatinolytic bands at 48–55 kDa were scanned in three positions
by densitometry, and the peak areas were averaged to give the values
presented. The data are shown as mean values ± s.d. of three different
experiments. Units of peak area are arbitrary. (C) Confirmation of uPA in the
conditioned medium of PC-9 cells. The conditioned medium was incubated
without (lane 1) or with polyclonal antibodies to uPA (30 µg ml–1, lane 2; 385
µg ml–1, lane 3) and tPA (30 µg ml–1, lane 4; 385 µg ml–1, lane 5) for 1 h at
37°C, and then analysed by plasminogen-activator zymography. Standard
human uPA (0.1 unit) was shown in lane 6

Figure 4 Effect of CSFs on uPA activity in A549 and MRC-5 cells. Media
samples from the same experiment as Figure 2 were analysed by
plasminogen-activator zymography as described in Materials and methods
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EDTA, but not inhibitors for serine, cysteine and aspartic
proteinases, inhibited completely the activities of Mr 92 000,
82 000 and 68 000 bands, showing that all gelatinolytic enzymes
were metalloproteinases (Figure 1C, lanes 3 and 4).

The electrophoretic mobilities of the Mr 92 000 and Mr 68 000
enzymes on the zymogram were identical to those of MMP-9 and
MMP-2 respectively (Murphy and Crabbe, 1995). Western blot
analysis of the conditioned medium was performed using anti-
MMP-9 and MMP-2 monoclonal antibodies. Immunoblot labelled
with anti-MMP-2 antibody is shown in lane 6 of Figure 1C. The
medium contained an immunoreactivity band at 68 kDa corre-
sponding in position to the major gelatinolytic band demonstrated
by zymography. Immunoblot labelled with anti-MMP-9 antibody
(lane 5) showed two bands at 92 kDa and 68 kDa, the former of
which may represent MMP-9 whereas the latter is co-migrated
with MMP-2 and may be the result of crossreaction of the anti-
MMP-9 with the more highly expressed MMP-2.
© Cancer Research Campaign 1999
To further confirm the stimulatory effect of CSFs on gelatinase
secretion, similar experiments were performed by using two other
cell lines, one was A549, a human lung adenocarcinoma cell line,
and the other was MRC-5, a human lung fibroblast cell line. The
A549 cells showed a similar response of MMP-2 secretion with
CSFs stimulation (Figure 2). Densitometric analysis revealed a
two-, 1.7- and 4.9-fold increase in the 68-kDa gelatinase in
response to G-CSF, GM-CSF and M-CSF respectively. Although
the 92-kDa gelatinase activity secreted by the A549 cells was
weak, the stimulatory effects of CSFs on MMP-9 can still be iden-
tified (Figure 2). Significant stimulatory effect of CSFs on
MMP-2 secretion was also found in the MRC-5 cells.

Effect of CSFs on uPA secretion and activity

Plasminogen-activator zymography was used to detect the effect
of CSFs on plasminogen activator (PA) secretion and activity.
Figure 3A showed that 24 h of incubation of PC-9 cells with
G-CSF, M-CSF or GM-CSF in serum-free medium resulted in an
increase of a 48–55 kDa plasminogen-dependent gelatinolytic
activity that co-migrated with the uncleaved two chain form of
human uPA. Densitometric analysis showed that 48–55-kDa PA
activities were enhanced 1.4-, 1.7- and 1.6-fold in response to G-,
GM- and M-CSF (Figure 3B). A parallel increase of plasminogen-
dependent gelatinolytic bands at the sizes of 92 kDa and 78 kDa
was also observed after CSFs treatment of PC-9 cells and may
represent two types of uPA/PAI complex (Niedbala and Stein,
1991; Niedbala and Picarella, 1991). In addition, CSFs treatment
also induced a faint band at a molecular weight of 33 kDa, which
corresponds to a low-molecular-weight chain of the uPA.
Confirmation of uPA activity was shown in Figure 3C. Polyclonal
antibody (30 µg ml–1) to uPA inhibited the PA activity by more
than 80%, further, 385 µg ml–1 anti-uPA antibody completely
inhibited the PA activity of PC-9 cells. However, polyclonal anti-
body to tPA had no effect on the PA activity (densitometric data
not shown). The gelatinolytic activity observed represented true
PA activity because, like the uPA standard and all other lytic bands
co-migrating with it, these bands failed to show gelatinolytic
activity in replicate gels polymerized in the absence of
plasminogen.

The A549 cells showed similar response of 48–55 kDa PA
activities with CSFs stimulation. Densitometric analysis revealed
British Journal of Cancer (1999) 79(1), 40–46
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Figure 5 (A) Activation of plasminogen by the conditioned medium of PC-9
cells. Media samples from the same experiment as Figure 3A incubated for
4 h with plasminogen (50 µg ml–1) (lane 4–7) or without plasminogen (lane 2)
were analysed by gelatin zymography. As controls, plasminogen was
incubated in culture wells with no conditioned medium (lane 1) or incubated
with human uPA (1 unit) to generate plasmin (lane 3). (B) Quantitative
analysis of plasmin activity. The 70–90 kDa gelatinolytic bands from lanes
4–7 of Figure 5A were scanned in three positions by densitometry, and the
peak areas were averaged to give the values presented. The data are shown
as mean values ± s.d. of three different experiments

Figure 6 Effect of CSFs on invasion by PC-9 cells. The cells were starved
for 24 h, incubated with or without CSFs for 24 h and then seeded into a
matrigel-precoated invasion chamber. After 24 h, invading cells were
counted. The number of invading cells is expressed as the percentage of
cells pretreated with the medium only (control). Values represent the mean ±
s.e. (n = 12). *P < 0.05 compared with controls
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that a 1.3-, 1.4- and 1.6-fold increase in 48–55 kDa PA activity in
response to G-CSF, GM-CSF and M-CSF respectively. Treatment
with CSFs, especially M-CSF, also induced significant increase in
33 kDa and 92 kDa PA activities by A549 cells (Figure 4). Similar
response of uPA activity with CSFs stimulation was also found in
the MRC-5 cells.

Direct plasminogen activation by the conditioned
medium of PC-9 cells

The ability of PC-9 cells pretreated with CSFs to stimulate the
activation of plasminogen to plasmin was determined by gelatin
zymography (Figure 5A). A prominent band of lysis corre-
sponding to plasmin (approximately 70–90 kDa) was present in
the conditioned medium incubated for 4 h with plasminogen. It co-
migrated with the plasmin (lane 3) prepared by incubating human
plasminogen with human uPA (10:1) at 37°C for 1 h. Other minor
additional bands with molecular weights of 38 000–45 000 may be
due to plasmin fragments (Koshikawa et al, 1992; Roche et al,
British Journal of Cancer (1999) 79(1), 40–46
1983). CSFs treatment stimulated significantly the conversion of
plasminogen to plasmin. This was only faintly visible in the condi-
tioned medium from PC-9 cells incubated without plasminogen
(lane 2) and was absent from the control (lane 1), in which plas-
minogen was incubated in tissue culture wells containing neither
the conditioned medium nor standard uPA. Densitometric analysis
revealed that plasmin activity was increased 3.1-, 3.3- and 3.2-fold
in response to G-, GM- and M-CSF treatment (Figure 5B). The
conditioned medium catalysed the conversion of plasminogen to
plasmin in the absence of exogenous PAs, indicating that PC-9
cells can amplify extracellular proteolytic capability by zymogen
activation.

Effect of CSFs on invasion by the cancer cells

An estimate of the invasive property of a cell type can be obtained
by measuring the ability of the cells to migrate through matrigel.
We measured the ability of PC-9 cells to migrate through a film of
matrigel and the effects of CSFs on the migration rate. As shown
in Figure 6, G-CSF, GM-CSF and M-CSF promoted invasion in a
dose-dependent manner. At concentrations of 1000 ng ml–1, 10 ng
ml–1 and 1000 IU ml–1, G-CSF, GM-CSF and M-CSF stimulated
the invasion 2.7-, 7.0- and 3.2-fold respectively. Similarly, G-CSF
(1000 ng ml–1), GM-CSF (10 ng ml–1) and M-CSF (1000 IU ml–1)
increased the invasiveness of A549 cells 2.1-, 1.6- and 3.8-fold
respectively. The invasivenesses of the PC-9 and A549 cells are
0.054% and 0.064% in the absence of CSFs. They were demon-
strated to be low invasive cell lines (Pei et al, 1996).

DISCUSSION

G-CSF, GM-CSF and M-CSF are currently being used in clinics to
alleviate chemotherapy-induced bone marrow toxicity (Bukowski
et al, 1994; Vose and Armitage, 1995). Although we and other
researchers have demonstrated that CSFs may promote invasion by
human tumour cells, the mechanisms of this effect remains
unknown (Young et al, 1993; Chambers et al, 1995; Pei et al, 1996).

Previous studies have established a correlation between the
invasive activity of tumour cells and the production of proteinases
© Cancer Research Campaign 1999
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capable of degrading extracellular matrix components (Stetler-
Stevenson, 1990; Testa and Quigley, 1990; Mignatti and Rifkin,
1993; Stearns and Wang, 1994). In the present study, we reported
that G-CSF, GM-CSF or M-CSF promoted invasion by human
lung cancer cells. They stimulated the secretion and activity of
serine proteinase, uPA, and metalloproteinases, MMP-9 and
MMP-2, by the cancer cells as well as human lung fibroblast cells.
The conditioned medium from the cancer cells treated with CSFs
stimulated significantly activation of plasminogen to plasmin.

Gelatinase A (72-kDa or 68-kDa type IV collagenase/MMP-2)
and gelatinase B (92 kDa or 90 kDa type IV collagenase/MMP-9),
two distinct matrix metalloproteinases (MMPs) which both
degrade basement membrane type IV collagen, participate in base-
ment breakdown by migrating tumour cells. Many human
tumours, including lung cancer, have been found to express the
MMP-9 and MMP-2. Correlation between the secretion of these
enzymes and the metastatic potential in vivo or invasiveness in
vitro has been reported for many tumours. Synthesis and secretion
of MMPs and their inhibitors are regulated by cytokines and some
less well-defined factors (Stetler-Stevenson, 1990; Liotta et al,
1991; Mignatti and Rifkin, 1993). Our data showed that the
MMP-9 and MMP-2 enzyme activities produced by either lung
cancer cells or lung fibroblast cells were enhanced significantly in
the presence of CSFs. Similar results were reported by Shimizu et
al, (1996), in which they found secretion of gelatinases A and B by
a murine colon carcinoma cell line was augmented by GM-CSF,
however, no detail was reported.

Like other members of the MMP family, MMP-2 and MMP-9
are secreted as latent proenzymes and must undergo proteolytic
cleavage of an amino-terminal domain, with subsequent loss of
molecular weight, in order to be catalytically active (Mignatti and
Rifkin, 1993; Murphy and Crabbe, 1995). Enzyme activation is an
important control step in proteolysis. In the present report, when
the conditioned medium was treated with 1 mM APMA for 1 h, it
activated Mr 92 000 pro-MMP-9 to the Mr 82 000 active form. Pro-
MMP-2 was also activated to the Mr 62 000 forms. Of particular
interest, CSFs treatment also activated part of the pro-MMP-9
produced by PC-9 cells to the Mr 82 000 form – this was consistent
with the active form of MMP-9 (Shapiro et al, 1995).

uPA, a major type of the plasminogen activator, is a serine
protease which cleaves plasminogen to yield plasmin, an extra-
cellular protease of broad specificity (Testa and Quigley, 1990;
Mignatti and Rifkin, 1993). It is synthesized and secreted by
tumour cells and normal cells and interacts with a specific cell-
surface receptor (uPAR), thereby leading to focalized proteolysis.
The activity of uPA is controlled by the plasminogen activator
inhibitor type 1 (PAI-1) which triggers internalization of uPAR-
bound uPA (Cubellis et al, 1990). The expression of PA and its
inhibitors can be modulated by a number of biological agents,
including tumour promoters, growth factors and cytokines. Its
expression in human tumour cells was reported to correlate with
their invasiveness in vitro and metastatic potential in vivo (Testa
and Quigley, 1990; Mignatti and Rifkin, 1993).

In addition to the stimulation of the Mr 48 000–55 000 form of
uPA, CSFs also enhanced the secretion of Mr 92 000, 76 000 and
33 000 plasminogen-dependent gelatinolytic bands in the cancer
cells, whereas the Mr 92 000 form may represent a uPA/PAI-1
complex with residual plasminogen activating activity based on
immunoprecipitation and Western blot analysis (Niedbala and
Picarella, 1991; Koshikawa et al, 1992). The Mr 76 000 species
may represent an immunoreactive proteolytic breakdown product
© Cancer Research Campaign 1999
of the Mr 92 000 species because it has been shown that both the
Mr 55 000 and 33 000 forms of uPA can form SDS stable
complexes with the Mr 46 000 form of PAI-1 (Hekman and
Loskutoff, 1985). The Mr 33 000 lytic band represents an enzymat-
ically active proteolytic fragment of the Mr 55 000 form of the
uPA, based on its co-migration and immunological crossreactivity
with the uPA standard (Testa and Quigley, 1990; Mignatti and
Rifkin, 1993). Although we did not check the CSFs-mediated
stimulation of uPA at mRNA level in this study, previous reports
demonstrated GM-CSF and M-CSF augmented uPA transcripts
and activity in macrophage and carcinoma cell lines, including
human lung carcinoma cell lines (Hart et al, 1990; Hamilton et al,
1991; Chambers et al, 1995; Stacey et al, 1995). We also found
G-CSF increased uPA transcripts in lung cancer cells (Pei et al,
1998).

Filderman et al (1992) previously reported no specific effect on
invasiveness in A549 cells by GM-CSF. In the present study, we
found GM-CSF also stimulated the invasion and secretion of uPA
and MMP-9 by A549 cells, although the response was not as great
as the PC-9 cells. These inconsistencies may result from the
different invasion system used. Nevertheless, the present study
reported that M-CSF induced more protease activity and more
invasion than the other two factors did by A549 cells. This was in
line with their results on the invasion by the A549 cells treated
with M-CSF. Furthermore, we checked the effect of GM-CSF on
the invasion by other lung cancer cell lines. GM-CSF was found to
promote the invasion by human lung squamous cell carcinoma cell
lines, LK-2 and LC-1, in vitro (Tsuruta et al, 1998). It was also
reported in other cancer cell lines that GM-CSF stimulated the
protease secretion and metastatic potential as well (Young et al,
1993; Shimizu et al, 1996).

The expression of uPA and MMPs is mainly modulated at the
transcriptional level by oncogenes, tumour promoters and
cytokines (Michel and Quertermous, 1989; Mignatti and Rifkin,
1993; Ries and Petrides, 1995; Stacey et al, 1995). Because of the
discrepant structures of these enzymes and their inhibitors,
especially striking differences of their promoters, regulation of
these proteins is quite discordant. It is possible that CSFs modulate
their expression to different extents. Nevertheless, a similar trend
in the stimulation of uPA, MMPs and invasion (GM-CSF>
M-CSF>G-CSF) was found in the PC-9 cells. Because the
PA/plasmin system plays a central role in ECM degradation, even
the relatively small amount of uPA stimulated by CSFs may exert
a significant effect on invasion in vivo.

Concerning the stimulatory effect of CSFs on uPA and MMPs
secretion by lung fibroblast cell line MRC-5, our results are
consistent with the previous reports in which uPA expression was
enhanced by interleukin 1, another one of the haematopoietic
growth factors (Michel and Quertermous, 1989). This may suggest
a role of these enzymes and this cell type in the response to
inflammation.

Because CSFs stimulated the production of uPA by the cancer
cells, the ability of the conditioned medium to activate plas-
minogen in the absence of exogenous PAs was determined. The
conditioned medium from PC-9 cells treated with CSFs stimulated
the conversion of plasminogen to plasmin, providing a direct
demonstration of the ability of enhanced PC-9 uPA to increase
plasmin-dependent proteolysis.

In summary, we showed that the capacity of the lung cancer
cells treated with CSFs to invade through reconstituted basement
membrane (Matrigel) was increased significantly. The enhanced
British Journal of Cancer (1999) 79(1), 40–46
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invasive behaviour of the cancer cells stimulated by CSFs was
well correlated with the increase in MMPs and uPA activities.
Tumour cell-associated uPA efficiently activated plasminogen in
solution, resulting in the formation of soluble plasmin. These data
suggest that the enhanced production of extracellular matrix-
degrading proteinases by the cancer cells in response to CSFs
treatment may represent a biochemical mechanism which
promotes the invasive behaviour of the cancer cells.
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