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BACKGROUND: Hypopharyngeal squamous cell carcinoma (HSCC) is an aggressive malignancy with one of the worst prognoses among
all head and neck cancers. Greater understanding of the pertinent molecular oncogenic pathways could help improve diagnosis,
therapy, and prevention of this disease. The aim of this study was to identify tumour-suppressive microRNAs (miRNAs), based on
miRNA expression signatures from clinical HSCC specimens, and to predict their biological target genes.
METHODS: Expression levels of 365 human mature miRNAs from 10 HSCC clinical samples were screened using stem-loop real-time
quantitative PCR. Downregulated miRNAs were used in cell proliferation assays to identify a tumour-suppressive miRNA. Genome-
wide gene expression analyses were then performed to identify the target genes of the tumour-suppressive miRNA.
RESULTS: Expression analysis identified 11 upregulated and 31 downregulated miRNAs. Gain-of-function analysis of the downregulated
miRNAs revealed that miR-489 inhibited cell growth in all head and neck cancer cell lines examined. The gene PTPN11 coding for a
cytoplasmic protein tyrosine phosphatase containing two Src Homology 2 domains was identified as a miR-489-targeted gene.
Knockdown of PTPN11 resulted in the inhibition of cell proliferation in head and neck SCC cells.
CONCLUSION: Identification of the tumour-suppressive miRNA miR-489 and its target, PTPN11, might provide new insights into the
underlying molecular mechanisms of HSCC.
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Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively
rare disease, with an incidence of about 10 cases per million
people-years (Davies and Welch, 2006). Hypopharyngeal squa-
mous cell carcinoma has a very poor prognosis compared with
other head and neck squamous cell carcinomas (HNSCCs), with
5-year survival rates ranging from 30 to 35% (Hoffman et al, 1997;
Bova et al, 2005). This poor prognosis is thought to result from
advanced primary disease, a high rate of loco-regional recurrence,
distant metastasis, and second primary tumours (Spector et al,
2001; Helliwell, 2003). Survival rates of HSCC patients have not
markedly improved despite recent advances in various treatment
modalities, including surgery, radiotherapy, and chemotherapy
(Godballe et al, 2002). Understanding the molecular oncogenic
pathways underlying HSCC could significantly improve diagnosis,
therapy, and prevention of the disease.
MicroRNAs (miRNAs) are endogenous small non-coding RNAs

that can control gene expression by targeting messenger RNAs
(mRNAs) for cleavage or translational repression (Bartel, 2004).
The miRNAs are involved in crucial biological processes, including
development, differentiation, apoptosis, and proliferation (Bartel,
2004; Kloosterman and Plasterk, 2006). An important role for

miRNAs in the development of cancer has emerged in recent years
(Hwang and Mendell, 2006). The miRNAs are aberrantly expressed
in many human cancers, and they may function as oncogenes
and tumour suppressors. Upregulated miRNAs could function as
oncogenes by negatively regulating tumour suppressor genes,
while, downregulated miRNAs could act as tumour suppressors,
inhibiting cancers by regulating oncogenes (Esquela-Kerscher and
Slack, 2006; Hammond, 2006; Zhang et al, 2007).
A growing body of evidence indicates that unique miRNA

expression profiles associated with particular cancers could serve
as useful biomarkers for disease prognosis and diagnosis (Lu et al,
2005; Calin and Croce, 2006; Childs et al, 2009). Studies have been
carried out for the purpose of identifying specific miRNA
alterations in HNSCC (for review, see Liu et al, 2009). However,
limited data are available on miRNA expression signatures
in HSCC clinical specimens (Childs et al, 2009; Ramdas et al,
2009; Hui et al, 2010). Knockdown or overexpression of a specific
miRNA allows functional investigation and validation of the
specific role of the miRNAs in tumourigenesis. Analysis of the
expression signature of laryngeal, oropharyngeal, or hypo-
pharyngeal cancers showed that underexpression of miR-375 and
overexpression of miR-106b-25 cluster might contribute to
oncogenesis (Hui et al, 2010).
In this functional analysis of miRNA in HSCC, differentially

expressed miRNAs were identified by evaluating 365 mature
miRNAs from clinical specimens of HSCC. Cell proliferation assays
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were conducted to identify tumour-suppressive miRNAs, and
genome-wide gene expression analysis was used to identify their
targets. The identification of tumour-suppressive miRNAs, and
their corresponding target genes, could provide new insights
into HSCC carcinogenesis.

MATERIALS AND METHODS

Clinical HSCC specimens

Tissue specimens of HSCC and adjacent non-cancerous hypo-
pharynx tissue were obtained from patients undergoing surgical
treatment for HSCC at Chiba University Hospital between 2004
and 2009. Tissues were immediately frozen in liquid nitrogen and
stored at �801C until further processing. Non-cancerous tissues
were obtained far from the centre of the cancer in surgical
specimens. No cancer cells were detected in neighbouring
formalin-fixed paraffin-embedded specimens. Infection by human
papillomavirus (HPV) types HPV16, HPV18, and HPV33 was
investigated using genomic DNA from clinical specimens with the
PCR Human Papillomavirus Detection Set (Takara, Tokyo, Japan)
according to the manufacturer’s instructions.
This study was approved by the Bioethics Committee of Chiba

University. Prior written informed consent and approval were
obtained from all patients.

Cell lines and cell culture

Four of the squamous cell carcinoma cell lines (FaDu, HSC2, HSC3,
and D562) were maintained in Dulbecco’s Modified Eagle’s
Medium/Nutrient Mixture F-12 Ham (Invitrogen, Carlsbad, CA,
USA), supplemented with 10% foetal bovine serum (Invitrogen) in
a humidified atmosphere containing 5% CO2 at 371C. The FaDu
cell line was derived from HSCC tissue (Rangan, 1972). The three
remaining cell lines were derived from oral floor (HSC2), tongue
(HSC3), and nasopharynx (D562) (Peterson et al, 1971; Momose
et al, 1989).

RNA isolation

Total RNA was isolated using TRIzol reagent (Invitrogen)
according to the manufacturer’s protocol. The concentrations of
RNA were determined using a spectrophotometer, and molecule
integrity was checked by gel electrophoresis. The quality of RNA
was confirmed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA).

The miRNA expression signatures and data normalisation

The miRNA expression patterns were evaluated using the TaqMan
Low Density Array Human MicroRNA Panel v1.0 (Applied
Biosystems, Foster City, CA, USA). The assay was composed of two
steps: generation of complementary DNA (cDNA) by reverse
transcription, followed by a TaqMan real-time PCR assay. Briefly,
miRNAs in the samples were converted to cDNA using 365 specific
stem-loop reverse transcription primers. After cDNA conversion, the
quantity of mature miRNAs was evaluated using specific TaqMan
real-time PCR primers and probes. Real-time PCR was performed in
duplicate using GeneAmp Fast PCR Master Mix (Applied Biosystems)
and the ABI 7900HT Real-Time PCR System (Applied Biosystems).
The Ct values were transformed using the following formula:
expression score¼ 2(40�Ct), and the calculated data were uploaded
into GeneSpring GX version 7.3.1 software (Silicon Genetics,
Redwood City, CA, USA) as described previously (Ichimi et al,
2009; Kano et al, 2010). Description of real-time PCR and the list of
human miRNAs can be found on the Applied Biosystems website.
Three approaches were used to normalise the miRNA expression

data: global normalisation and endogenous gene normalisation

based on RNU44 and RNA48 (Ichimi et al, 2009; Kano et al, 2010).
The miRNAs that were detected by all these three normalisation
methods were chosen for further study. The fold change, normal-
isation ratio and P-values were calculated during global normal-
isation.

Mature miRNA transfection

Mature miRNA molecules, pre-miR miRNA precursors, and
a negative control (Applied Biosystems) were incubated with
Opti-MEM (Invitrogen) and Lipofectamine RNAiMax reagent
(Invitrogen) as described previously (Ichimi et al, 2009).
Transfection efficiency of pre-miR in the cell lines was confirmed
on the basis of downregulation of PTK9 mRNA by transfection
with miR-1 (as recommended by Applied Biosystems).

XTT (cell proliferation) assay

Cells were transfected with 10 nM miRNA by reverse transfection
and plated into 96-well plates at 3� 103 cells per well. After 72 h,
cell viability was determined with the XTT assay, using Cell
Proliferation Kit II (Roche Molecular Biochemicals, Mannheim,
Germany) as described previously (Kano et al, 2010). Triplicate
wells were assayed for cell viability in each treatment group.

Target gene search for miR-489

Expression profiles of FaDu cells transfected with miR-489 were
screened and compared against miRNA-negative control transfec-
tants using Oligo-microarray Human 44K arrays (Agilent Techno-
logies; Chiyomaru et al, 2010; Kano et al, 2010). Hybridisation and
washing steps were performed as described previously (Sugimoto
et al, 2009). The arrays were scanned using a Packard GSI
Lumonics ScanArray 4000 (Perkin Elmer, Boston, MA, USA). The
data were analysed using DNASIS array software (Hitachi Software
Engineering, Tokyo, Japan), which converted the signal intensity
of each spot into text. The log2 ratios of the median subtracted
background intensity were analysed. Data from each microarray
study were subjected to a global normalisation (Sugimoto et al,
2009).
The predicted target genes and their conserved miRNA-binding

site seed regions were investigated using TargetScan (release 5.1,
http://www.targetscan.org/). The sequences of the predicted
mature miRNAs were confirmed using miRBase release 13.0
(http://microrna.sanger.ac.uk/).

Real-time quantitative RT–PCR

First-strand cDNA was synthesised from 1 mg total RNA using
random primers and the Reverse Transcription (RT) System
(Promega, Tokyo, Japan). Gene-specific PCR products were assayed
continuously using a 7900-HT Real-Time PCR System with TaqMan
probes and primers for PTPN11 (P/N: Hs00818825_m1, Assay-On-
Demand Gene Expression Products; Applied Biosystems), according
to the manufacturer’s protocol. The initial PCR step consisted of a
10-min hold at 951C, followed by 40 cycles of 15-s denaturation at
951C, and 1min annealing/extension at 631C. For cell lines and
clinical samples, GAPDH (A/N: NM_002046) and 18S rRNA (P/N:
4333760F), respectively, were used as internal controls (Assay-
On-Demand Gene Expression Products; Applied Biosystems). All
reactions were performed in triplicate, and included negative
control reactions that lacked cDNA.

Immunoblotting

Cells were collected 72 h after transfection and protein lysates were
prepared. A total of 50mg of lysate was separated by NuPAGE
on a 4–12% bis–tris gel (Invitrogen) and transferred onto
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a polyvinylidene fluoride membrane. Immunoblotting was per-
formed with diluted (1 : 100) monoclonal anti-PTPN11 antibody
(ab76285, Abcam, Cambridge, UK), with b-actin serving as an
internal control. The membrane was washed and incubated with
goat anti-mouse IgG (Hþ L)–HRP conjugate (Bio-Rad, Hercules,
CA, USA). Specific complexes were visualised by echochemilumi-
nescence (GE Healthcare Bio-Sciences, Princeton, NJ, USA).

Plasmid construction and dual-luciferase assay

The miR-489 target sequences were chemically synthesised
(Takara, Tokyo, Japan) and inserted between the XhoI and PmeI
restriction sites in the 30 UTR of the hRluc gene in the psiCHECK-2
vector (Promega). FaDu cells were then transfected with 5 ng
vector, 10 nM mature miRNA molecules, pre-miRNA miR-489
(Applied Biosystems), and 1 mg Lipofectamine 2000 (Invitrogen) in
100ml Opti-MEM. Firefly and Renilla luciferase activities in cell
lysates were determined using a dual-luciferase assay system
(Promega). Normalised data were calculated as the quotient of
Renilla/firefly luciferase activities.

Small interfering RNA treatment

After co-transfection of 1 or 10 nM small interfering RNA PTPN11
(si-PTPN11; ID S11524, Ambion) or non-silencing small interfer-
ing RNA (si-control), FaDu cells were seeded into 96-well plates at
a density of 3� 103 cells per well. After 72 h, cell viability was
determined using the XTT assay. Triplicate wells were measured
for cell viability in each treatment group.

Statistical analysis

The relationships between two groups and the numerical values
obtained by real-time RT–PCR were analysed using the non-
parametric Mann–Whitney U test or the paired t-test. The
relationship between miR-489 expression and PTPN11 expression
was analysed using the Spearman rank correlation. Expert
StatView (version 4, SAS Institute, Cary, NC, USA) was used
for analyses, with statistical significance defined as Po0.05.

RESULTS

Identification of differentially expressed miRNAs in
clinical HSCC specimens

The expression of 365 mature miRNAs was evaluated in matched
pairs of HSCC and their adjacent non-cancerous tissues from
10 patients (Table 1) after HPV infection was ruled out in all

specimens. Following three normalisations (RNU44, RNU48 and
global) of the raw data, 42 differentially expressed miRNAs were
found using all three methods. Of these, 11 (3.0%) were
upregulatedd and 31 (8.5%) were downregulated in cancerous
tissues. The fold change, normalisation ratio, and P-values in
Tables 2A and B were revealed by global normalisation.

Identification of tumour-suppressive miRNAs

The effect of increasing levels of downregulated miRNAs on cancer
cell proliferation was used to identify miRNAs with tumour
suppression activity. The proliferation rates of HSCC transfectants
are shown in Figures 1A–D. ‘Cell growth inhibiting miRNAs’ were
defined as miRNA species that decreased cell proliferation by more
than 30% compared with control transfectants. Three miRNAs
(miR-504, miR-1, and miR-489) showed cell growth inhibition in
FaDu cells (Figure 1A). Similarly, six miRNAs (miR-489, miR-195,

Table 1 HSCC patients’ characteristics for miRNA screening test

Patient Age

TNM stage

number Gender (years) Differentiation T N M

1 M 58 Well 3 2c 0
2 M 71 Moderate 1 0 0
3 M 60 Moderate 3 2c 0
4 M 69 Moderate 3 2c 0
5 M 60 Moderate 2 2c 0
6 F 74 Moderate 4a 2b 0
7 M 57 Moderate 4a 2c 0
8 M 62 Moderate 2 1 0
9 F 52 Well 4a 2b 0
10 M 56 Moderate 4a 2b 0

Abbreviations: HSCC¼ hypopharyngeal squamous cell carcinoma;
miRNA¼microRNA.

Table 2 (a) Upregulated miRNAs in HSCC and (b) downregulated
miRNAs in HSCC

Normalized ratio

Gene/miRNA Fold change Non-cancer Cancer P-value

(A)
miR-517c 24.862 0.1511 3.7568 3.66E�05
miR-196a 10.073 0.7187 7.2388 1.40E�02
miR-7 9.301 0.5490 5.1059 1.80E�04
miR-196b 6.698 0.4192 2.8074 8.24E�04
miR-650 4.924 0.7011 3.4519 1.81E�02
miR-18a 3.518 0.6705 2.3590 2.76E�03
miR-452 3.478 0.7385 2.5683 2.93E�02
miR-183 3.063 0.6892 2.1110 2.93E�02
miR-432 3.027 0.5053 1.5296 2.38E�02
miR-301a 2.822 0.7331 2.0691 1.37E�02
miR-21 2.675 0.6324 1.6920 2.76E�03

(B)
miR-1 0.007 59.2640 0.4360 2.40E�02
miR-375 0.033 4.0344 0.1322 7.25E�05
miR-139-5p 0.092 4.3646 0.4012 1.52E�04
miR-504 0.147 2.5714 0.3793 1.20E�02
miR-125b 0.232 2.2884 0.5314 7.15E�04
miR-199b 0.268 1.5739 0.4217 6.53E�03
miR-100 0.274 1.7713 0.4861 2.76E�03
miR-497 0.278 2.0062 0.5575 7.15E�04
let-7c 0.282 1.8374 0.5182 3.66E�03
miR-30a* 0.318 1.6777 0.5330 1.20E�02
miR-218 0.322 1.5021 0.4835 1.27E�02
miR-10b 0.328 1.9344 0.6353 5.89E�03
miR-126* 0.341 2.2839 0.7788 8.91E�03
miR-378 0.342 2.0853 0.7125 2.93E�02
miR-328 0.349 1.5447 0.5394 1.25E�03
miR-204 0.356 2.1216 0.7556 3.36E�02
miR-143 0.365 1.5665 0.5710 5.89E�03
miR-126 0.372 1.6993 0.6324 5.64E�04
miR-99a 0.374 1.3994 0.5229 2.93E�02
miR-195 0.393 1.7477 0.6864 1.29E�03
miR-489 0.404 1.6276 0.6572 9.07E�03
miR-203 0.446 1.4617 0.6512 3.36E�02
miR-140-5p 0.470 1.3766 0.6476 5.64E�04
miR-29a 0.484 1.4544 0.7046 5.23E�03
miR-26a 0.490 1.5074 0.7379 5.89E�03
miR-214 0.490 1.3913 0.6815 3.70E�02
miR-30a 0.546 1.3110 0.7162 5.89E�03
miR-26b 0.550 1.2776 0.7030 1.27E�02
miR-30e* 0.571 1.3696 0.7814 4.71E�02
miR-30b 0.610 1.3094 0.7984 1.27E�02
let-7b 0.618 1.3212 0.8162 3.95E�02

Abbreviations: HSCC¼ hypopharyngeal squamous cell carcinoma; miRNA¼microRNA.
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miR-497, miR-126, miR-1, and miR-29a) were identified in HSC2
cells (Figure 1B), six miRNAs (miR-195, miR-497,miR-140,miR-489,
miR-126, and miR-328) in HSC3 cells (Figure 1C), and five miRNAs
(miR-489, miR-30e*, miR-195, miR-126, and miR-30a*) in D562 cells
(Figure 1D). Of the 31 downregulated miRNAs (Table 2B), miR-489
inhibited cell growth in all four of the cancer cell lines tested and
was, therefore, chosen for further study.

Screening of miR-489 target genes by genome-wide gene
expression analysis

The molecular basis of miR-489 tumour suppression in HSCC was
investigated by examining the effect of miR-489 on protein-coding
genes. Mature miR-489 was transiently transfected into FaDu cells,
with negative-miRNA transfection used as a control. Comprehensive
gene expression analysis showed changes in gene expression
patterns between miR-489 and negative-control transfectants. To
identify candidate miR-489 target genes, a cut-off of values less than
�2.00-fold was applied to the array data. This filtering resulted in
the detection of 53 genes that were significantly downregulated upon
miR-489 transfection (Table 3). Entries from the microarray data
were approved by the Gene Expression Omnibus, and were assigned
the Gene Expression Omnibus accession number GSE19718.
The 30 UTR regions of these downregulated genes were

examined for miR-489 target sites using the TargetScan database.
Of the 53 putative gene targets, 32 genes contained miR-489 target
sites (Table 3).

Effect of miR-489 transfection on PTPN11 expression in
cancer cells

One of the genes with miR-489 target sites in its 30 UTR is PTPN11.
This gene encodes a protein tyrosine phosphatase (PTP) that

contains two Src Homology 2 domains. Although PTPs generally
act as tumour suppressors, PTPN11 has been identified as the first
PTP oncogene (Tonks, 2006). Therefore, this gene was investigated
further as a target of miR-489.
To determine whether miR-489 regulates PTPN11 expression,

miR-489 was introduced into FaDu cells. Gain-of-function effects
of miR-489 were investigated 72 h after transfection. The expres-
sion of miR-489 was elevated by 41000-fold in FaDu cells
compared with the miR-negative control (Figure 2A). The mRNA
levels for PTPN11 were significantly repressed (Figure 2B).
Immunoblotting confirmed that PTPN11 protein expression was
significantly decreased in miR-489 transfectants (Figure 2C).
A luciferase reporter assay was performed to determine whether

PTPN11 mRNA contains a miR-489 target site, as predicted by the
TargetScan algorithm. A vector encoding the partial 30 UTR of
PTPN11 (position 3300–3850) exhibited significantly decreased
luminescence intensity after miR-489 transfection (Figure 3). To
determine the specific site targeted by miR-489, two vectors
carrying deletions of candidate target sites were constructed
(deleted positions 3353–3359 and 3803–3809). Luminescence
intensity was significantly decreased for the vectors carrying the
30 UTR and the deletion at position 3353–3359, but not in the
vector with the deletion at position 3803–3809 (Figure 3),
indicating that the region between positions 3803–3809 contains
the miR-489 target site.

Effect of si-PTPN11 transfection

A loss-of-function assay using small interfering RNA analysis was
performed to examine the oncogenic function of PTPN11, which is
directly targeted by miR-489. The effect of si-PTPN11 on mRNA
and protein expression levels was evaluated after transfection into
FaDu cells. Both PTPN11 mRNA and protein levels had been
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Figure 1 Effect of transfection with 31 downregulated miRNAs on cancer cell proliferation. Cancer cells were transfected with 10 nM of the indicated
mature miRNA. After incubation for 72 h, cell proliferation was determined using XTT assays. (A) FaDu cells; (B) HSC2 cells; (C) HSC3 cells; (D) D562
cells. The darkly shaded bars represent a decrease in cell proliferation of more than 30% compared with control transfections.
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reduced 72 h after transfection (Figures 4A and B). The contri-
bution of PTPN11 to cell viability was assessed with si-PTPN11
loss-of-function assays in FaDu cells. Knockdown of PTPN11
significantly decreased cancer cell growth compared with
si-control transfectants (Figure 4C).

PTPN11 overexpression in HSCC clinical specimens

The mRNA expression levels of PTPN11 were significantly higher
in 16 HSCC tissues than in adjacent non-cancerous hypo-
pharyngeal tissues (Figure 5A). The possibility that the expression
of PTPN11 and the miR-489 were correlated was tested using
the Spearman rank correlation. However, the inverse correlation

between PTPN11 and miR-489 expression levels was too low to be
statistically significant (rs¼�0.283 and P¼ 0.11; Figure 5B).

DISCUSSION

Unique miRNA expression profiles associated with particular
cancers could serve as biomarkers for prognosis and diagnosis
(Lu et al, 2005; Calin and Croce, 2006; Childs et al, 2009). This
study of miRNA expression signatures in clinical HSCC specimens
resulted in the identification of 42 differentially expressed
miRNAs, of which 11 were upregulatedd (Table 2A) and 31 were
downregulated (Table 2B). As HSCC has a very poor prognosis

Table 3 Downregulated genes by miR-489 treatment in FaDu cells

No. Symbol Gene Name Gene ID Location Fold Target sites

1 CTDSPL2 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A)
small phosphatase like 2

NM_016396 15q15.3 �3.59 3

2 PTPN11 Protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1) NM_002834 12q24.13 �3.40 2
3 GPR110 G protein-coupled receptor 110 NM_025048 6p12.3 �3.05 —
4 CLIP4 CAP-GLY domain containing linker protein family, member 4 NM_024692 2p23.2 �2.87 1
5 VGF VGF nerve growth factor inducible NM_003378 7q22.1 �2.85 —
6 CD244 CD244 molecule, natural killer cell receptor 2B4 NM_016382 1q23.3 �2.72 —
7 SUZ12 Suppressor of zeste 12 homologue (Drosophila) NM_015355 17q11.2 �2.68 3
8 LIN28B Lin-28 homologue B (Caenorhabditis elegans) NM_001004317 6q21 �2.68 1
9 AP1S1 Adaptor-related protein complex 1, sigma 1 subunit NM_001283 7q22.1 �2.62 1
10 NF2 Neurofibromin 2 (merlin) NM_181831 22q12.2 �2.55 1
11 AP1M2 Adaptor-related protein complex 1, mu 2 subunit NM_005498 19p13.2 �2.54 1
12 A2ML1 Alpha-2-macroglobulin-like 1 NM_144670 12p13.31 �2.52 —
13 CRIPT Cysteine-rich PDZ-binding protein NM_014171 2p21 �2.51 1
14 EGR1 Early growth response 1 NM_001964 5q31.2 �2.51 —
15 CYP1B1 Cytochrome P450, family 1, subfamily B, polypeptide 1 NM_000104 2p22.2 �2.49 2
16 NAP1L1 Nucleosome assembly protein 1-like 1 NM_139207 12q21.2 �2.48 —
17 AHNAK AHNAK nucleoprotein NM_001620 11q12.3 �2.48 —
18 FAM26E Family with sequence similarity 26, member E NM_153711 6q22.1 �2.43 1
19 RAVER2 Ribonucleoprotein, PTB-binding 2 NM_018211 1p31.3 �2.42 —
20 RASL10A RAS-like, family 10, member A NM_001007279 22q12.2 �2.40 —
21 C14orf147 Chromosome 14 open reading frame 147 NM_138288 14q13.1 �2.38 1
22 C14orf143 Chromosome 14 open reading frame 143 NM_145231 14q32.11 �2.37 1
23 HTR2B 5-hydroxytryptamine (serotonin) receptor 2B NM_000867 2q37.1 �2.37 1
24 MYLK Myosin light chain kinase NM_053025 3q21.1 �2.33 —
25 TFAP4 Transcription factor AP-4 (activating enhancer-binding protein 4) NM_003223 16p13.3 �2.33 1
26 MYO3B Myosin IIIB NM_138995 2q31.1 �2.32 1
27 OSTM1 Osteopetrosis-associated transmembrane protein 1 NM_014028 6q21 �2.32 1
28 MARCKS Myristoylated alanine-rich protein kinase C substrate NM_002356 6q22.1 �2.29 2
29 KCTD4 Potassium channel tetramerisation domain-containing 4 NM_198404 13q14.12 -2.26 1
30 GCLC Glutamate-cysteine ligase, catalytic subunit NM_001498 6p12.1 �2.26 —
31 ERRFI1 ERBB receptor feedback inhibitor 1 NM_018948 1p36.23 �2.26 1
32 MDH1 Malate dehydrogenase 1, NAD (soluble) NM_005917 2p15 �2.26 —
33 IL15 Interleukin 15 NM_172174 4q31.21 �2.26 —
34 ZCCHC5 Zinc finger, CCHC domain-containing 5 NM_152694 Xq21.1 �2.26 —
35 GRB10 Growth factor receptor-bound protein 10 NM_001001555 7p12.2 �2.25 2
36 KLHL5 Kelch-like 5 (Drosophila) NM_015990 4p14 �2.21 1
37 BLID BH3-like motif containing, cell death inducer NM_001001786 11q24.1 �2.20 —
38 CFL2 Cofilin 2 (muscle) NM_021914 14q13.2 �2.19 3
39 SLC24A1 Solute carrier family 24 (sodium/potassium/calcium exchanger), member 1 NM_004727 15q22.31 �2.17 1
40 CDIPT CDP-diacylglycerol – inositol 3-phosphatidyltransferase (phosphatidylinositol synthase) NM_006319 16p11.2 �2.14 1
41 RTP4 Receptor (chemosensory) transporter protein 4 NM_022147 3q27.3 �2.14 —
42 ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide NM_001679 3q23 �2.14 1
43 NCOA3 Nuclear receptor coactivator 3 NM_181659 20q13.12 �2.14 2
44 CDK6 Cyclin-dependent kinase 6 NM_001259 7q21.2 �2.12 1
45 RP11-11C5.2 Similar to RIKEN cDNA 2410129H14 NM_001071775 13q22.1 �2.11 2
46 UNQ9438 TIMM9 NM_207377 14q23.1 �2.08 —
47 MAGEH1 Melanoma antigen family H, 1 NM_014061 Xq11.21 �2.07 —
48 HPS3 Hermansky–Pudlak syndrome 3 NM_032383 3q24 �2.05 1
49 RNF149 Ring finger protein 149 NM_173647 2q11.2 �2.04 —
50 NUPL1 Nucleoporin-like 1 NM_014089 13q12.13 �2.03 —
51 SLC25A40 Solute carrier family 25, member 40 NM_018843 7q21.12 �2.03 —
52 ZCCHC4 Zinc finger, CCHC domain-containing 4 NM_024936 4p15.2 �2.02 1
53 TMEM64 Transmembrane protein 64 NM_001008495 8q21.3 �2.01 1
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compared with other HNSCCs, these HSCC miRNA expression
signatures could help elucidate the underlying molecular mecha-
nisms of this disease.
The miRNA expression signatures of head and neck cancers

have been reported by several laboratories (Chang et al, 2008;
Wong et al, 2008; Avissar et al, 2009; Chen et al, 2009; Childs et al,
2009). A comparison of our data with these published expression
signatures revealed that miR-21, miR-18a, and miR-196b are
commonly upregulatedd in head and neck cancers. It was already
known that miR-21, which functions as an oncogene (Chang et al,

2008), stands out as the miRNA most often overexpressed across a
diverse range of malignancies (Esquela-Kerscher and Slack, 2006).
Further studies are needed to clarify the functions of these
upregulatedd miRNAs and their role in HSCC carcinogenesis.
A total of 17 of the 31 downregulated miRNAs identified in this

study (miR-1, miR-375, miR-139–5p, miR-125b, miR-199b, miR-100,
miR-497, miR-30a, miR-218, miR-10b, miR-204, miR-143, miR-99a,
miR-195, miR-140–5p, miR-26b, and miR-30b) are previously reported
head and neck cancer signatures. In HNSCC, miR-125b and miR-100
have tumour-suppressive functions (Henson et al, 2009). The miR-375
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Figure 2 miR-489 negatively regulates PTPN11 expression. FaDu cells were transfected with miR-489. After incubation for 72 h, total RNA and proteins
were isolated. (A) FaDu cells were treated with a miR-negative control (10 nM) or miR-489 (10 nM). After 72 h, miR-489 expression was measured by
TaqMan quantitative real-time PCR. The results are normalised to RNU44 expression. (B) PTPN11 mRNA expression was analysed by TaqMan quantitative
real-time PCR. The results are normalised to GAPDH expression and are presented relative to control expression. * Po0.05. (C) Cell lysates were analysed
by immunoblotting. Membranes were incubated with anti-PTPN11 IgG and anti-b-actin IgG. The autoradiographic density of each protein band was
quantified using NIH ImageJ software. The results are standardised against b-actin levels and are presented as the relative density.
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was the most downregulated miRNA in the HNSCC samples, including
hypopharyngeal cancer, and its increased expression leads to a
significant reduction in cell viability in cancer cells (Hui et al, 2010).
Tumour-suppressive miRNAs are usually underexpressed in

cancer cells (Esquela-Kerscher and Slack, 2006; Hammond, 2006;
Zhang et al, 2007). Therefore, we hypothesised that miRNAs with
HSCC tumour-suppressive activity could be among the 31 down-
regulated miRNAs. In a screen for miRNAs that inhibited cancer
cell proliferation, miR-489 inhibited cell growth in all cell lines
examined (Figure 1), and was identified as a tumour-suppressive
miRNA in HSCC. Although little is currently known regarding the
function of miR-489, a recent report indicated that miR-489 may
regulate early osteogenic differentiation in human mesenchymal
stem cells, and that miR-489 has critical roles in osteogenesis
(Schoolmeesters et al, 2009). However, the relationship between
miR-489 and carcinogenesis remains unclear.
As miRNAs function by negatively regulating protein-coding

genes, it is important to understand the miRNA-target gene

network. Potential targets of miR-489 were observed in a genome-
wide screen using FaDu (HSCC) cells. Of the 53 candidate genes,
32 contained miR-489 target sites, as predicted by the TargetScan
database. More recently, we quickly and successfully screened
miRNA target genes using microarray methods (Chiyomaru et al,
2010; Kano et al, 2010). Tumour-suppressive miRNAs usually
prevent tumour development by inhibiting the activity of
oncogenes (Esquela-Kerscher and Slack, 2006; Hammond, 2006;
Zhang et al, 2007). Therefore, we expected that target genes of
miR-489 would have oncogenic functions. One of the 53 candi-
dates, PTPN11, is a cytoplasmic PTP that contains two Src Homo-
logy 2 domains. These PTPs are generally negative regulators
because of their ability to oppose the effects of protein tyrosine
kinases. Our data demonstrate that PTPN11 has an oncogenic role
and is directly regulated by miR-489 in HSCC cells.
The PTPN11 gene is unusual in that it promotes the activation of

RAS–MAPK signalling pathway in response to various growth
factors and cytokines (Mohi and Neel, 2007; Matozaki et al, 2009).
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Figure 4 Proliferation is inhibited by transfection with si-PTPN11 in FaDu cells. FaDu cells were transfected with 10 nM si-PTPN11. Total RNA and proteins
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GAPDH expression and are presented as relative to control expression. *Po0.05. (B) Cell lysates were analysed by immunoblotting. Membranes were
incubated with anti-PTPN11 IgG and anti-b-actin IgG. The autoradiographic density of each protein band was quantified using NIH ImageJ software.
The results are standardised against b-actin levels and are presented the relative density. (C) FaDu cells were transfected with 1 or 10 nM si-PTPN11.
After incubating for 72 h, cell proliferation was determined using an XTT assay. *Po0.05.

0

2

4

6

8

P = 0.0076

R
el

at
iv

e 
ex

pr
es

si
on

 o
f P

T
P
N
11

0

2

4

6

8

P
T
P
N
11

 e
xp

re
ss

io
n

miR-489 expression

rs = –0.283
P = 0.11

N C 1 32

Figure 5 PTPN11 overexpression in clinical HSCC specimens. (A) PTPN11 mRNA expression levels were analysed by TaqMan quantitative real-time PCR
and normalised to 18S rRNA expression. PTPN11 mRNA expression was compared between matched HSCC and non-cancerous tissues in 16 patients. Data
were analysed using the paired t-test. N, non-cancerous tissues; C, cancer tissues. (B) Correlation between PTPN11 and miR-489 expression in HSCC clinical
specimens.

miR-489 targets PTPN11 in HSCC

N Kikkawa et al

883

British Journal of Cancer (2010) 103(6), 877 – 884& 2010 Cancer Research UK

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



Interestingly, germline PTPN11 mutations have been identified in
patients with Noonan syndrome, juvenile myelomonocytic leukae-
mia, and paediatric acute leukaemia (Aoki et al, 2008). Mutation of
PTPN11 in Noonan syndrome and leukaemic cells resulted in gain-
of-function enhanced phosphatase activity. Molecular and genetic
studies have also shown that PTPN11 mediates cell signalling
by epidermal growth factor (EGF), hepatocyte growth factor, and
interleukin-6; specifically, PTPN11 has a role in the activation of
ERK1/2 MAP kinase by EGF (Chen et al, 2006). The EGF signalling
pathway is involved in a variety of cellular responses including cell
growth and proliferation, and monoclonal antibodies and small-
molecule inhibitors have been developed to inhibit EGF receptor
(EGFR) pathways. These pathways, which include RAS–MAPK
signalling, have been extensively studied in HNSCC, and seem to

have a critical role in the survival and proliferation of cancer cells
(Kalyankrishna and Grandis, 2006) and EGFR is overexpressed in
more than 50% of HSCC specimens (Frank et al, 1993). Our data
suggest that the silencing of miR-489 expression, and subsequent
overexpression of PTPN11, leads to abnormal EGFR signalling.
Future studies will clarify the mechanism by which deregulation of
EGFR signalling networks contributes to HSCC carcinogenesis.
This study is to identify tumour-suppressive miRNAs based on

clinical HSCC miRNA expression signature. We have specifically
identified a tumour-suppressive miRNA (miR-489) and found its
direct target (PTPN11). Disruption of this interaction may lead to
the deregulation of miR-489-PTPN11 signalling in HSCC. The possi-
bility of exploiting the therapeutic implications of these findings for
future treatment of HSCC should be explored in future studies.
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