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BACKGROUND: The proteasome inhibitor bortezomib has improved the survival of patients with multiple myeloma but bortezomib-
induced peripheral neuropathy (BiPN) has emerged as a serious potential complication of this therapy. Animal studies suggest that
bortezomib predominantly causes pathological changes in Schwann cells. A tractable system to evaluate combination drugs for use
with bortezomib is essential to enable continuing clinical benefit from this drug.
METHODS: Rat schwannoma cells were pretreated with vincristine (VCR), histone deacetylase inhibitors, anticonvulsants, or a heat-
shock protein 90 (HSP90) inhibitor. To then monitor aggresome formation as a result of proteasome inhibition and the activation of
chaperone-mediated autophagy (CMA), we performed double-labelling immunofluorescent analyses of a cellular aggregation-prone
protein marker.
RESULTS: Aggresome formation was interrupted by VCR, whereas combination treatments with bortezomib involving suberoylanilide
hydroxamic acid, 17-allylamino-17-demethoxy-geldanamycin, or clonazepam appear to facilitate the disposal of unfolded proteins via
CMA, inducing HSP70 and lysosome-associated membrane protein type 2A (LAMP-2A).
CONCLUSIONS: This schwannoma model can be used to test BiPN-reducing drugs. The present data suggest that aggresome formation
in Schwann cells is a possible mechanism of BiPN, and drugs that induce HSP70 or LAMP-2A have the potential to alleviate this
complication. Combination clinical trials are warranted to confirm the relevance of these observations.
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The development of novel agents, such as proteasome inhibitors
and immunomodulatory drugs has improved the survival outcome
for multiple myeloma (MM) patients (Kumar et al, 2008).
However, the incidence of peripheral neuropathy (PN) has
emerged as a significant problem in the new therapeutic era for
MM (Richardson et al, 2006, 2009b; Argyriou et al, 2008). In
younger patients with MM, primary treatments have included
vincristine (VCR), doxorubicin, and dexamethasone, and also
high-dose therapy with melphalan supported by autologous stem
cell transplantation. However, in some of these patients, VCR
treatments have caused PN. Moreover, bortezomib was the first
proteasome inhibitor to be approved for the treatment of relapsed/
refractory as well as newly diagnosed MM patients (Richardson
et al, 2003; San Miguel et al, 2008). However, this treatment can
cause peripheral nerve damage leading to the development of
bortezomib-induced peripheral neuropathy (BiPN). Owing to these
adverse effect, bortezomib will be discontinued even in patients
that respond well to this drug. Not surprisingly, bortezomib has
recently become one of the mainstays in ongoing clinical trials of
combination therapies for MM.

A couple of recent studies have reported neurophysiological and
pathological findings for bortezomib administration in animal
models (Cavaletti et al, 2007; Bruna et al, 2010; Meregalli et al,
2010). Another histopathological study in rats reported that
bortezomib did not affect neurons but did cause damage to
Schwann cells (Cavaletti et al, 2007). Another report has however
shown that alterations to Schwann cells might be a secondary effect
of bortezomib (Bruna et al, 2010). At present, treatments for BiPN
are lacking, although anticonvulsants have been administered to
MM patients with this disorder (Richardson et al, 2006; Argyriou
et al, 2008). In addition, although a dose-modification guideline
for BiPN has been published (Richardson et al, 2009b), it is
difficult to accurately evaluate neurotoxicity in patients during
bortezomib therapy and thus determine when treatment should
discontinue. Hence, combination bortezomib treatments for MM
involving agents that function as prophylactics against BiPN,
rather than drugs that treat BiPN, are highly desirable. However,
there are currently few (if any) investigative tools available to
develop such therapies as the molecular mechanisms underlying
BiPN remain to be elucidated.

To elucidate the molecular mechanisms underpinning the onset
of BiPN in our current study, we first reviewed previous reports on
neurodegenerative diseases in which protein aggregates are
responsible for the cellular toxicity. When the activity of
proteasome is inhibited, misfolded proteins will form aggregates
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known as aggresomes (Johnston et al, 1998). Aggresomes were
initially described as inclusion bodies in the cells of patients with
neurodegenerative diseases (Kopito, 2000) such as amyotrophic
lateral sclerosis (Bruijn et al, 1998; Mezey et al, 1998), Parkinson’s
disease (Mezey et al, 1998), and Huntington’s disease (Bennett
et al, 2007). In our present experiments, we employed a
schwannoma cell system to monitor aggresome formation after
treatment with bortezomib. Furthermore, we examined whether
additional treatments could reduce the number and size of these
aggregates and thus potentially suppress the onset of BiPN.

MATERIALS AND METHODS

Schwann cell pretreatment and bortezomib treatment

A rat schwannoma cell line RT4-D6P2T (purchased from ATCC,
Manassas, VA, USA, on 28 May 2007) was cultured in Dulbecco’s
modified Eagle’s medium (Sigma-Aldrich, St Louis, MO, USA)
containing 10% FBS (Bioserum, Victoria, Australia). RT4-D6P2T
cells were cultured for less than 2 months after reconstitution from
stocks, which were frozen upon receipt from the ATCC. The cells

had been validated by the supplier using DNA fingerprinting and
no additional authentication was performed in our laboratory. The
morphology of the RT4-D6P2T cells showed no changes over the
course of the study.

At 1 day before pretreatment, the RT4-D6PT2 cells were plated at
a density of 5� 104 cells per well on four-well chamber slides. They
were then either untreated or pretreated with 40 nM VCR (Sigma-
Aldrich) for 1 h or pretreated for 24 h with either 5mM suberoyla-
nilide hydroxamic acid (SAHA; Merck & Co. Inc., Whitehouse
Station, NJ, USA), 0.5mM 17-allylamino-17-demethoxy-geldanamy-
cin (17-AAG; Sigma-Aldrich), 50 nM clonazepam (CZP; Sigma-
Aldrich), or 6 mM valproic acid (VPA; Sigma-Aldrich). The dose of
each reagent was determined by its half maximal inhibitory value
(IC50). For VCR pretreatments, the cells were washed twice with
PBS: 2.68 mM KCl, 1.47 mM KH2PO4, 136.89 mM NaCl, and 8.10 mM

Na2HPO4 (Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan)
before the addition of 40 nM bortezomib (Millennium Pharmaceu-
ticals, Cambridge, MA, USA) for 3 h. Following pretreatment with
other reagents, the cells were not washed before the 3-h treatment
with 40 nM bortezomib. As a final step, the cells were washed twice
with PBS, incubated for a further 24 h, and then fixed.

–Bzb

–Bzb

+Bzb

+Bzb

Figure 1 Bortezomib induces aggresome formation at the microtubule-organising centres (MTOCs) of Schwann cells. (A) In untreated RT4-D6P2T cells,
g-tubulin is distributed homogeneously throughout the cytoplasm (left panel). In bortezomib (Bzb)-treated cells, aggresomes form as distinct pericentriolar
structures (arrows) with weak staining in the cytoplasm (right panel). Insets in the right panel show the juxtanuclear rounded structures evident at higher
magnification. (B) Untreated RT4-D6P2T cells contain dynein (red), which is distributed homogeneously in the cytoplasm with predominant localisation in
the perinuclear region, and vimentin (green), which is distributed diffusely throughout the cytoplasm and above the nuclei. (C) In bortezomib-treated cells,
dynein (red) and vimentin (green) appear as rounded structures at the MTOC (arrows) and are colocalised in the region adjacent to the nuclei (yellow
signals in the merged image of both fluorochrome channels. Bar, 20 mM. �Bzb, untreated; þ Bzb, bortezomib treated.
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Immunohistochemical analysis

The RT4-D6P2T cells were fixed with PBS containing 4%
paraformaldehyde for 10 min at 41C, washed with TBS (20 mM

Tris and 500 mM NaCl (pH 7.4)) with 0.1% IGEPAL CA-630 (Fluka,
Buchs, Switzerland) for 3� 5 min, fixed in methanol for 10 min at
41C, and blocked with PBS containing 4% BSA (Sigma-Aldrich) for
30 min at room temperature. The cells were then incubated
overnight at 41C with primary antibodies diluted at a ratio of 1 : 50
in PBS with 4% BSA (g-tubulin (Sigma-Aldrich), dynein (Sigma-
Aldrich), vimentin (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), heat-shock protein 70 (HSP70; Santa Cruz Biotechnology),
peripheral myelin protein 22 (PMP22; Millipore, Bedford, MA,
USA), and lysosome-associated membrane protein type 2A
(LAMP-2A; Abcam, Cambridge, MA, USA)). The cells were then
washed 3� 5 min in TBS with 0.1% IGEPAL CA-630 and incubated
with secondary antibodies diluted at a ratio of 1 : 100 in PBS with

4% BSA, for 1 h at room temperature (Alexa Fluor 488-conjugated
chicken anti-rabbit IgG and Alexa Fluor 555-conjugated goat anti-
mouse IgG (Molecular Probes, Eugene, OR, USA)). After a further
washing for 3� 5 min in TBS with 0.1% IGEPAL CA-630, the cells
were mounted on slides with VECTASHIELD (Vector Laboratories,
Burlingame, CA, USA). We note that all washes were performed at
room temperature. Images of the cells were captured on a laser
scanning confocal microscope BZ-8000 (Keyence, Osaka, Japan)
and analysed by BZ-Analyser software (Keyence). The thickness of
the optical sections analysed was 0.4 mm.

Quantification of aggresomes and round structures outside
of the Schwann cells

Aggresomes and round structures outside of the cells were
identified by the colocalisation of PMP22 and g-tubulin, counted

–Bzb +Bzb

+VCR→Bzb +SAHA→Bzb +CZP→Bzb +17-AAG→Bzb

+VPA→Bzb

+Bzb +Bzb

Figure 2 Vincristine (VCR) abrogates aggresome formation and in a combination treatment with bortezomib augments the exocytosis of endogenous
misfolded proteins. (A) Peripheral myelin protein 22 (PMP22) is homogeneously distributed throughout the cytoplasm of RT4-D6P2T cells before
treatment with bortezomib (left panel). After treatment with bortezomib (Bzb), PMP22 appears to undergo retrograde transport towards the MTOC where
it forms perinuclear aggresomes (arrows, middle panel, green signals) and colocalises with g-tubulin (arrows, middle panel, red signals). A merged image of
both fluorophores is shown in the far right panel (yellow signal). (B) Following pretreatment with VCR, a microtubule depolymerisation agent, PMP22 signals
are evident at multiple sites in a granular pattern of aggregates throughout the cytoplasm, most notably in the perikaryon. Cells pretreated with (C)
suberoylanilide hydroxamic acid (SAHA), a known histone deacetylase inhibitor (HDACi), or (D) clonazepam (CZP), an anticonvulsant, and
(E) 17-allylamino-17-demethoxy-geldanamycin (17-AAG), a HSP90 inhibitor, fail to form aggresomes, but instead form rounded structures outside of the
cell (arrowheads), which are smaller than the perinuclear aggresomes. (F) Pretreatment with valproic acid (VPA) causes the appearance of similar rounded
structures outside of the cells (arrowheads) in addition to juxtanuclear aggresomes (arrows).
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in triplicate from 200 cells, and expressed as a percentage of the
total cells.

Growth inhibition assay of MM cells

The human MM cell lines, MM.1S, RPMI8226 (purchased from
ATCC), and KMS-18 (kindly provided by Dr T Otsuki, Department
of Hygiene, Kawasaki Medical School, Kurashiki, Japan) were
maintained in RPMI1640 (Sigma-Aldrich) containing 10% FBS.
The growth-inhibitory effects upon MM cells were determined
using a 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay (Sigma-Aldrich). At 1 day before treatment,
9.0� 104 cells per 90 ml aliquot were cultured in 96-well plates
(Sumitomo Bakelite, Higashikangawa, Japan) in triplicate at 371C.
Cells were either untreated or pretreated for 24 h with the same
concentration of each reagent used with the RT4-D6P2T cells
except for VCR. The cells were then cultured further with varying
concentrations (from 0.5 to 3 nM) of bortezomib for 48 h. Optical
densities (ODs) at 570 and 630 nm were measured using a
multiplate reader. Stock MTT was added to each of the wells in
the assay, and the plates were further incubated at 371C for 5 h.
Dimethyl sulphoxide (Sigma-Aldrich) was added to all wells and
mixed thoroughly. After a few minutes at room temperature to
ensure that all formazan crystals were dissolved, the plates were
read on a SpectroMax 340PC384 VersaMax (Molecular Devices,
Sunnyvale, CA, USA), using a test wavelength of 570 nm and a
reference wavelength of 630 nm. Cell growth (%) was calculated as
follows: (OD630 –OD570 of the samples/OD630�OD570 of the
control)� 100.

RESULTS

Aggresomes form at MTOC following proteasome
inhibition in Schwann cells

A diffuse expression pattern of g-tubulin, a protein that adheres to
the centrosome (Dictenberg et al, 1998), was observed in the
cytoplasm of RT4-D6P2T cells. Following a 3-h treatment with
40 nM bortezomib, however, g-tubulin staining in the cytoplasm
became weak and coalesced to form round structures in the
juxtanuclear area (Figure 1A). Similarly, the dynein and vimentin
proteins became rounded and colocalised in region adjacent to the
nucleus after exposure to bortezomib (Figure 1C).

Vincristine abrogates bortezomib-induced aggresome
formation and combination treatments augment the
exocytosis of endogenous misfolded proteins from
Schwann cells

We next examined whether endogenous misfolded proteins
destined to be processed by the ubiquitin-proteasome system
could be induced to aggregate and undergo retrograde transport
towards the microtubule-organising center (MTOC) upon protea-
some inhibition. To accomplish this, we employed the cellular
marker PMP22, a short-lived glycoprotein present in Schwann cells
(Fortun et al, 2003). Following bortezomib treatment, PMP22
showed a distinct juxtanuclear and rounded appearance and
colocalised with g-tubulin to form aggresomes (Figure 2A), as
previously reported (Fortun et al, 2003). Interestingly, treatments
with VCR completely abrogated the bortezomib-induced accumu-
lation of PMP22, which was instead observed as numerous spots in
the perikaryon (Figure 2B).

We next analysed whether treatments with a combination of
reagents could reduce aggresome formation. Intriguingly, pre-
treatment with the histone deacetylase inhibitor (HDACi) SAHA
(Figure 2C), the anticonvulsant CZP (Figure 2D), or the HSP90
inhibitor 17-AAG (Figure 2E) caused the appearance of round
structures, which were smaller than aggresomes, outside of the

cells and with no juxtanuclear aggresomes (Figure 3). In contrast,
pretreatment with VPA, also an anticonvulsant and an HDACi,
caused the appearance of rounded structures outside of the cells in
addition to juxtanuclear aggresomes (Figures 2F and 3).

Chaperone-mediated autophagy is responsible for the
enhanced exocytosis of misfolded proteins in Schwann
cells during proteasome inhibition

To analyse the molecular mechanisms underlying the enhanced
exocytosis of misfolded proteins in Schwann cells, we used an
antibodies against the HSP70 chaperone protein and the receptor
for chaperone-mediated autophagy (CMA) at the lysosomal
membrane (which is a unique isoform of LAMP-2, LAMP-2A)
(Cuervo and Dice, 2000; Kaushik et al, 2006). After treatment with
SAHA, 17-AAG, or CZP (Figure 4A, B, or C, respectively) followed
by bortezomib, HSP70 and LAMP-2A were found to colocalise in
structures outside of the cells.

Drugs that protect Schwann cells from aggresome
formation due to bortezomib treatment do not disrupt the
growth inhibitory effects of bortezomib in myeloma cells

Pretreatments of MM cells with the same drugs used in the
RT4-D6P2T cell experiments had few negative effects on the
profound growth inhibitory effects of bortezomib (Figure 5).

DISCUSSION

The findings of our present study using a schwannoma cell model
system suggest that aggresome formations caused by proteasome
inhibition and the excretion pathways of intracellular misfolded
proteins are targets for combination drug candidates that will
alleviate the onset of BiPN during bortezomib treatment.

A recent study of skin biopsies has revealed that BiPN manifests
as predominantly large fibres (Chaudhry et al, 2008). On the other
hand, in some BiPN patients who develop treatment-emergent
neuropathy, the underlying cause has been attributed to the
impairment of small fibres (Richardson et al, 2006), even though
such fibres comprise myelinated Ad and unmyelinated C fibres. In
contrast, it has been proposed that 68–85% of BiPN cases are
reversible (Richardson et al, 2009a, b).
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Figure 3 The percentages of round structures adjacent to the nuclei (i.e.,
aggresomes) and outside the cells were calculated from images showing
the colocalisation of PMP22 and g-tubulin (yellow signals in the far right
panel in Figure 2A). These numbers were measured in triplicate and are
expressed as the means±s.d. The letters in parentheses under the
treatment categories correspond to the images above.
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Figure 4 Combination treatments with bortezomib can augment the exocytosis of misfolded proteins through the chaperone-mediated autophagy of
Schwann cells. The distributions of HSP70/HSC70 (red), a chaperone protein, and LAMP-2A (green), a lysosomal membrane protein with a specific role in
chaperone-mediated autophagy, are shown in response to combination treatments with (A) SAHA, (B) 17-AAG, and (C) CZP. The colocalisation of both
proteins is evidenced by the small rounded structures outside of the cells that appear as an orange signal (arrowheads). Bar, 20 mM.
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Figure 5 The same combinations used in Figures 2 and 3 do not suppress the growth inhibition of multiple myeloma (MM) cells induced by bortezomib.
In MM, cells (MM.1S, KMS-18, and RPMI8226) were treated with bortezomib alone or in combination with SAHA, CZP, 17-AAG, or VPA. The proportion
of viable cells after pretreatment with each drug followed by bortezomib treatment is indicated as a percentage of the untreated cells. These numbers were
measured in triplicate and are expressed as the means±s.d.
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Although it has already been demonstrated that the behaviour of
cells of neoplastic origin can differ markedly from normal cells
(Scuteri et al, 2006), cell lines are usually more tractable for
experimental purpose than primary culture cells. In addition,
because BiPN is predominantly sensory (Richardson et al, 2006;
Richardson et al, 2009a, b), it would have been desirable to use cell

lines that would somewhat mimic the peripheral sensory nerves.
No such cells are currently available however and we thus
employed schwannoma cells for analysis, which are benign and
differentiated tumour cells, rather than neuroblastoma cells used
in previous reports (Scuteri et al, 2006; Csizmadia et al, 2008).

Our present data are consistent with previous observations that
misfolded proteins form aggregates throughout the cell if they are
not degraded by the proteasome (Figure 2B). Furthermore, such
aggregates are then transported in a microtubule (MT)-dependent
manner to the MTOC on the dynein motor complex (Figure 1C,
red) (Johnston et al, 1998; Kopito, 2000; Garcia-Mata et al, 2002).
After treatment with bortezomib, it has been shown that vimentin,
the most common component of the intermediate filament
cytoskeleton (Franke et al, 1978), collapses to form a ‘cage’
surrounding the aggresome, which then adopts a ‘rounded’
morphology (Figure 1C, green) (Johnston et al, 1998; Garcı́a-Mata
et al, 1999). Moreover, our observations of aggresome formations
with a distinct juxtanuclear spherical appearance that colocalise
with g-tubulin (Figure 1A, right) after treatment with proteasome
inhibitor in Schwann cells corroborate those of a previous study
(Fortun et al, 2003). Moreover, our results demonstrating that the
fate of intracellular ubiquitinated aggregation-prone proteins may
be relevant to the development of BiPN support previous findings
for the gene expression profiles of bone marrow cells in MM
patients with treatment-emergent BiPN (Richardson et al, 2009b).
These authors identified distinct classes of gene transcripts,
namely those involved in the initiation and regulation of protein
translation, and their results indicated that enriched proteins that
are released from MM cells may be toxic to the peripheral nervous
system (Richardson et al, 2009b).

PMP22 is associated with a demyelinating PN, Charcot–Marie–
Tooth disease type 1A (Patel et al, 1992), and VCR is contra-
indicated in patients with this disease. In our present study, we
observed that VCR treatment resulted in the dispersion of
aggregates in the cytoplasm and no formation of juxtanuclear
aggresomes (Figure 2B). In other words, because VCR is an
MT-disrupting drug, our result suggests that pretreatment with this
agent might increase BiPN by hindering the movement of unfolded
proteins along the MTs with dynein motor complexes (Figure 6A).
Indeed, other investigators have suggested that the neuropathy
produced by VCR treatment may compromise the ability of the
patients to receive bortezomib (Kyle and Rajkumar, 2009).

The central aim of our current study was to develop a clinically
relevant in vitro system to test drugs that could be combined with
bortezomib to reduce the incidence of BiPN. One of the tested
candidates was the anticonvulsant VPA, which has been used
previously to alleviate the symptoms of painful diabetic neuro-
pathy (Kochar et al, 2004). However, the 6 mM concentration of
VPA used in our experiments is more than 4000-fold higher than
the previously reported clinical dosage (Munster et al, 2009).
Furthermore, our results suggest that VPA may be less effective in
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Figure 6 Schematic representation of the disruption of aggresome
formation (A) and chaperone-mediated autophagy (CMA) (B). (A) Small
peripherally formed aggregates are transported along the microtubule (MT)
tracks by retrograde motors (i.e., dyneins) to a juxtanuclear pericentriolar
location, the MT organisation centre (MTOC). ‘Xvcr’ indicates that VCR
pretreatment before the administration of bortezomib (Bzb) hinders
aggresome formation. This is likely because VCR is an MT-disrupting
drug and the aggregates would be unable to move along the MTs on
the dyneins towards the MTOC. (B) SAHA, CZP, 17-AAG, and VPA
have the potential to enhance the expression of HSP70/heat-shock
cognate protein of 70 Kd (HSC70), which recognises the specific motif
targeted by CMA in its substrate proteins. Lysosome-associated membrane
protein type 2A (LAMP-2A) is a unique receptor for CMA. Aggregated
proteins are delivered from the cytoplasm out of the cells through
lysosomes (L) by CMA.
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reducing BiPN than other HDACi’s such as SAHA or anticon-
vulsants like CZP. Indeed, pretreatment with VPA followed by
bortezomib was found to elicit juxtanuclear aggresome formation
in addition to the formation of rounded structures outside of the
cells (Figures 2F and 3). On the other hand, SAHA has been shown
previously to disrupt bortezomib-induced aggresome formation in
MM cells (Nawrocki et al, 2008) as a result of the destruction of
HDAC6, which promotes aggresome inclusion of misfolded
polyubiquitylated proteins on the dynein motor complexes along
the MTs (Kawaguchi et al, 2003). The 5 mM concentration of SAHA
used in this study was two- to five-fold higher than the clinically
usable dose in our previous pharmacokinetic analyses of phase I
trials of oral SAHA (Watanabe et al, 2010). However, the 40 nM

quantity of bortezomib used in this study is equivalent to that
observed in our earlier study (Ogawa et al, 2008), and the 40 nM of
VCR, 50 nM of CZP, and 0.5 mM of 17-AAG used in our analyses are
equivalent to the doses for these compounds reported in other
studies (Goetz et al, 2005; Corona et al, 2008; dos Santos et al,
2009, respectively).

The results of our current analyses shown in Figure 4 suggest
that following pretreatment with the candidate drugs, the
aggregated proteins are discarded outside of the cells by CMA
(Kaushik et al, 2006). The evidence in support of CMA as the
mechanism of disposal in this case is that the antibody used in our
experiments does not distinguish between HSP70 and the heat-
shock cognate protein of 70 Kd (HSC70) (Shen et al, 2009), which
recognises the CMA-targeting motif in the substrate protein
(Agarraberes et al, 1997). To our knowledge, the role of CMA
either under conditions of proteasome inhibition or in the nervous
system has never been previously reported. However, HSP70 and
LAMP-2A, a specific receptor for CMA, were found in our analysis
to be colocalised in the rounded structures including misfolded
proteins (Figure 4). By inducing the chaperone protein, we
speculate that these agents may promote an additional degradation
pathway via lysosomes to excrete aggregated proteins from
Schwann cells. This is different from the retrograde transport of
aggregated proteins to form aggresomes along MTs from the
periphery in the cytoplasm to the MTOC, thus aiding cells in the
disposal of aggregated proteins (Figure 6B).

The overexpression of HSP70, which could be induced by
SAHA alone in our experiments (Figure 4A, data not shown), is a

well-described consequence of HSP90 inhibition by 17-AAG
(Guo et al, 2005). This finding is consistent with the results
from series of previous reports, which showed that a pan-HDACi
similar to SAHA inhibits the HSP90 deacetylase HDAC6
(Bali et al, 2005), and that acetylation of HSP90 releases heat-
shock factor-1 from HSP90 (Zou et al, 1998) and consequently
induces HSP70 expression (Morimoto, 1998). Furthermore, our
present in vitro data may corroborate the results of a clinical trial
with bortezomib and tanespimycin (a cremophor-based formula-
tion of 17-AAG) in which BiPN was reduced (Mitsiades et al,
2009; Richardson et al, 2010). In the case of SAHA, a multicentre
phase I trial in combination with bortezomib for relapsed or
refractory MM patients has been performed and only mild PN
was reported (Badros et al, 2009). Another case series has
reported gastrointestinal tract events only without discontinua-
tion or dose adjustments of either agent (Mazumder et al,
2010). Interestingly, HSP70 has also been show to have a
major role in the cellular defence against the toxic effects of
misfolded proteins in neurodegenerative diseases such as amyo-
trophic lateral sclerosis (Gifondorwa et al, 2007), Parkinson’s
disease (Roodveldt et al, 2009), and Huntington’s disease (Wacker
et al, 2009).

As the binding of substrates, that is, misfolded proteins, to
LAMP-2A is the limiting step for degradation via CMA (Cuervo
and Dice, 1996), the induction of LAMP-2A as well as HSP70/
HSC70 may be a promising marker for screening drugs that may
reduce BIPN.

In summary, although the results of our present study are
preliminary and in vitro only, our data suggest that the
combination of bortezomib and SAHA, 17-AAG, or CZP has the
potential to reduce BiPN. As bortezomib is currently an important
component of combination treatment for MM, our in vitro system
may allow MM patients to continue to benefit from bortezomib in
the future.
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