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BACKGROUND: Brain tumours present unique challenges to conventional therapies and pose major health problems around the world.
Brain tumour stem cells (BTSCs) represent a small fraction of tumour cells that maintain growth, drug resistance and recurrence
properties. Constitutive androstane receptor (CAR) is a nuclear receptor transcription factor that regulates drug metabolism and
homoeostasis. In this study, we examined the effect of CAR agonist, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehydeO-
(3,4-dichlorobenzyl)oxime (CITCO) on BTSCs.
METHODS: The expression of CAR in BTSCs was detected by quantitative RT–PCR and western blot. The antiproliferative effect of
CITCO on BTSCs was determined by WST-1 and 3H thymidine uptake assays. The effect of CITCO on CD133 expression, cell cycle
progression and apoptosis in BTSCs was analysed by immunostaining and flow cytometry. The in vivo effect of CITCO was studied
using subcutaneous (s.c.) BTSC xenograft in nude mice.
RESULTS: We show for the first time that BTSCs express altered levels of nuclear receptors compared with glioma cells. The
expression of CAR mRNA and protein was low in BTSCs and that increased following treatment with CITCO in culture. CITCO
induced a dose-dependent decrease in growth and expansion of CD133þ BTSCs as gliospheres in culture. Cell cycle arrest and
apoptosis in BTSCs were induced by CITCO, but not in normal astrocytes. Growth of s.c BTSC xenograft in nude mice was also
inhibited by CITCO.
CONCLUSION: These findings indicate that CITCO inhibits the growth and expansion of BTSCs, suggesting the use of CAR agonists for
the treatment of brain tumour.
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Brain tumours are among the most devastating cancers that
present unique challenges to therapy and pose major health
problems around the world. Among many different types of
tumours, glioblastoma is the most frequent primary malignant
brain tumour in adults. Standard therapy includes surgical
resection to the extent that is safely feasible, followed by radiation
and chemotherapy, which have significant side effects and limited
efficacy (Deorah et al, 2006), (Peacock and Lesser, 2006). Despite
recent advances in surgery, radiation and chemotherapy, median
survival is less than 1 year and a cure for brain tumour remains
elusive. Multidrug resistance and fast recurrence are some of the
challenges in combating brain tumours. Cancer stem cells (CSCs)
are a small population of cells in cancer tissues with asymmetric
division, self-renewal and tumour initiation capabilities. In acute
myeloid leukaemia, CSCs were first identified (Bonnet and Dick,
1997) and subsequently in breast (Al-Hajj et al, 2003), prostate
(Patrawala et al, 2006), liver (Yang et al, 2008), colon (Dalerba
et al, 2007; O’Brien et al, 2007), pancreas (Li et al, 2007) and skin
cancers (Schatton et al, 2008). Brain tumour stem cells (BTSCs)
have also been isolated from gliomas that are positive for CD133

and posses tumour initiation potential in NOD/SCID mice (Singh
et al, 2004). The BTSCs are resistant to standard therapies and are
considered responsible for the recurrence of brain tumours after
radiation and chemotherapy in patients (Singh et al, 2004; Bao
et al, 2006). The failure to cure brain tumour has been attributed to
the fact that typical therapies target rapidly proliferating tumour
cells, which respond transiently, while sparing the highly
tumourigenic BTSCs (Bao et al, 2006; Stupp and Hegi, 2007).
Nuclear hormone receptors are a family of transcriptional

factors that regulate cell growth, differentiation and homoeostasis.
Genomic studies have cloned 48 and 50 nuclear receptors in
human and rodents, respectively, and many of them have
therapeutic values in human diseases (Blumberg and Evans,
1998). The effect of nuclear receptor agonists on brain tumours
has been shown recently (Naveilhan et al, 1994; Grommes et al,
2006; Papi et al, 2009), but their use in targeting BTSCs is not
known. Constitutive androstane receptor (CAR, NR1I3) is an
orphan nuclear receptor that contains a DNA-binding domain but
uniquely lacking an activation domain (Baes et al, 1994). The CAR
is retained in the cytoplasm by forming a complex with
phosphatase 2A, HSP90 and cytosolic CAR retention protein
(Kobayashi et al, 2003). Phenobarbital, 5b-pregnane-3,20-dione,
and 5-androstan-3-ol are known endogenous CAR ligands
(Moore et al, 2000). The hepatomitogen 1,4-Bis[2-(3,5-dichloro-
pyridyloxy)]benzene (TCPOBOP) is a synthetic agonist for murine

Received 11 August 2010; revised 29 November 2010; accepted 30
November 2010; published online 11 January 2011

*Correspondence: Dr JJ Bright; E-mail: jbright1@clarian.org

British Journal of Cancer (2011) 104, 448 – 459

& 2011 Cancer Research UK All rights reserved 0007 – 0920/11

www.bjcancer.com

T
ra
n
sla

tio
n
a
l
T
h
e
ra
p
e
u
tic

s

http://dx.doi.org/10.1038/sj.bjc.6606064
http://www.bjcancer.com
mailto:jbright1@clarian.org
http://www.bjcancer.com


CAR (Tzameli et al, 2000) and 6-(4-chlorophenyl)imidazo[2,1-b]
[1,3]thiazole-5-carbaldehydeO-(3,4-dichlorobenzyl)oxime (CITCO)
is an imidazothiazole derivative that functions as a selective
agonist for human CAR (Maglich et al, 2003). Upon activation with
specific agonist, CAR translocates into the nucleus and binds to the
response elements as monomers or CAR/RXR heterodimers (Baes
et al, 1994). The CAR functions as a xenobiotic receptor that
regulates detoxification and clearance of toxic substances from the
liver (Qatanani and Moore, 2005); however, its role in cancer is
not known.
In this study, we show that CAR agonist CITCO inhibits growth

and expansion of BTSCs in culture and xenograft model. Our
findings highlight that BTSCs can be targeted through CAR for the
treatment of brain tumour patients.

MATERIALS AND METHODS

Tissues, cells and reagents

The T98G and U87MG human glioma cells were obtained from
American Type Culture Collection (ATCC, Manassas, VA, USA).
The DB29 and DB33 human glioma cells were established in the
laboratory by culturing brain tumour samples obtained from the
tissue repository at Methodist Research Institute (Indianapolis, IN,
USA) with an IRB approved protocol. The glioma cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with
10% FBS, 1mM sodium pyruvate, 100Uml�1 penicillin G,
100mgml�1 streptomycin, 2mM glutamine, 1mM MEM non-
essential amino acids and 50 mM 2b-mercaptoethanol in 5% CO2

incubator at 371C. The glioma cells were dissociated using 0.25%
trypsin with 0.05mM EDTA solution and subcultured once in 3–5
days. Primary human astrocytes (HAs) were obtained from
ScienCell (Carlsbad, CA, USA) and cultured in astrocyte medium.
The human CAR agonist CITCO was obtained from BioMol
(Plymouth Meeting, PA, USA). The CITCO is an imidazothiazole
derivative (MW 436.7) with an EC50 of 49 nm and 450-fold
selectivity to CAR over pregnane X receptor (PXR), and no activity
on other nuclear receptors.

Gliosphere culture

To generate gliospheres, we have adopted a culture condition as
standardised in our laboratory (Chearwae and Bright, 2008). Briefly,
the glioma cells cultured as monolayer in DMEM were dissociated
using trypsin–EDTA and cultured in neurobasal medium (NBM)
supplemented with B27 (Invitrogen, Madison, WI, USA) in the
presence of 10 ngml�1 EGF and bFGF. The cells were cultured in
12-well plates (5� 104 per ml per well) with different doses of CITCO
in 5% CO2 incubator at 371C. The gliospheres generated in primary
cultures were photographed after 5–10 days using BX40 Olympus
microscope (Olympus America Inc., Center Valley, PA, USA).

Isolation of BTSCs and CD133þ BTSCs

To isolate BTSCs, the gliospheres were harvested after 5–7 days and
dissociated by incubating (10� 106ml�1) in Accutase (Sigma, St Louis,
MO, USA) at 371C for 30min. The cells were washed and resuspended
in fresh NBM, and used as BTSCs for the experiments. To isolate
CD133þ BTSCs, the dissociated gliosphere cells (BTSCs) were resus-
pended (10� 106) in 200 ml of PBE buffer (PBS, pH7.2, 0.5% BSA,
2mM EDTA). Biotin conjugated anti-CD133 antibody (20ml) and FcR
blocking reagent (30ml) (Miltenyi Biotech, Auburn, CA, USA) were
added and incubated at 41C for 30min. The cells were washed and
incubated in 200ml PBE buffer with 50ml streptavidin-conjugated
magnetic microbeads (Miltenyi Biotech, Auburn, CA, USA) at 41C
for 30min. The cells were passed through a MACS-LS column equilib-
rated with PBE buffer placed on a Midi-Macs Magnet (Myltenyi
Biotech Inc., Auburn, CA, USA), and the CD133 negative cells in the

flow-through were collected. The column was removed from the
Magnet, and the CD133-positive cells were flushed out with the
buffer using a plunger. The cells were washed and resuspended in
fresh NBM for experiments.

Immunostaining and flow cytometry

The gliospheres were cultured in fresh NBM with B27 and
10 ngml�1 EGFþ bFGF in the presence of different concentrations
of CITCO in 12-well tissue culture plates in 5% CO2 incubator at
371C. After 48 h, the gliospheres were fixed in 1% paraformalde-
hyde and stained with anti-Ki67 Ab (1 : 100, Santa Cruz, Santa
Cruz, CA, USA) in PBS with 1% BSA at 41C for 2 h. Alexa 488-
conjugated 2nd Ab (1 : 1500, Cell Signaling, Danvers, MA, USA)
diluted in PBS with 1% BSA was added for 1 h and photographed
using a fluorescent microscope (DMRB, Leica, Bannockburn, IL,
USA). To determine the percentage of CD133þ BTSCs, gliospheres
cultured with different doses of CITCO for 48 h were dissociated
using Accutase, followed by resuspension in PBS containing 0.1%
BSA and incubated with anti-CD133 Ab (1 : 100, Cell Signaling) at
41C for 2 h. The cells were washed and incubated with Alexa 488-
conjugated secondary Ab at 41C for 1 h, and acquired using FACS
Calibur Flow Cytometer (BD Biosciences, San Jose, CA, USA) and
analysed using FlowJo 8.2.6 software (Ashland, OR, USA).

Quantitative real-time RT–PCR

Total RNA was extracted from glioma and BTSCs using RNesy kit
(Qiagen, Valencia, CA, USA). Equal amount of RNA was reverse
transcribed into cDNA, and quantitative RT–PCR (qRT–PCR) was
performed using 384-well TaqMan Low Density Human Nuclear
Receptor Array Card (384 well) in 7900 HT Fast Real time PCR system
(Applied Biosystems, Foster City, CA, USA). To detect CAR
transcription, 5mg total RNA was reverse transcribed into cDNA by
incubating in 10ml reaction of random hexamer primers and master
mix from TaqMan reverse transcription kit (Applied Biosystems,
Branchburg, NJ, USA). For qRT–PCR, 2ml of the cDNA was amplified
using TaqMan Universal Master Mix with optimised concentrations of
CAR primer sets and probes in a standard optical 96-well reaction plate.
The results were analysed using the Prism 7900 (Applied Biosystems,
Carlsbad, CA, USA) relative quantification (delta delta Ct) study
software (Mo et al, 2008). The level of CAR transcription was
normalised to 18S and expressed as fold change compared with control.

The SDS–PAGE and western blot

The glioma and BTSCs were cultured in the absence or presence of
CITCO at 371C for different time points. Whole-cell lysates were
prepared by boiling in lysis buffer (0.2M Tris-HCl, pH 6.8, 0.8mgml�1

SDS, 4% glycerol, 0.59M b-mercaptoethanol, 0.05M EDTA, 8mgml�1

bromophenol blue) for 5min. Total proteins were resolved on 10%
SDS–PAGE (BioRad, Hercules, CA, USA) and transferred to nylon/
PVDF membrane (Millipore, Bedford, MA, USA) using Novablot
transfer system (Pharmacia, Piscataway, NJ, USA). The residual
binding sites in the membrane were blocked with PBST (PBS and
0.1% Tween 20) containing 5% non-fat milk powder for 1h and
incubated with anti-CAR (1 : 1000), anti-GAPDH (1 : 1000) or anti-b-
actin (1 : 5000) antibody in PBST containing 1% milk powder at 41C
overnight. The membranes were washed in PBST, incubated with
peroxidase-conjugated anti-IgG antibody (1 : 10 000) for 1h and
developed by superior signal West Pico chemiluminescence reagent
(ThermoScientific, Rockford, IL, USA).

Proliferation assay

The proliferation of glioma and BTSCs was measured by WST-1
(4-(3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio)-1,3-benzene
disulfonate) and 3H thymidine uptake assay. Briefly, the glioma
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cells were cultured in 96-well tissue culture plates (5000 cells per
well) in DMEM without phenol red with L-glutamine, pyruvic acid,
sodium salt in the presence of 10% charcoal-stripped FBS (Invitrogen)
and 1% penicillin–streptomycin. The glioma cells were also cultured
in 96-well tissue culture plates (1� 104 per 200ml per well) in NBM
with B27 in the presence of 10ngml�1 EGFþ bFGF (gliosphere). The
dissociated gliosphere cells (BTSCs) and purified CD133þ BTSCs were
cultured in 96-well tissue culture plates (1� 104 per 200ml per well) in
NBM with B27 and 10ngml�1 EGFþ bFGF. Increasing concentrations
of CITCO were added at the initiation of cultures. The WST-1 reagent
(10ml per well, Roche, Indianapolis, IN, USA) was added after 48h,
and the OD measured at 480nm after 1–3h using a titre plate reader.
The 3H thymidine (0.5 mCiml�1) was added at 24 h, and the cells
were harvested after 48 h manually or using a Tomtech harvester
96 (Hamden, CT, USA). The amount of 3H thymidine uptake
was counted on a Wallac Microbeta liquid scintillation counter
(Perkin Elmer, Fremont, CA, USA).

Cell cycle analysis

To determine the effect of CITCO on cell cycle progression, gliospheres
were cultured in NBM with B27 and 10 ngml�1 EGFþ bFGF in the
presence of different concentrations of CITCO. After 48 h, the cells
were dissociated with Accutase and incubated in PBS containing
100mgml�1 propidium iodide, 0.6% NP-40 and 20 mgml�1 RNase
(Sigma Chemicals, St Louis, MO, USA) at 41C for 1h. The percentages
of BTSCs at different cell cycle stages (G0/G1, G2/M and S phases)
were determined based on DNA content by flow cytometry using
FACS Calibur Flow Cytometer (BD Biosciences), and analysed using
ModFit LT2.0 software (Verity software house, Topsham, ME, USA).

Apoptosis assay

To determine the effect of CITCO on apoptosis, BTSCs were cultured
in NBM with B27 and 10 ngml�1 EGFþ bFGF in the presence of
CITCO. After 48 h, the cells were harvested, washed in PBS and
stained with Annexin V-FITC (Roche, Indianapolis, IN, USA) in
binding buffer (0.1M Hepes/NaOH, pH 7.4, 1.4 M NaCl, 0.2 mM)
containing 100 mgml�1 propidium iodide according to the manu-
facturer’s instruction (Roche). The cells were incubated at room
temperature for 30min in dark, acquired using FACS Calibur Flow
Cytometer (BD Biosciences) and analysed using FlowJo 8.2.6 software.

Induction, treatment and evaluation of BTSC xenograft

To determine the in vivo effect of CAR agonists on BTSCs, we
induced BTSC xenograft in nude mice. All the animal protocols
used for in vivo experiments were reviewed and approved by the
institutional animal care and use committees at Methodist Research
Institute, and performed accordingly. Six- to eight-week-old male
athymic nude mice were obtained from Harlan (Indianapolis, IN,
USA) and maintained under specific pathogen-free conditions in
the animal care facility at Methodist Research Institute. The BTSCs
were isolated by dissociating U87MG gliospheres and transplanted
(25� 104) subcutaneously in 100ml NBM in the dorsum of 8-week-
old nude mice. The mice were treated intraperitoneally with 25 and
100mg CITCO in 25 ml DMSO on days 22, 24, 26, 30 and 36 follow-
ing xenograft. The control mice received only 25ml DMSO. Tumours
were measured once a week till day 50 using a digital Vernier
Calipers (Marathon, Ontario, Canada), and the tumour volume
(TV) was calculated as follows: TV¼ 1

2(lw
2) (l¼ length, w¼width)

(Euhus et al, 1986; Jiang et al, 2010; Johns et al, 2010). Each group
contained at least four mice, and the experiments were repeated
twice. On day 50, the BTSC xenografts were dissected, fixed in
buffered formalin, embedded in paraffin and sliced into 6 mm thick
sections. The sections were stained with haematoxylin and eosin
(H&E), and photographed using a phase-contrast microscope
(DMRB, Leica) (Mo et al, 2008). The tissue sections were

deparafinised, followed by incubation with 10% goat serum in
PBS to block non-specific binding sites and stained overnight with
anti-Ki67 Ab (1 : 100, Santa Cruz) in PBS with 1% BSA at 41C.
Alexa 488-conjugated 2nd Ab (Cell Signaling) diluted in PBS with
1% BSA was added for 1 h ,and the sections were photographed
using a fluorescent microscope (DMRB, Leica).

Statistical analysis

The data were analysed by ANOVA (Graphpad Prism 5.0, Graphpad
Software, La Jolla, CA, USA), and the *Po0.05, **Po0.01, ***Po0.001
were considered significant.

RESULTS

Altered expression of nuclear receptors in BTSCs

To identify novel therapeutic targets for BTSCs, we examined the
expression of nuclear receptors by qRT–PCR using TaqMan Low
Density Human Nuclear Receptor Array Card (384 well). We found
that T98G–BTSCs express altered levels of many nuclear receptors
compared with the glioma cells (Table 1). Among the 48 nuclear
receptors examined, BTSCs expressed detectable levels of ERRb
and RXRg that were not detected in glioma cells. The BTSCs also
showed X100-fold increase in the transcription of TLX and
HNF4a, and between 10- and 100-fold increase in PXR, RORa,

Table 1 Altered expression of nuclear receptors in brain tumour
stem cells

Receptor Fold change Receptor Fold change

ERRb (NR3B2) ND-D TR4 (NR2C2) 0.995
RXRg (NR2B3) ND-D TRa (NR1A1) 0.965
TLX (NR2E1) 628.610 ERRa (NR3B1) 0.934
HNF4a (NR2A1) 272.000 TR2 (NR2C1) 0.890
PXR (NR1I2) 27.800 RXRa (NR2B1) 0.848
RORa (NR1F1) 19.690 EAR (NR2F6) 0.706
RORg (NR1F3) 18.280 PPARg (NR1C3) 0.648
NORI (NR4A3) 11.426 Coup TF2 (NR2F2) 0.605
LRH (NR5A2) 10.480 RARg (NR1B3) 0.565
NURR1 (NR4A2) 7.040 TRb (NR1A2) 0.511
NURR77 (NR4A1) 4.380 AR (NR3C4) 0.478
REVerba (NR1D1) 2.960 RARb (NR1B2) 0.425
MR (NR3C2) 2.507 HNF4g (NR2A2) 0.353
RARa (NR1B1) 2.260 Coup TF1 (NR2F1) 0.332
LXRb (NR1H2) 2.051 CAR (NR1I3) 0.112
PPARd (NR1C2) 1.652 FXR (NR1H4) 0.104
GR (NR3C1) 1.600 RORb (NR1F2) 0.080
PPARa (NR1C1) 1.421 SF1 (NR5A1) 0.0789
PGR (NR3C3) 1.330 PNR (NR2E3) 0.00023
VDR (NR1I1) 1.248 ERa (NR3A1) ND-ND
RXRb (NR2B2) 1.195 ERb (NR3A2) ND-ND
GCNF (NR6A1) 1.126 ERRg (NRB3) ND-ND
REVerbb (NR1D2) 1.150 DAX (NR0B1) ND-ND
LXRa (NR1H3) 1.089 SHP (NR0B2) ND-ND

Abbreviations: bFGF¼ basic fibroblast growth factor; BTSC¼ brain tumour stem cell;
cDNA¼ complementary DNA; DMEM¼Dulbecco’s modified Eagle’s medium;
EGF¼ epidermal growth factor; FBS¼ fetal bovine serum; NBM¼ neurobasal medium.
The T98G glioma cells were cultured as monolayer in DMEM with 10% FBS or as
gliospheres in NBM with B27 and EGF+bFGF. After 5 days, the glioma cells were
harvested using trypsin+EDTA, and gliospheres were dissociated using Accutase. Total
RNA was extracted from glioma and BTSCs, and reverse transcribed into cDNA using
random hexamer primers and TaqMan reverse transcription kit. The gene expression
profile was determined using TaqMan Universal Master Mix with nuclear receptor primer
sets and probes in an optical 384-well card using the 7900 Fast Sequence Detection Real-
time PCR System (Applied Biosystems). The results were analysed using the Prism 7900
relative quantification (delta delta Ct) study software. The levels of nuclear receptor gene
expression are normalised to 18 s, and the values are presented as fold change in BTSCs
compared with glioma cells.
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RORg, NORI and LRH compared with glioma cells. Moreover,
15 nuclear receptors showed 0- to 10-fold increase in BTSCs
(Table 1). On the other hand, 10 genes showed 0- to 2-fold
decrease, 6 genes showed 2- to 10-fold decrease and RORb, SF1
and PNR showed more than 10-fold decrease in BTSCs compared
with glioma. Five nuclear receptors tested were not detected either
in glioma or BTSCs (Table 1). These results suggest that BTSCs
express altered levels of nuclear receptors, which may serve as
novel therapeutic targets for the treatment of brain tumour.

The CITCO induces the expression of CAR in BTSCs

Although many altered nuclear receptors are currently under
investigation in our laboratory, in this manuscript, we present our
findings on the use and mechanism of action of CAR and its agonist
CITCO in targeting BTSCs for the treatment of glioma. As shown in
Figure 1, qRT–PCR analyses confirmed that T98G–BTSC (A) and
U87MG–BTSC (B) express significantly lower levels of CAR mRNA
compared with the glioma cells. The CD133þ BTSCs purified from
T98G (A) and U87MG (B) gliospheres showed further decrease in
CAR transcription. Interestingly, treatment with 2.5mM CITCO

resulted in a significant increase in the transcription of CAR in
both T98G–BTSC and U87MG–BTSCs in 48h. Western blot
analyses showed that the T98G and U87MG glioma, and BTSCs
express very low levels of CAR protein that increased significantly
following treatment with 2.5mM CITCO in 48h. However, higher
concentrations of CITCO (X10mM) inhibited or abolished CAR
expression in both T98G- and U87MG-derived BTSCs. Further
analyses showed that the BTSCs isolated from DB29 and DB33 (C)
gliospheres express lower levels of CAR compared with glioma cells,
and treatment with 2.5mM CITCO resulted in significant increase in
the transcription of CAR. Western blot analyses also showed that the
expression of CAR protein was low in DB29–BTSCs that increased
significantly after treatment with 2.5mM CITCO in 48h (C). Higher
concentrations of CITCO (X5mM) abolished the expression of CAR
in DB29–BTSCs. These results suggest that CITCO modulates the
expression of CAR in BTSCs.

The CITCO inhibits the expansion of BTSCs

To study the use of CAR in the regulation of BTSCs, we examined
the effect of CITCO on growth and expansion in culture.
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Figure 1 The CAR expression in BTSCs. The T98G (A), U87MG (B), DB29 and DB33 (C) glioma cells were cultured as monolayer in DMEM (glioma)
or as gliospheres in NBM with B27 and EGFþ bFGF for 5 days. The BTSCs and CD133þ BTSCs were purified from gliospheres and cultured in NBM with
0 to 25mM CITCO for 48 h. The CAR transcription was determined by qRT–PCR, and the data presented as fold change compared with glioma.
The chemical structure of CITCO is shown as an insert (A). The levels of CAR protein was determined by western blot analyses. The blots were reprobed
with GAPDH or b-actin Abs as internal controls. The figure is representative of three independent experiments. **Po0.01, ***Po0.001.
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Microscopic analyses showed that in vitro culture of T98G,
U87MG, DB29 and DB33 glioma cells in NBM with B27 and
EGFþ bFGF resulted in the expansion of BTSCs as gliospheres in
5 days (Figures 2A and B). Interestingly, in vitro treatment with
1 and 5 mM CITCO for 48 h induced a dose-dependent decrease in
gliosphere size in all four cell types tested. Immunofluorescent
microscopy showed that the gliospheres are filled with actively
dividing BTSCs as evidenced by Ki-67 staining. Treatment with
CITCO resulted in a dose-dependent decrease in Ki-67þ BTSCs in
T98G (C), U87MG (D), DB29 (E) and DB33 (F) gliospheres.

To further determine the use of CAR in targeting BTSCs, we
analysed the effect of CITCO on CD133þ cells by flow cytometry.
We found that T98G–BTSCs displayed 43% CD133þ cells with a
mean fluorescence intensity (MFI) of 186 that decreased dose
dependently, reaching 16% with a MFI of 49 after treatment with
5 mM CITCO for 48 h (Figure 3). Similarly, U87MG–BTSCs showed
56% CD133þ cells with a MFI of 254 that decreased to 16% with a
MFI of 47 at a dose of 5 mM CITCO. Further analyses showed that
the DB29–BTSCs consist of 31% CD133þ cells with a MFI of 231
that decreased to 16% with a MFI of 110 at 5 mM CITCO. Similarly,
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Ki-67
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DAPI DAPI

Merge

Merge Merge

DB33
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CITCO (�M) CITCO (�M)0 1 5 0 1 5

Figure 2 The T98G or U87MG (A) and DB29 or DB33 (B) glioma cells were cultured in NBM with B27 and EGFþ bFGF in the presence of 0, 1 or 5mM
CITCO. The gliospheres generated in 5–10 days were photographed (100� ) using BX40 Olympus microscope (A and B). The T98G (C), U87MG (D),
DB29 (E) and DB33 (F) gliospheres were also cultured in NBM with B27 and EGFþ bFGF in the presence of 0, 1 or 5 mM CITCO. After 48 h, the spheres
were stained with DAPI and Ki-67 Ab, and photographed (200� ) using a fluorescent microscope. The figures are representatives of three independent
experiments.
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DB33–BTSCs showed 32% CD133þ cells with MFI of 107 that
decreased to 10% with a MFI of 56 at 5 mM CITCO (Figure 3). These
results show that CITCO regulates the expansion of CD133þ

BTSCs, suggesting its significance in the treatment of glioma.

The CITCO inhibits the proliferation of BTSCs

To further test the therapeutic use of CAR in glioma, we examined
the effect of CITCO on tumour cell proliferation in culture.

As shown in Figure 4, we found that in vitro culture of T98G (A, B)
and U87MG (C, D) cells in DMEM as monolayer (glioma) and in
NBM (gliospheres), dissociated gliosphere cells in NBM (BTSCs)
and purified CD133þ gliosphere cells in NBM (CD133þ BTSCs)
resulted in a significant increase in viable cell count (A, C) and
proliferation (B, D) as measured by WST-1 and 3H thymidine
uptake assays, respectively. Interestingly, addition of CITCO
resulted in a dose-dependent inhibition of viable cell count and
proliferation in both T98G and U87MG glioma, and BTSCs.
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Figure 3 The CITCO inhibits the expansion of CD133þ BTSCs. The T98G, U87MG, DB29 and DB33 glioma cells were cultured in NBM with B27 and
EGFþ bFGF for 5 days. The gliospheres generated were further cultured in fresh NBM with 0, 1, 2.5 and 5 mM CITCO for 2 days. The cells were dissociated
and stained with anti-CD133 and Alexa 488-conjugated 2nd Abs, and analysed by flow cytometry. The figure shows percent CD133þ BTSCs (blue) and
isotype control (red) with mean fluorescence intensities (MIF) in parenthesis. The figure is representative of three independent experiments.
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Similarly, in vitro culture of DB29- and DB33-derived CD133þ

BTSCs in NBM resulted in a significant increase in viable cell count
and proliferation that was inhibited by the addition of CITCO (E).

Although CITCO induced a statistically significant inhibition at
1 and 2.5 mM doses in all cell types tested, its antiproliferative effect
was more pronounced in BTSCs than glioma cells. No detectable
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Figure 4 The CITCO inhibits the proliferation of BTSCs. The human glioma cells, T98G (A and B), U87MG (C and D), DB29 and DB33 (E), and
astrocytes (F) were cultured as monolayers in DMEM in the absence of phenol red in the presence of 10% charcoal-stripped FBS. The glioma cells were also
cultured as gliospheres in NBM with B27 and EGFþ bFGF (gliosphere). The dissociated gliosphere cells (BTSC) and purified CD133þ gliosphere cells
(CD133þ BTSC) were cultured in fresh NBM with B27 and EGFþ bFGF. Different doses of CITCO were added at the initiation of culture. The cell viability
and proliferation were measured using WST-1 and 3H thymidine uptake assay, respectively. The values are mean of triplicates (±s.e.m.), and *Po0.05,
**Po0.01 and ***Po0.001 are considered significant. The astrocyte cultures were photographed (100� ) under phase-contract microscope. The figure is
representative of three independent experiments. ‘The color reproduction of this figure is available on the html full text version of the manuscript.’
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Figure 5 The CITCO induces cell cycle arrest in BTSCs. The T98G, U87MG, DB29 and DB33 glioma cells were cultured in NBM with B27 and
EGFþ bFGF. The gliospheres generated in 5 days were cultured in fresh NBM with B27 and EGFþ bFGF in the presence of 0, 2.5 or 5 mM CITCO. After
48 h, the gliospheres were harvested, dissociated (BTSCs), stained with propidium iodide and analysed based on DNA content by flow cytometry.
The percentage of cells in G0/G1, G2/M and S phases of cell cycle are shown. The figure is representative of three independent experiments.
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effect on the morphology, cell viability or proliferation was
observed in normal HAs following in vitro culture with CITCO (F),
suggesting its selectivity to glioma and BTSCs.

The CITCO induces cell cycle arrest in BTSCs

To explore the intrinsic mechanisms by which CAR regulates
growth arrest in BTSCs, we analysed the effect of CITCO on cell
cycle progression. We found that BTSCs cultured in NBM with B27
and EGFþ bFGF showed distribution of cells in G0/G1, G2/M and
S phases of cell cycle (Figure 5). Addition of CITCO for 24 h
resulted in a dose-dependent cell cycle arrest of BTSCs. Interest-
ingly, data analyses revealed that CITCO induces cell cycle arrest
through different mechanisms in different cell types. Although
CITCO increased G0/G1 cells with a decrease in G2/M and S phases

in T98G–BTSCs, it decreased G0/G1 and increased G2/M without
affecting the S-phase cells in U87MG–BTSCs. However, BTSCs
isolated from DB29 and DB33 showed comparable responses to
CITCO with increased G0/G1 and G2/M with a decrease in S-phase
cells (Figure 5). These results suggest that CITCO induces cell cycle
arrest differentially in different BTSCs in culture.

The CITCO induces apoptosis in BTSCs

To further determine the mechanisms by which CAR regulates
BTSCs, we examined the effect of CITCO on apoptosis. We found
that BTSCs cultured in NBM with B27 and EGFþ bFGF showed
very low levels of Annexin V-positive apoptotic cells that increased
dose dependently following addition of CITCO (Figure 6). The
BTSCs from T98G and U87MG cultured in the absence of CITCO
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Figure 6 The CITCO induces apoptosis in BTSCs. The T98G, U87MG, DB29 and DB33 glioma cells were cultured in NBM with B27 and EGFþ bFGF.
The gliospheres generated in 5 days were cultured in fresh NBM with B27 and EGFþ bFGF in the presence of 0, 2.5, 5 or 10mM CITCO. After 48 h, the
gliospheres were dissociated (BTSCs), stained with Annexin V-FITC along with propidium iodide and analysed by flow cytometry. The figure is representative of
three independent experiments. The histogram shows the mean Annexin V-positive BTSCs (±s.d.) of three experiments. *Po0.05, **Po0.001, ***Po0.001.
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showed 6.8 and 11% Annexin V-positive cells that increased to
62 and 68% following addition of 10mM CITCO, respectively.
Moreover, BTSCs from DB29 and DB33 gliomas showed 3 and 0.5%
Annexin V-positive cells that increased to 24 and 41% following
treatment with 10mM CITCO, respectively (Figure 6). These results
suggest that CITCO induces apoptosis in BTSCs in culture.

The CITCO inhibits BTSC xenograft in nude mice

To determine the in vivo effect of CITCO on tumour growth, we
used a xenograft model in nude mice. As shown in Figure 7, we
found that subcutaneous transplantation of U87MG–BTSCs
resulted in solid tumour growth by day 21. Interestingly, in vivo
treatment with CITCO on days 22, 24, 26, 30 and 36 resulted in a
dose-dependent decrease in tumour volume (A). In DMSO-treated
control group, the tumour volume increased from 36mm3 on day
21 to 84mm3 on day 50, whereas in the 25 mg CITCO-treated
group, tumour volume decreased from 31mm3 (100%) on day
21 to 8mm3 (90% inhibition) on day 50. Moreover, the tumour
volume in mice treated with 100 mg CITCO decreased from 44mm3

on day 21 to 0mm3 (100% inhibition) by day 28, with no
recurrence observed until day 50. Histological analysis revealed
that BTSCs grow and expand as solid tumour in nude mice as
evidenced by H&E staining (B). Treatment with 25 mg CITCO
resulted in a significant decrease in tumour growth, which further
decreased to an undetectable level after treatment with 100mg
CITCO (B). Furthermore, Ki-67 staining revealed that the control
group showed actively dividing cells in the tumour, which
decreased significantly after treatment with 25mg CITCO, with
the absence of Ki-67þ cells at 100mg. These results suggest the
in vivo effect of CITCO in the treatment of glioma.

DISCUSSION

Despite advances in modern medicine, the prognosis from
current surgery, radiation and chemotherapy remains poor in
brain tumour patients. The recent identification of BTSCs
with resistance and recurrence properties has revolutionised the
basic approaches on drug discovery and development for brain
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Figure 7 Nude mice were injected (s.c) with U87MG–BTSCs to induce tumour growth. The mice were treated (intraperitoneal) with 0, 25 or 100 mg
CITCO in DMSO on days 22, 24, 26, 30 and 36. (A) The tumour growth was measured using digital Vernier Calipers, and the tumour volume was
calculated. The percent inhibition by CITCO was calculated using the mean tumour volume in the group treated with 0 mM CITCO as 100%. The figure is
representative of three independent experiments. (B) The mice were euthanised on day 50, and the BTSC xenografts were dissected; 6 mm thick sections
were stained with H&E or anti-Ki67 Ab and photographed (100�/200� ) under fluorescent microscope. *Po0.05, **Po0.001, ***Po0.001.
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tumour. Brain tumours often present a small fraction of BTSCs,
making it difficult to isolate sufficient cells for drug discovery. EGF
and FGF are growth factors that promote the tumourigenicity of
glioma cells (Martens et al, 2008). We have shown recently that
EGFþ bFGF induce the expansion of CD133þ BTSCs as glio-
spheres in culture (Chearwae and Bright, 2008). In this study, we
show for the first time that the CAR agonist CITCO induces growth
arrest and apoptosis of BTSCs in culture and in animal model.
Nuclear hormone receptors have therapeutic values in many

human diseases (Blumberg and Evans, 1998). Earlier studies have
demonstrated deregulated expression of nuclear receptors in
glioma and their activation with specific agonists inhibited tumour
growth (Berge et al, 2001; See et al, 2004). In this study, we set out
to identify novel nuclear receptors that could be used to target
BTSCs for the treatment of glioma. We found that BTSCs express
altered levels of many nuclear receptors compared with glioma,
which are currently under investigation in our laboratory. In this
manuscript, we focused on determining the use of CAR agonist
CITCO in targeting BTSCs. We found that the expression of CAR
was low in BTSCs derived from different gliomas. The down-
regulation of CAR could be a mechanism by which BTSCs evade
antitumour responses. Interestingly, the upregulation of CAR
expression by CITCO suggests its use in targeting BTSCs in the
treatment of glioma. This is consistent with our earlier report on
the induction of PPARg expression by its agonists in BTSCs
(Chearwae and Bright, 2008). Although the constitutively active
CAR is retained in the cytoplasm, CITCO induces its translocation
into the nucleus and mediates gene transcription (Baes et al, 1994;
Kobayashi et al, 2003). Although the exact mechanisms are not
known, our findings suggest an autoregulation of CAR expression
through CITCO/CAR axis in BTSCs.
Earlier studies have shown that CAR is highly expressed in the

liver and small intestine, and promotes the detoxification and
elimination of potentially toxic compounds by modulating the
phase I and phase II drug-metabolising enzymes (Forman et al,

1998; Xu et al, 2005; Echchgadda et al, 2007; Veith et al, 2009).
Although CAR activation can disrupt thyroid hormone homo-
eostasis (Qatanani et al, 2005), it also showed protective roles in
stress response (Forman et al, 1998; Stedman et al, 2005; Xu et al,
2005; Echchgadda et al, 2007). The CAR-mediated expression of
xenobiotic-metabolising enzymes is generally protective, but can
be deleterious, if toxic metabolites are produced (Xu et al, 2005).
The CAR agonists induce hepatocyte proliferation that depends
on c-Myc-FoxM1 function (Blanco-Bose et al, 2008). The CAR
agonists also inhibits Fas-induced hepatocyte apoptosis, liver
injury, and fatalities by depleting the proapoptotic proteins Bak
(Bcl-2 antagonistic killer) and Bax (Bcl-2-associated X protein) and
increasing the expression of the antiapoptotic effector myeloid cell
leukaemia factor-1 (Baskin-Bey et al, 2006). Thus, the xenobiotic
properties of CAR and its agonists have been extensively studied,
but its anticancer property was not known.
In this study, we have shown that CITCO inhibits the

proliferation of glioma cells in a dose-dependent manner, without
affecting primary astrocytes. Interestingly, CITCO inhibits the
growth and expansion of BTSCs by inducing cell cycle arrest and
apoptosis in culture. Moreover, the inhibition of CD133 expression
by CITCO indicates the downregulation of BTSC expansion in
culture. The inhibition of solid tumour growth by CITCO in
xenograft model suggests the use of CITCO in the regulation of
BTSCs in vivo. We have shown earlier that PPARg agonists inhibit
cytokine-induced activation of Jak-Stat pathway in immune cells
(Natarajan and Bright, 2002) and LIF-induced activation of
Jak-Stat pathway in mouse embryonic stem cells (Rajasingh and
Bright, 2006). We have also demonstrated earlier that the PPARg
agonists induce growth arrest and apoptosis in BTSCs by blocking
EGF/FGF-induced activation of Tyk2-Stat3 pathway in BTSCs
(Chearwae and Bright, 2008). Although the precise molecular basis
of CAR-mediated antineoplastic effect is under investigation, our
findings suggest the use of CAR agonists as a new therapy to target
BTSCs for the treatment of glioma patients.
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