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Gene expression profiling is a valuable tool for identifying differentially expressed genes in studies of disease subtype and patient
outcome for various cancers. However, it remains difficult to assign biological significance to the vast number of genes. There is an
increasing awareness of gene expression profile as an important part of the contextual molecular network at play in complex
biological processes such as cancer initiation and progression. This study analysed the transcriptional profiles commonly activated at
different stages of gastric cancers using an integrated approach combining gene expression profiling of 222 human tissues and gene
regulatory dynamic mapping. We focused on an inferred core network with CDKN1A (p21WAF1/CIP1) as the hub, and extracted seven
candidates for gastric carcinogenesis (MMP7, SPARC, SOD2, INHBA, IGFBP7, NEK6, LUM). They were classified into two groups based
on the correlation between expression level and stage. The seven genes were commonly activated and their expression levels tended
to increase as disease progressed. NEK6 and INHBA are particularly promising candidate genes overexpressed at the protein level, as
confirmed by immunohistochemistry and western blotting. This integrated approach could help to identify candidate players in gastric
carcinogenesis and progression. These genes are potential markers of gastric cancer regardless of stage.
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Gastric cancer remains a major cause of cancer deaths worldwide
despite early detection and curative surgery. Prognosis is
favourable in early-stage disease with 5-year survival rates of
90% reported following gastrectomy and lymph node dissection.
In contrast, patients diagnosed with advanced-stage cancer have
5-year survival rates of 20–30%, and the overall poor survival
outcome for gastric cancer is attributed to these patient popula-
tions (Dicken et al, 2005). An efficient system for detecting disease
status in gastric cancer regardless of its clinical stage is clearly
needed to improve overall survival.
Gastric cancer is routinely classified according to the tumour-

node-metastasis parameters of the primary tumour, lymph nodes,
and metastasis. This classification helps the clinician to stage the
tumour and develop a management strategy, as well as to provide
an indication of prognosis. However, this conventional classifica-
tion is not strong enough to predict individual prognosis,
rendering uniform adjuvant therapy of limited value because of
unnecessary adverse events. The use of molecular markers or gene
profiling coupled with multivariate predictive models is designed
to attain more accurate prognostic models. Recent molecular

analyses revealed that gastric cancers closely associate with
alterations in several interesting genes, such as p53 (Tamura
et al, 1991; Uchino et al, 1993), p21 (Czerniak et al, 1989), c-met
(Kaji et al, 1996), TGF-b (Park et al, 1994; Nakamura et al, 1998),
and b-catenin (Park et al, 1999). However, these single candidate
molecules yield different results among studies and the available
data are unconvincing. Thus, the potential use of combinations of
multiple markers instead of a single marker has been previously
commented upon for the understanding of cancer biology or the
prediction of patient prognosis (Lee et al, 2007).
The past decade has seen a revolution in high-throughput

technologies for molecular profiling in cancer research. Particu-
larly, gene expression profiling has enabled researchers to quantify
biological states and consequently uncover subtle phenotypes
important in cancer. Such analyses of tumour tissues have
provided unique opportunities to develop profiles that can
distinguish, identify, and classify discrete subsets of disease,
predict the disease outcome, and even predict the response to
therapy (Golub et al, 1999; Perou et al, 2000; van ‘t Veer et al, 2002;
van de Vijver et al, 2002; Pittman et al, 2004). For example,
expression profiling in gastric cancer identified novel target
molecules involved in gastric carcinogenesis by comparing
cancerous and healthy tissues (Boussioutas et al, 2003; Kim et al,
2003, 2005).
Despite their potential power, gene expression profiling has

major limitations. Interpreting the significance of identified genes
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without any unifying biological theme can be difficult, makeshift,
and dependent on the biologist’s area of expertise. It is frequently
challenging to understand a specific regulatory network involving
enormous numbers of proteins. Furthermore, an approach that
ignores biological cues may generate poor reproducibility among
different studies of the same biological system. To overcome these
analytical challenges, several recent studies have focused on
phenotypic analysis of primary tumours using gene expression
profiling, with a view to further understanding the roles of
signalling pathways deregulated by the oncogenic process (Rhodes
and Chinnaiyan, 2005; Rhodes et al, 2005).
This study sought to identify transcriptional profiles commonly

activated across a wide range of stages in gastric cancer, as well as
core networks in gastric carcinogenesis. It used an integrated
approach combining gene expression profiling of over 200
human tissues with dynamic gene mapping. We identified seven
candidates among the network that reflected essential transcrip-
tional features of neoplastic transformation and progression, and
validated these quantitatively by real-time reverse transcription
(RT)–PCR. We also evaluated the expression of the encoded
proteins in gastric cancer tissues by immunohistochemistry and
western blotting, and identified novel potential markers for
detecting gastric cancers.

MATERIALS AND METHODS

Tissue samples

Samples were obtained from 222 patients with gastric cancer who
underwent curative resection at the following institutions: Osaka
University Hospital, National Osaka Hospital, Osaka Medical
Center for Cancer and Cardiovascular Diseases, Sakai Municipal
Hospital, Toyonaka Municipal Hospital, Mino Municipal Hospital,
NTT West Osaka Hospital, Kinki Central Hospital, Suita Municipal
Hospital, and Kansai Rosai Hospital. None of the patients received
chemotherapy or radiotherapy before surgery. Tissues were
evaluated macroscopically and microscopically according to the
general rules for gastric cancer study in surgery and pathology in
Japan. All cancers showed a depth of invasion beyond the
subserosa. The clinical and pathological features are listed in
Table 1. All aspects of our study protocol were performed
according to the ethical guidelines set by the committee of the
three Ministries of the Japanese Government, and each subject
provided informed consent.

Extraction of RNA and quality assessment

The tumour specimens were cut into pieces (approximately
8mm3) within 2 h after surgical resection and stored in RNAlatert

(Ambion, Austin, TX) at �801C until use. Total RNA was purified
from clinical samples using TRIzol reagent (Invitrogen, San Diego,
CA, USA) according to the protocol supplied by the manufacturer.
RNA integrity was assessed using an Agilent 2100 Bioanalyzer and
RNA 6000 LabChip kits (Yokokawa Analytical Systems, Tokyo,
Japan). Only high-quality RNAs with intact 18S and 28S sequences
were used for the subsequent analysis. Fifteen RNA samples
extracted from normal gastric epithelium were mixed as a
reference control.

Preparation of fluorescently labelled aRNA targets and
hybridisation

Extracted RNA samples were amplified with T7 RNA polymerase
using the Amino Allyl MessageAmpt aRNA kit (Ambion)
according to the protocol provided by the manufacturer. The
quality of each Amino Allyl-aRNA sample was checked on the
Agilent 2100 Bioanalyzer. Five mg of control and experimental
aRNA samples were labelled with Cy3 and Cy5, respectively,
mixed, and then hybridised on an oligonucleotide microarray
covering 30 000 human probes (AceGene Human 30K; DNA Chip
Research and Hitachi Software Engineering Co, Yokohama, Japan).
The experimental protocol is available at http://www.dna-chip.
co.jp/thesis/AceGeneProtocol.pdf. The microarrays were scanned
using a ScanArray 4000 (GSI Lumonics, Billerica, MA, USA).

Analysis of microarray data

Signal values were calculated by DNASISArray software
(Hitachi, Tokyo). Following background subtraction, data with
low signal intensities were excluded from additional investigation.
In each sample, the Cy5/Cy3 ratio values were log-transformed
and globally equalised to remove deviation of the signal inten-
sity between whole Cy3- and Cy5-fluorescence by subtracting
the median of all log (Cy5/Cy3) values from each log (Cy5/Cy3)
value. Supplementary information is available on our website
(http://www.dna-chip.co.jp/).

Network analysis

The Ingenuity Pathway (INGP) analysis was used to depict
several networks in gastric cancer. The INGP software is a
web-delivered application that enables biologists to discover,
visualise, and explore therapeutically relevant networks significant
to gene expression data sets. A detailed description of INGP
analysis is available at Ingenuity Systems website (http//www.
ingenuity.com). The average log2 expression values were used to
calculate the fold change between gastric cancer and normal
epithelium. The data set containing gene identifiers and their
corresponding expression values were then uploaded into the
INGP as a tab-delimited text file for analysis. Each gene identifier
was mapped to its corresponding gene object in the Ingenuity
Pathway Knowledge Base.
To understand how the genes identified by inferential statistics

are related as focus genes, we uploaded the target genes into the
Ingenuity Knowledge Base and generated several networks. On
the basis of focus genes, new and expanded pathway maps,
connections, and specific gene–gene interactions were inferred,
functionally analysed, and used to build on the existing pathway
knowledge base. To generate networks, the knowledge base
was queried for interactions between focus genes and all other
gene objects stored therein. The output, displayed graphically
as nodes (genes) and edges (the biological relationship between
the nodes), represented a significantly consistent number
of biological pathways and functions implicated by the empirical
data sets.

Table 1 Clinical and pathological features of 222 patients

Age (years) median (range) 68 (23–92)
Sex (male/female) 156 : 66

Location
Upper 62
Middle 70
Lower 90

Histopathological type
Differentiated 102
Undifferentiated 120

Pathological stage
I 30
II 58
III 81
VI 53
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RT reaction

Complementary DNAs (cDNAs) were generated with avian
myeloblastosis virus reverse transcriptase (Promega, Madison,
WI, USA) using the protocol recommended by the manufacturer.
Briefly, 1 mg of RNA was mixed with RT reagents including oligo-
(dT)15 primer and incubated at 421C for 15min, followed by
heating at 951C for 5min for enzyme inactivation.

Quantitative RT–PCR with the LightCyclert

To validate the microaray data, quantitative PCR was performed
using real-time PCR with a LightCycler (Idaho Tech, ID, USA).
PCR reagents contained 1X LightCycler DNA Master SYBR Green I
(Roche Diagnostics, Mannheim, Germany), 0.2 mM of each primer,
3mM MgCl2, and 2 ml of cDNA template. PCR conditions were as
follows: one cycle of denaturing at 951C for 10min, followed by 40
cycles of 951C for 15 s, 621C for 5 s, and 721C for 10 s. The
housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was amplified quantitatively at the same time to verify
the integrity of RNA and to improve the diagnostic quality of the
technique. The intensity of fluorescence was calculated at each
cycle and a standard curve was constructed with 10-fold serial
dilutions of cDNA obtained from the mixture of normal gastric
epitheliums. The primer sequences for PCR amplification are listed
below: MMP7 forward primer, 50-GTCTCGGAGGAGATGC
TCAC-30 and reverse, 30-GAGGAATGTCCCATACCC-50;
SPARC forward primer, 50-CATTGACGGGTACCTCTCCC-30

and reverse, 30-CGATATCCTTCTGCTTGATGC-50; INHBA
forward primer, 50-ATCATTGCTCCCTCTGGCTA -30 and
reverse, 30- ACGATTTGAGGTTGGCAAAG-50; IGFBP7 forward
primer, 50-AAGTAACTGGCTGGGTGCTG-30 and reverse,
30-TATAGCTCGGCACCTTCACC -50; NEK6 forward primer,
50-TGTCTGCTGTACGAGATGGC-30 and reverse, 30-GATGC
ACATGCTGACCAGTT-50; LUM forward primer, 50-GACATAA
AGAGCTTCTGCAA-30 and reverse, 30-TTGTTCCAGGATA
CAGATATT-50; SOD2 forward primer, 50-GCAAGGAACA
ACAGGCCTTA-30 and reverse, 30-CAGCATAACGATCGTG
GTTT-50; GAPDH forward primer, 50-CAACTACATGGTTTAC
ATGTTC -30 and reverse, 30-GCCAGTGGACTCC
ACGAC -50.

Immunohistochemistry

Sections (3.5-mm thick) were deparaffinised in xylene and
rehydrated. They were subjected to immunohistochemical analysis
using the avidin–biotin–peroxidase complex (ABC) method
with a Vectastain ABC-peroxidase kit (Vector Laboratories,
Burlingame, CA, USA). The tissue sections were incubated overnight
with the primary antibodies; anti-human INHBA (Serotec, Oxford,
UK; 1 : 300 dilution) and anti-human NEK6 (GeneTex, San Antonio,
TX; 1 : 200 dilution), at 41C. Negative control staining was
performed with the use of normal mouse or goat IgG instead of
the primary antibody, yielding negative results in all patients.

Western blotting

Frozen tumour and noncancerous tissues were homogenised
in 0.5ml radioimmunoprecipitation assay buffer (25mmol l�1

Tris (pH 7.4), 50mmol l�1 NaCl, 0.5% sodium deoxycholate, 2%
NP40, and 0.2% SDS) containing protease inhibitors (1mmol l�1

phenylmethylsulfonyl fluoride, 10 mgml�1 aprotinin, and
10 mgml�1 leupeptin). The homogenate was centrifuged at
12 000 g for 20min at 41C. The resulting supernatant was collected
and total protein concentration was determined using the Bradford
protein assay (Bio-Rad, Hercules, CA, USA). Then, 100 mg of the
total protein was premixed with loading buffer (0.05mol l�1 Tris-
HCl (pH 6.8), 2% SDS, 0.2mol l�1 n-mercaptoethanol, 10%

glycerol, and 0.001% bromophenol blue), boiled for 5min, and
subjected to SDS–PAGE on 10% gels. Proteins were then
transferred onto polyvinylidene difluoride membrane (Boehringer
Mannheim) using a transblot apparatus in a buffer containing
0.02mol l�1 Tris-HCl (pH 8.3), 0.2mol l�1 glycine, and 20%
methanol. After blocking in 10% skim milk, the membrane was
incubated overnight with anti-human INHBA (1 : 200 dilution),
anti-human NEK6 (Abgent, San Diego, CA, USA; 1 : 500 dilution)
at 41C, or anti-actin (Sigma-Aldrich, St Louis, MO, USA; 1 : 1000
dilution) for 1 h at room temperature. After three washes each for
10min with TBS (0.02mol l�1 Tris-HCl (pH 7.5) and 0.1mol l�1

NaCl) containing 0.2% Tween 20, the filter was incubated with
secondary antibody at 1 : 1000 dilution. The protein bands were
detected using the enhanced chemiluminescence detection system
(Amersham, Arlington Heights, IL, USA) according to the
instructions supplied by the manufacturer.

RESULTS

Analysis of microarray data

The gene expression profiles of 222 primary gastric cancers were
analysed on a 30K oligonucleotide DNA microarray. Of the full
gene sequences (29 638 expressed genes excluding control spots),
271 (0.9%) genes showed 41.5-fold change in differential
expression in at least 100 samples. Among these 271 genes, 50
had been described previously in gastric cancers, whereas 187
genes were previously not described in gastric cancer and 34 genes
were categorised into ESTs (expressed sequence tags).

Network analysis

Analysis of the commonly overexpressed 271 genes using the
Ingenuity Knowledge Base generated several networks that
identified 203 genes as focus genes. The knowledge base generated
17 networks composed of focus genes and all other gene objects
stored in the base (Table 2). On the basis of overlapping networks,
network-5 was found to be central (Supplementary Figure 1). The
centred network-5 (network-5 and close relevant networks)
included a substantial number of genes already implicated in
gastric carcinogenesis (Figure 1), with numerous focus genes
connected by several neighbourhood genes. Furthermore, the
network analysis mapped CDKN1A (p21WAF1/CIP1) to the core of
the centred network-5, acting as a hub by interacting with
surrounding focus genes. CDKN1A is associated with disease
progression and prognosis in gastric cancer (Czerniak et al, 1989;
Kasper et al, 1998).
We selected seven focus genes showing 42-fold change in

differential expression for further analysis. Three of these are
known to be involved in gastric cancer: MMP7 (Yamashita et al,
1998), SPARC (Wang et al, 2004), and SOD2 (Janssen et al, 2000),
and the other four have no such reported associations (INHBA,
IGFBP7, NEK6, and LUM).

Correlation between activation of candidate gene and
pathological stage

To assess the clinical significance of each and common activation
of the seven genes, we correlated microarray expression level and
pathological stage. By comparing the expression level of each gene
in early stage (stages I and II) and late stage (III and IV), we found
that they could be classified into two groups: group 1 consisted of
MMP7, IGFBP7, and NEK6; their expression levels correlated
significantly with pathological stage (P¼ 0.0087, 0.01, and 0.0085,
respectively, Student’s t-test) (Figure 2A–C), whereas the expres-
sion levels of genes of group 2 (SOD2, SPARC, LUM, INHBA)
showed no such correlation (P¼ 0.25, 0.6, 0.86 and 0.32, res-
pectively, Student’s t-test) (Figure 2E–H ). Interestingly, the mean
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Table 2 Seventeen networks identified in the data set

ID Molecules in network Score Focus molecules

1 AEBP1, Ap1, APOC1, APOC2, APOE, BCL2A1, BID, CCL20, COX2, COX3, CTSL1, GDF15, GLA, HSPE1, IL1, IL32, INDO,
LDL, LTA, LY96, MEOX2, MGP, MMP1, NCOR-LXR-Oxysterol-RXR-9 cis RA, NFkB, NR4A2, PDGF, Rar, RIPK2, Rxr,
SERPINF1, SOD2, STK10, TNF receptor, TNFSF13B

45 26

2 Akt, COL1A1, CSE1 L, CXCL10, CYR61, FAP, FBN1, Fibrin, FN1, IFN-g, Igfbp, IGFBP7, INHBA, Integrin, ITGB2, LTBP2, MIF,
MMP, MMP7, MMP9, MMP12, PCOLCE, PI3K, PLAUR, PRKAA1, SLC3A2, SPARC, SULF1, TGFb, TGFBI, THBS1, THY1,
TIMP1, VCAN, VEGF

45 26

3 ACP5, ACTN1, ADORA3, AGXT, AIF1, CEBPB, CKS1B, CLEC4E, COL10A1, COL1A2, COL3A1, CREB, CREM, Cyclin A,
Cyclin E, DNAJA1, E2f, ERK1/2, Histone h3, HLA-DPA1, HLA-DPB1, IFITM3, MAPK, MHC2a, PCNA, PKA, PTTG1, RFC4,
SKP2, SPP1, STMN1, TGFBR1, UBE2C, Vitamin D3-VDR-RXR, ZNF160

43 25

4 C13ORF15, CACYBP, CDC2, CDKN3, COL4A1, FCER1G, FCGR2A, FCGR2B, FCGR3A, FOXM1, FPR1, GZMB, HOMER1,
IGE, JNK, LAMA4, LAMB1, LAMC1, LGALS1, MAD2L1, MEK, MEK1/2, NFAT, P38 MAPK, PKC(s), PLA2G7, Rac, RAN,
RANBP1, Ras, RGS1, Rsk, SRGN, TCR, UBD

41 24

5 Ap1, BUB3, CDKN1A, CKS1B, CKS2 (includes EG:1164), CLEC2B, E2F4, epinephrine, F9, fructose-2,6-diphosphate, GCNT1,
HMCN1 (includes EG:83872), HMGB3, HSPE1, IGF1R, IL15, INS1, KIAA0101, LGALS3BP, LUM, MAD2L1, NEK6, NPHS2,
PBK, PDCD5, RPS21, S100A11 (includes EG:6282), SOD2, SPAG5, SPARC, ST8SIA1, STMN1, UBE2T, VKORC1, ZNF84

31 20

6 Actin, ASB2, ATP6, ATP2B1, ATP5E, ATP6V1F, Caspase, CD163, Ck2, CLNS1A, F Actin, GEMIN5, H+-transporting two-
sector ATPase, Insulin, JUB, LMNA, NEXN, PDGF BB, PFDN1, PFDN2, PFDN4, PFDN6, PLC, POLR2K, RNA polymerase II,
RNU1B, S100A11 (includes EG:6282), SNRPD1, SNRPE, SNRPF, SNRPG, TCEB1, Ubiquitin, UCHL1, VBP1

27 18

7 ACP5, ARF4, BUB1 (includes EG:699), C1ORF164, C20ORF24, CCR6, CCT3, CCT4, CCT5, CCT7, CCT8, CCT6A, CPNE3,
CTSB, CTSK, DAPK1, DEFB103A, EBNA1BP2, FCGR3A, FGFR, HTRA1, IFI30, IL4, IL10RA, ITGB7, keratan sulphate, MBP,
MRPS10, MYL6, NAB2, NNMT, PRSS3 (includes EG:5646), TFF3, TGFB1, TUBA1A

27 18

8 CDK10, GBP4 (includes EG:115361), GPNMB, GPR109B, HLA-DPB1, HLA-DRA, IFI30, IFITM1, IFNa, IFNb, IFNAR1, IFNB1,
IFNG, IFNK, ILF3, KIR2DL3, KIR2DS2, POMP, PTEN, PTP4A3, RARRES1, retinoic acid, RFX1, RFX5, RFXANK, RFXAP, RPS19,
RPS20, SERPINA5, STX5, TBCB, TMSB10, TREM2, TREM3, TRIM22, TYROBP

25 17

9 CKLF, CLDN16, F2, GABRD, GGH, LAMP1, LAMP2, LEPRE1, MYC, MYCN, PAICS, PRDM5, Proteasome PA700/20s, PSMA,
PSMA1, PSMA2, PSMA4, PSMA5, PSMA6, PSMA7, PSMB1, PSMB2, PSMB3, PSMB4, PSMB5, PSMB6, PSMB7, PSMD6,
PSMD14, RPL31, RPL37, RPS19, RPS20, RPS27, TUBA1B

19 14

10 b-estradiol, BTK, dihydrotestosterone, EXOC1, EXOC2, EXOC3, EXOC5, EXOC7, EXOC8, FGF7, FGFR2, FSHB, GTP,
GUCY1A3, INPP5F, ITGBL1, MLLT1, MME, NFE2L3, NME1, NME2, NUDT1, phosphatidylinositol-3,4,5-trisphosphate, PIB5PA,
PRUNE, RAP1B, RND3, RRAD, SEC61G, SFRP2, SLC7A8, SLCO3A1, SPARC, TMEPAI, VHL

17 13

11 ABCB4, ACO1, ASXL1, ASXL2, ASXL3, C7ORF24, CBX2, CDKN2A, COL1A1, EZH2, FOS, FST, FTH1, FTL, FTMT, GAL,
GNRHR, HIF1A, HIG2, iron, KNG1 (includes EG:3827), LOX, MELK, MYH4, NTF3, PCGF1, PCGF6, PCNX, PDGF Ab, PHF1,
PHF19, progesterone, RPS6, SFRP4, TGFBI

12 10

12 ATP9B, Mg2+-ATPase 2 1
13 N-acetylglucosaminylphosphatidylinositol deacetylase, PIGL 2 1
14 Mrlc, MYLIP 2 1
15 EXOSC4, LRRC8D 2 1
16 GDP-Gnat2-Gngt2-Transducin b (cone), GNGT2, Gngt2-transducin beta (cone) 2 1
17 ADP-D-mannose, ADP-D-ribose, ADP-sugar diphosphatase, ADPribose diphosphatase, AMP, D-ribose-5-phosphate,

nucleoside-diphosphatase, NUDT5
1 1
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Figure 1 Inferential core network (network-5 and its close relevant networks) comprising many focus genes and several neighbourhood genes that
connect the focus genes. Greyed nodes are part of network-5.
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expression of the seven genes correlated with the pathological
stage (P¼ 0.011) (Figure 2D).

Validation of mRNA levels for selected genes using
quantitative RT–PCR

To provide further quantitative validation of our microarray data
for the 7 genes, we analysed 13 test tumour samples by quantitative
RT–PCR and compared the results with the quantified mRNA
expression levels on the microarray (Figure 3). All 7 genes were
highly expressed across the 13 cancers and the microarray data
agreed with those obtained by quantitative RT–PCR. Similar
agreement was found in a subsequent comparative analysis of 14
validation tumour samples (Figure 3). We also compared the

expression of the candidate genes with the mean expression level
of the corresponding genes in 8 normal tissues that were used for
microarray reference control. The results showed upregulation
of each candidate gene compared with that in the normal tissues
(Figure 3).

Protein expression of selected genes by
immunohistochemistry and western blotting

Finally, we tested the encoded protein expression for each
identified focus gene using immunohistochemistry and western
blotting. Immunohistochemistry showed high expression of
INHBA and NEK6 proteins in 14 of 20 and 24 of 27 tumour
tissues, respectively (Figure 4A–D), whereas IGFBP7 and LUM
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Figure 2 Correlation between activation of each candidate gene and pathological stage (n¼ 222). The expression levels of genes of group 1 ((A) MMP7,
(B) IGFBP7, (C) NEK6) correlated significantly with pathological stage (P¼ 0.0087, 0.01, and 0.0085, respectively). The mean expression of the seven genes
also correlated with pathological stage (P¼ 0.011) (D). The expression levels of genes of group 2 ((E) SOD2, (F) SPARC, (G) LUM, (H) INHBA) did not
correlate significantly with pathological stage (P¼ 0.25, 0.6, 0.86, and 0.32, respectively).
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proteins showed little immunoreactivity in tumour tissue relative
to adjacent healthy tissue (data not shown). Each of these proteins
was expressed in 450% cells in each tissue examined and all were
localised into the cytoplasm.
Western blotting showed strong bands for both NEK6 and

INHBA in gastric cancer tissues compared to normal tissue in all
three pairs (Figure 4E).

DISCUSSION

Comprehensive gene expression profiling is a useful tool for
analysing several thousands of genes in multiple samples
simultaneously. In gastric cancer, this approach successfully
discriminated cancerous and noncancerous tissues (Hippo et al,
2002). Since then, several studies have searched for novel genes
related to carcinogenesis of gastric cancer and novel clinical
subtypes related to biological malignancy using comprehensive
gene expression profiling (Hasegawa et al, 2002; Ji et al, 2002;
Boussioutas et al, 2003; Kim et al, 2003, 2005; Oien et al, 2003;
Jinawath et al, 2004; Motoori et al, 2005). However, these data were
generally obtained from human cell lines or small-scale tissue
samples. Here, we analysed the gene expression profiles of more
than 200 tissue samples covering every pathological stage, and
verified the findings at both the mRNA and protein levels to
increase the universality of our microarray data. Such a study is
more likely to identify specific expression profiles that are
commonly activated and thus more reflective of crucial transcrip-
tional features of neoplastic transformation and progression in
gastric cancers. In fact, increasing recognition that this large-scale,
systematic approach is necessary to view the overall molecular
events responsible for carcinogenesis has spawned several recent
studies combining large-scale analysis of gene expression with
knowledge-based and relevance network analysis (Bredel et al,
2005; Abdel-Aziz et al, 2007). Using such an approach also
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Figure 4 (A–D) Representative images of immunostaining for INHBA and NEK6. (A) Tumour tissue expressing INHBA; (B) healthy tissue for INHBA;
(C) tumour tissue expressing NEK6; (D) healthy tissue for NEK6. Magnification, � 200. (E) Western blotting analysis of INHBA and NEK6 in three pairs of
tumour (T) and normal (N) tissues. Anti-b-actin was used as control for protein level. P, positive control tissue.
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identified significantly upregulated genes linked to activated
pathways as potential key molecules in hepatocellular carcinoma
(Kittaka et al, 2008).
Dynamic mapping of 271 genes differentially expressed in

gastric cancer tissues in this study revealed links among the
majority of genes (203 genes, 84%) based on the Ingenuity
Pathway Knowledge Base. This finding indicates that such gene
populations do not act as individual units, but rather collaborate
closely in overlapping networks during gastric carcinogenesis.
Among the 17 networks identified here, network-5 was mapped
to the centre of the overlapping network and contained the
largest number of focus genes, implicating it as a key network.
Furthermore, the identified networks assumed a cluster of robust
genes implicated in gastric cancer-related genes. Our network
analysis also revealed CDKN1A (p21WAF1/CIP1) as a hub gene that
links to a large number of nodes and possibly determines the
fundamental behaviour of the network.
The clinical significance of activation of our seven selected genes

was further investigated by correlating the microarray expression
data with the pathological stage. As indicated in Figure 2, we found
these genes could be classified into two groups: the expression levels
of genes of group 1 (MMP7, IGFBP7, and NEK6), but not those of
group 2 (SOD2, SPARC, LUM and INHBA), correlated significantly
with pathological stage. This finding indicates that although genes of
group 2 may be involved in tumour formation and survival, those of
group 1 may be involved in tumour progression. Their common
activation seems to serve gastric carcinogenesis and tumour survival
regardless of the pathological stage, based on the finding of
overexpression of all seven genes in all samples. Furthermore, the
gradual increase in the mean expression with cancer stage suggests
that these genes cooperate in tumour progression. These results
strengthen our proposal that such candidate genes are commonly
activated during gastric carcinogenesis.
We also analysed the expression of the seven candidate genes

based on age, sex, location, and histopathological type. Although
the expression levels of MMP7, NEK6, SOD2, SPARC, and INHBA
did not correlate with any of the above factors, IGFBP7 and
LUM were significantly upregulated in undifferentiated tumours
compared to differentiated tumours (data not shown). These results
suggest the involvement of these genes in tumour differentiation.
We also postulated that these genes are regulated by complex linkage

between specific signalling pathways such as cell cycle signalling
and TGF-b signalling, and that targeting several genes around CDKN1A
(p21WAF1/CIP1), which functions as a hub, can compensate each other.
The differential expressions were also corroborated by quantitative
RT–PCR data in some of the previously tested tissue samples and in 14
validation samples. Together, these findings implicate all seven genes in
gastric carcinogenesis, including the four that were not previously
related to human gastric cancer.
Transcript profiling studies require complementary protein

analysis to fully understand the associated regulatory process
in living organisms. By itself, profiling does not adequately
reflect the fluctuating signalling events occurring at the proteomic
level, based on the evidence that only a subset of proteins
correlate significantly with mRNA abundance (Chen et al, 2002;
Nishizuka et al, 2003; Tian et al, 2004). These seemingly
anomalous results are explained partly by translational processes
whereby microRNAs repress the translation of mRNA into
proteins, and partly by post-translational modifications such
as phosphorylation, methylation, acetylation, and ubiquitination.
For that reason, the expression levels of proteins encoded by
highly overexpressed genes related to gastric carcinogenesis
require further investigation. This study detected protein expres-
sion for two gene products among the four previously noncancer-
related genes. Furthermore, NEK6 protein was strongly stained in
most of the cancer tissues, but showed less mRNA signal compared
to the remaining six genes. This finding suggests that NEK6 might
be significantly modified post-translationally.

Matrix metalloproteinases including MMP7 play important roles
in determining tumour invasion and metastasis and MMP7 gene
expression correlates with vessel invasion and both lymphatic and
hematogenous metastases (Yamashita et al, 1998). Increased
SPARC expression is linked to advanced gastric cancer (Wang
et al, 2004), although the expression of SOD2 (Mn-SOD;
manganese superoxide dismutase) was significantly enhanced in
cancer tissues compared with normal mucosa, and the Mn-SOD
ratio was proposed as an independent prognostic parameter
(Janssen et al, 2000). The IGFBP7 gene was upregulated in diffuse-
type gastric cancer (Boussioutas et al, 2003) and in 22 gastric
cancer/nontumour mucosa paired tissues samples (Kim et al,
2003). Interestingly, recent study revealed that TGF-b signalling
including INHBA accounted for some of the main differences
between normal tissue and gastric cancer at the transcript level
(Yang et al, 2007).
As stated, this study identified several genes, such as LUM and

NEK6, which were not previously associated with human gastric
cancer. LUM is a member of the small leucine-rich proteoglycan
family that induces apoptosis and suppresses cell proliferation. Its
reduced expression has been associated with poor outcome in
invasive carcinoma (Vuillermoz et al, 2004; Schuetz et al, 2006).
NIMA (never in mitosis, gene A) was originally identified in
Aspergillus nidulans as a serine/threonine kinase critical for cell
cycle progression (Osmani et al, 1988). Human NIMA-related
kinases (Neks) have high homology to NIMA in the N-terminal
catalytic domain sequences. NEK6 is a Neks-family gene required
for mitotic progression in human cells (Roig et al, 2002).
Inhibition of NEK6 by either overexpression of an inactive NEK6
mutant or elimination of endogenous NEK6 using siRNA-arrested
cells in M phase and triggered apoptosis (Belham et al, 2003;
Yin et al, 2003). A recent study demonstrated overexpression
of NEK6 transcripts in hepatocellular carcinoma (Chen et al,
2006), although it was found to be frequently expressed among
125 serine/threonine kinase genes implicated in breast cancer,
colorectal cancer, lung cancer, and laryngeal cancer by in situ
hybridisation (Capra et al, 2006). However, no previous
studies have shown NEK6 expression in gastric cancers or
NEK6 protein expression in any cancerous tissues. In data
not shown here, we also found higher levels of NEK6 protein in
advanced cancer compared to early-stage samples by immuno-
histochemistry.
In conclusion, this study used an integrated approach

combining gene expression profiling and dynamic mapping
of gene expression data on large sample numbers to identify
novel candidate genes that may contribute to gastric carcino-
genesis. The identified genes were universally validated
in additional samples. In particular, NEK6 and INHBA are
promising potential markers of gastric cancer regardless of disease
stage.
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