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Increased 20-deoxy-20-[18F]fluoro-D-glucose (FDG) uptake is the most commonly used marker for positron emission tomography in
oncology. However, a proliferation tracer such as 30-deoxy-30-[18F]fluorothymidine (FLT) might be more specific for cancer.
30-deoxy-30-[18F]fluorothymidine uptake is dependent on thymidine kinase 1 (TK) activity, but the effects of chemotherapeutic agents
are unknown. The aim of this study was to characterise FDG and FLT uptake mechanisms in vitro before and after exposure to
chemotherapeutic agents. The effects of 5-fluorouracil (5-FU), doxorubicin and paclitaxel on FDG and FLT uptake were measured in
MDA MB231 human breast cancer cells in relation to cell cycle distribution, expression and enzyme activity of TK-1. At IC50

concentrations, 5-FU resulted in accumulation in the G1 phase, but doxorubicin and paclitaxel induced a G2/M accumulation.
Compared with untreated cells, 5-FU and doxorubicin increased TK-1 levels by 4300. At 72 h, 5-FU decreased FDG uptake by 50%
and FLT uptake by 54%, whereas doxorubicin increased FDG and FLT uptake by 71 and 173%, respectively. Paclitaxel increased FDG
uptake with4100% after 48 h, whereas FLT uptake hardly changed. In conclusion, various chemotherapeutic agents, commonly used
in the treatment of breast cancer, have different effects on the time course of uptake of both FDG and FLT in vitro. This might have
implications for interpretation of clinical findings.
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Breast cancer is the most frequently occurring cancer in women in
the Western world. About 30% will develop metastases and may
die of the disease (Weigelt et al, 2005). These patients may receive
neo-adjuvant chemotherapy, but only a minority will respond.
Selecting nonresponders would prevent them from unnecessary
toxicity and offer a means to modify therapeutic strategy or to
revert to palliative treatment. Conventional imaging technologies
such as US, CT and MRI are unable to identify response at an early
stage, as they primarily detect anatomical changes. Positron
emission tomography (PET) is a noninvasive functional imaging
technique that allows for the measurement of molecular processes
and that could be very valuable for monitoring response
early during treatment. 20-deoxy-20-[18F]fluoro-D-glucose (FDG)
is already commonly used for this purpose, but the role of
30-deoxy-30-[18F]fluorothymidine (FLT) still needs to be evaluated.
20-deoxy-20-[18F]fluoro-D-glucose is transported into the cell by

the same (glucose) transporters as glucose and is phosphorylated
by hexokinases (HKs). In contrast to glucose-6-phosphate, FDG-6-
phosphate is not a substrate for the glycolytic pathway, resulting in
cellular trapping of 18F-labelled FDG-6-phosphate. Warburg et al
(1927) already reported that often glucose metabolism is enhanced

in tumours. To date, FDG PET is widely used for tumour detection
and staging, and for response monitoring (Shields, 2006).
20-deoxy-20-[18F]fluoro-D-glucose uptake, however, is not specific
for tumours. High physiological glucose consumption, and
consequently high FDG uptake, can also be observed in brain,
muscle and inflammatory tissues (Maschauer et al, 2004).
30-deoxy-30-[18F]fluorothymidine, a thymidine analogue, was

suggested as a tracer for cell proliferation (Shields et al, 1998).
30-deoxy-30-[18F]fluorothymidine is phosphorylated by the cyto-
solic enzyme thymidine kinase 1 (TK-1) into FLT-monophosphate,
which is trapped in the cell (Direcks et al, 2006). High levels of
TK-1 are found in proliferating and malignant cells and its activity
increases with DNA synthesis and in the S-phase (Munch-Petersen
et al, 1991), but is low in nondividing cells (Sherley and Kelly,
1988). Another isoform of TK is TK 2 (TK-2), predominantly
localised in mitochondria, present in nonproliferating cells
(Eriksson et al, 2002). In contrast to thymidine, FLT is poorly
incorporated into DNA (Sundseth et al, 1996). 30-deoxy-30-
[18F]fluorothymidine uptake is correlated with S-phase (Rasey
et al, 2002), Ki67 immunostaining (Kenny et al, 2005) and TK-1
levels (Barthel et al, 2005). As, anticancer treatment can inhibit
proliferation it may change FLT uptake, implying a role for FLT as
a marker for monitoring response to chemotherapy.
Chemotherapeutic agents with different modes of action, com-

monly used in the treatment of breast cancer, are 5-fluorouracil
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(5-FU), doxorubicin and paclitaxel (Honkoop et al, 1999).
5-fluorouracil is metabolised and one of the metabolites is
an inhibitor of thymidylate synthase (TS), a key enzyme in the
de novo pathway, which provides thymidine for DNA synthesis
(Ackland et al, 2002). Doxorubicin induces DNA damage by
binding to the nuclear protein topoisomerase II, an enzyme
important for correcting DNA geometry during transcription and
replication. Single- and double-DNA strand breaks are induced
and DNA synthesis is inhibited (Potter and Rabinovitch, 2005).
Paclitaxel belongs to the group of taxanes that stabilise micro-
tubuli, including those in the mitotic spindle, thereby blocking cell
division and inducing apoptosis (Kavallaris et al, 2001).
The purpose of this study was to investigate the effect of these

chemotherapeutic agents on FDG and FLT uptake in human breast
cancer cells in vitro and to relate the results with biological
parameters, such as TK-1 expression, and activity and cell cycle
distribution. Insight into these molecular mechanisms should
assist in interpreting FDG and FLT results when monitoring
response to chemotherapy in a clinical setting.

MATERIALS AND METHODS

Cell lines

The human breast cancer cell line MDA MB231 (ATCC no. HTB-26)
and CEM leukaemia cells (CEM wild type and TK-deficient
CEM/TK-) were cultured in RPMI 1640 supplemented with
10% foetal bovine serum and 1% penicillin/streptomycin (P/S),
at 5% CO2 in a humidified atmosphere at 371C. Cell counting
was performed with a Casy cell counter (Schärfe System GmbH,
Reutlingen, Germany).

Cytotoxicity assay

Cytotoxicity to 5-FU (Sigma Chemical Co., MO, St Louis, USA),
doxorubicin (doxorubicin hydrochloride, Pfizer, Cappelle a/d
IJssel, The Netherlands) and paclitaxel (Sigma Chemical Co.)
was determined by sulforhodamine (SRB) assay. Briefly, cells
were plated in 96-well plates and after 24 h, drugs were added at
various concentrations, incubated for 72 h and the SRB assay
was performed as described previously (de Bruin et al, 2003). The
IC50 is the concentration resulting in 50% reduction in growth
compared with untreated control cells.

Cell cycle analysis

For cell cycle analysis, cells were exposed to IC50 concentrations of
the various drugs for 4, 24, 48 or 72 h, fixed in 70% ethanol (1� 106

cells per ml) and stored at 41C until analysis, as described
previously (Temmink et al, 2007) according to a slightly modified
protocol.

Production of PET tracers

20-deoxy-20-[18F]fluoro-D-glucose at a radiochemical purity of
497% was produced by BV Cyclotron VU (Amsterdam, The
Netherlands).
30-deoxy-30-[18F]fluorothymidine was synthesised according to a

modified procedure originally described by Machulla et al (2000).
This procedure resulted in a GMP compliant, pyrogen free,
sterile production of FLT with a radiochemical purity 497%,
an average yield of 1.5±0.5 GBq and a mean specific activity of
93±33GBq mmol�1.

Cell extract preparation

Cells were plated in 75 cm2 flasks and, after 24 h, exposed to IC50

drug concentrations for 4, 24, 48 or 72 h, after which the cells were

harvested, spun down and snap-frozen into liquid nitrogen. Cell
pellets were stored at �801C until use.

TK enzyme activity

Thymidine kinase-1 and -2 enzyme activities were measured using
thymidine as a substrate, as described previously (van der Wilt
et al, 2001). Enzyme activity was also analysed in CEM cells and in
the corresponding TK-1-deficient subtype to assess whether FLT
phosphorylation only occurs in the presence of sufficient cytosolic
TK-1.
Cell pellets were suspended in 50mM Tris/1mM EDTA (pH 7.4)

and sonificated on ice. Lysates were spun down and supernatant
diluted 1 : 8 in 50mM Tris/1mM EDTA (pH 7.4).
30-deoxy-30-[18F]fluorothymidine was diluted with 50mM Tris/

1mM EDTA (pH 7.4) and 1 : 1 mixed with 20mM ATP, 10mM

MgCl2, resulting in an FLT concentration of about 60MBqml�1

(6.32–18.89 pmol per sample). Thymidine kinase-1 was inhibited
by addition of dCTP or the specific TK-2 inhibitor KIN52 (final
concentration 2 mM) (Balzarini et al, 2003).
The assay was optimised for protein concentration and

incubation times. Diluted cell lysates or purified TK-2 (kindly
provided by A. Karlsson, Karolinska Institute, Stockholm, Sweden)
were incubated with the FLT mixture for 15min at 371C and the
reaction was stopped by heating the samples at 951C for 5min.
Substrate (FLT) and product (FLT-phosphate) were separated by
TLC and radioactivity was measured in a single-well gamma
counter (Wallac1480 Wizard, Perkin Elmer Lifescience, MA, USA).
Protein concentrations were measured in a Bio-Rad Bradford
protein assay (Bio-Rad Laboratories, Hercules, CA, USA). Thymi-
dine kinase activity was calculated as the amount of FLT converted
into FLT-phosphate per hour per million cells (nmol h�1 10�6

cells).

Affinity of FLT, KIN52 and dCTP for TK

IC50 of KIN52 and dCTP against phosphorylation of 1 mM
[CH3-

3H][dThd] as natural substrate for recombinant cytosolic
TK-1 and mitochondrial TK-2 were determined as described
below. A 50ml reaction mixture, containing 50mM Tris-HCl,
pH 8.0, 2.5mM MgCl2, 10mM dithiothreitol, 2.5mM ATP,
1.0mgml�1 bovine serum albumin, 10mM NaF, [CH3-

3H]dThd
(0.1mCi in 5 ml; 1 mM final concentration) and 5 ml of recombinant
enzyme, was incubated at 371C for 30min in the presence or
absence of different concentrations of dCTP or KIN52. During
this time, the enzyme reaction proceeded linearly. Formation of
tritiated dTMP was measured by spotting aliquots of the reaction
mixture on Whatman DE-81 filter paper disks, as described earlier
(Balzarini et al, 2003).

TK-1 levels

For detection of TK-1 protein expression, cell pellets were
dissolved in lysis buffer containing 10mM Tris/5mM EDTA
(pH 7.5), 10% glycerol, 150mM NaCl, 50mM b-mercapto-ethanol,
1% Triton X-100, 4% protease inhibitor cocktail (PIC, Boehringer,
Germany) and 1mM NaVO3, sonificated on ice, spun down and
the supernatant stored at �801C until use. Lysates were analysed
with 12% SDS–PAGE followed by blotting onto a polyvinylidene
difluoride membrane. Thymidine kinase-1 was detected by over-
night incubation with 1 : 150 dilution of an anti-TK-1 mono-
clonal antibody (QED Bioscience, San Diego, CA, USA) followed
by 60min incubation with a 1 : 2000 dilution of secondary anti-
body (horseradish peroxidase-conjugated rabbit anti-mouse
antibody, DakoCytomation, Glostrup, Denmark) as described
previously (Temmink et al, 2007). b-actin was used to control
for loading.
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Uptake of FDG and FLT

Cells were plated in six identical 24-well plates at 75 000 cells per
ml. After 24 h, IC50 drug concentrations (5-FU, doxorubicin and
paclitaxel) were added. Control cells were plated in a concentration
of 45 000 cells per ml, 4 days before tracer uptake. Cell culture
medium was replaced 4 h before adding PET tracers. For
FDG plates, medium was replaced with medium without glucose
(þ IC50 drugs concentration), as glucose competes with FDG
uptake. For FLT plates, medium was replaced with medium
without L-glutamine (þ IC50 drugs concentration). The presence
of L-glutamine in the culture medium may reduce FLT uptake, as
glutamine is a source of thymidine monophosphate competing
with FLT uptake through the de novo pathway.
One MBq per well FDG or FLT was added to the cells and

incubated for 60min at 371C. After removal of excess tracer,
cellular tracer uptake was determined with an ECAT Exact HRþ
PET scanner (Siemens/CTI, Knoxville, TN, USA). Images
were analysed using CAPP software (version 7.2, CTI/Siemens,
Knoxville, TN, USA). Regions of interest (ROI) were drawn
manually in a plane with visible tracer uptake. Next, ROIs were
copied to all other planes and total activity per well was calculated
and plotted against exact number of cells. Tracer uptake was also
determined in an identical plate using the single-well gamma
counter. Tracer uptake was corrected for the number of cells.
To discriminate between FLT and FLT-phosphate, cells in

another identical plate were harvested and after stopping the
enzyme reaction, cells were sonificated and spun down. 30-deoxy-
30-[18F]fluorothymidine and FLT-phosphate, present in the super-
natant were separated as described above (section TK enzyme
activity).

Statistics

The longitudinal relation of drug incubation (untreated cells, 5-FU,
doxorubicin, paclitaxel) on cell cycle phase, TK activities and
levels, and on FDG and FLT uptake was analysed using GEE
analyses, taking into account that the same cell line was measured
repeatedly and by using all available data, irrespective of the

number of repeated measurements. The GEE analysis is capable of
dealing with irregular time intervals and corrects for the
dependency of observations by adding a ‘within subject correlation
structure’ to the regression model (Twisk, 2006). An exchangeable
correlation structure was used, which means that correlations
between subsequent measurements are assumed to be the
same, irrespective of the time between measurements. Three
dummy variables indicating the various drugs (untreated cells
as reference category) and four dummy variables indicating time
and interaction between drug and time were used as independent
variables. Differences between the various drugs were compared
at each incubation time. Before analysis, a logistic transformation
of the data was performed. Statistical analyses were performed
using SPSS version 15.0. P-values o0.05 were considered
significant.

RESULTS

Cytotoxicity assay

MDA MB231 cells were examined for their sensitivity to 5-FU,
doxorubicin and paclitaxel, resulting in IC50 concentrations of
5 mM, 200 and 2.5 nM, respectively. These concentrations were
applied in the long-term cell culture experiments described in the
following paragraphs.

Cell cycle analysis

Cell cycle distribution was investigated at above-mentioned IC50

concentrations of 5-FU, doxorubicin and paclitaxel (Figure 1).
5-fluorouracil increased the percentage of cells in G1, whereas

the number of cells in G2/M decreased compared with control
cells, irrespective of incubation time (for statistics see below).
After 48 h incubation with doxorubicin, cells showed strong

accumulation in the G2/M phase (two-fold). Meanwhile, 90 and
70% decreases in G1 and S phases, respectively, were observed.
This cell cycle distribution pattern was already pronounced after
24 and 48 h incubation, respectively.
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Figure 1 Distribution of MDA MB231 cells after exposure to IC50 concentrations of 5-fluorouracil ( ), doxorubicin ( ), paclitaxel (’) and untreated cells
(&), in (A) sub-G1, (B) G1, (C) S and (D) G2/M phases.
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Paclitaxel exposure induced a 1.2-fold increase in G2/M phase at
4 h drug incubation. After 48 and 72 h, paclitaxel induced increases
in sub-G1 (representing also apoptotic cells) and S phases, whereas
the percentage of cells in the G2/M decreased.
The GEE analysis demonstrated a significant difference for 5-FU

in the G2 phase after 24 h (b¼ 20.2, Po0.001). Doxorubicin
incubation induced changes in the G2 phase that were significant
for all incubation times (4 h: b¼ 19.9, Po0.05; 24 h: b¼ 21.3,
Po0.01; 48 h: b¼ 47, Po0.001; 72 h: b¼ 38.3, Po0.001) and after
24 h in the G1 phase (24 h: b¼ 12.4, 48 h: b¼ 6.4, 72 h: b¼ 3.1,
Po0.001). For the S phase, only 72 h incubation showed a
significant effect (b¼ 2.9, Po0.0001). Paclitaxel incubation was
significant in G2 and G1 phases after 48 h (G2: 48 h b¼ 17.7, 72 h
b¼ 18, Po0.0001; G1: 48 h b¼ 23.7, 72 h b¼ 24.4, Po0.05).
Comparable with doxorubicin, after paclitaxel incubation, the
S phase was only significantly different after 72h (b¼ 17.1, Po0.01).

TK enzyme activity

For 5-FU and paclitaxel, increased TK activity compared with
untreated cells was found at 48 and 72 h, but these effects were
minor. MDA MB231 cells treated with doxorubicin showed more
than three-fold increase in TK activity after 24 h and this effect was
retained at longer incubation times (Figure 2A). The GEE analysis
confirmed the findings after doxorubicin incubation as significant
(24 h: b¼ 550, Po0.05; 48 h: b¼ 597, Po0.01; 72 h: b¼ 602,
Po0.0001).
After adding the TK-2 inhibitors dCTP and KIN52 (10 and 2 mM,

respectively) to the cell lysates, remaining enzyme activity should
primarily correspond to TK-1 (Figures 2B and C). Total TK activity
was more strongly inhibited by dCTP than by KIN52 (Figures 3A
and B): 55–90% of the cellular TK activities were inhibited by
dCTP and 6–50% by KIN52. This may be related to the possibility
that at the concentration used, dCTP also may inhibit TK-1
activity. Doxorubicin exposure resulted in a higher increase in
TK-1 activity compared with untreated cells than exposure by 5-FU
or paclitaxel.

The relative role of TK-2 in potential FLT phosphorylation
was examined by adding FLT to purified TK-2. An 8% conversion
of FLT into FLT-phosphate was detected implying that FLT
was phosphorylated by TK-2. Lineweaver–Burk plots revealed
a competitive inhibition of both TK-1- and TK-2-catalysed
phosphorylation of dThd as the natural substrate (TK-1: KmdThd¼
2.3mM, KiFLT¼ 1.9mM, Ki/Km¼ 8.5; TK-2: KmdThd¼ 1.3mM,
KiFLT¼ 4.2mM, Ki/Km¼ 3.2) (Figures 4A and B), indicating that
FLT had affinity for TK-2. When the effect of FLT on TK-1-mediated
dThd phosphorylation was evaluated, the specific TK-2 inhibitors
dCTP (10mM) and KIN52 (2mM) inhibited FLT phosphorylation by
TK-2 with 97 and 90%, respectively, implying that dCTP at this
concentration is a more effective TK-2 inhibitor. KIN52 had an IC50

of 1.3±0.1mM against TK-2, as compared with 4100mM against
TK-1. When dCTP was evaluated at different concentrations for its
inhibitory effect against TK-1 and TK-2, a dose-dependent
inhibition of both enzymes was observed, TK-2 being inhibited
more efficiently (IC50: B50mM) than TK-1 (IC50: B5mM).

TK-1 levels

As enzyme activity is determined, at least in part, by the amount of
TK-1 and TK-1 activity may be different for FLT compared with,
for example, thymidine, protein levels in MDA MB231 cells were
also analysed after treatment with IC50 drug concentrations.
Thymidine kinase exists in different conformations and after
Western blotting using MDA MB231 cells, both a dimer and a
monomer were visible (data not shown). Using freshly prepared
sample buffer and boiling of samples for at least 10min resulted in
complete denaturation of the dimer into the monomer (Figure 5).
Furthermore, although TK-1 can also be phosphorylated (Chang
et al, 1994), no antibodies were available to discriminate between
these forms. Blots represent both phosphorylated and non-
phosphorylated TK-1.
In general, 5-FU and doxorubicin treatment increased TK-1

levels nearly two-fold at 48 h (Table 1). Paclitaxel on the other
hand induced a decrease of 440% in TK-1 levels at that time
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untreated cells, b-actin was used as loading control.
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point. The GEE modelling demonstrated a significant difference in
TK levels for paclitaxel incubation after 24 h (24 h: b¼ 14, 48 h:
b¼ 7, 72 h: b¼ 4, Po0.05) and for doxorubicin after 48 h (48 h:
b¼ 23, 72 h: b¼ 33, Po0.005) compared with untreated cells.
5-fluorouracil incubated cells only demonstrated a significant
difference in levels after 72 h (b¼ 21, Po0.01).
As a control, TK levels were also assessed for CEM (Figure 5)

and its TK-deficient subtype. CEM WT had a high TK-1 level, but
no detectable TK was found in TK-deficient cells.

Cellular FDG and FLT uptake

Uptake of FDG and FLT was determined in MDA MB231 cells after
various incubation times with IC50 drug concentrations of 5-FU,
doxorubicin and paclitaxel and results are summarised in Table 2.
Cellular tracer uptake was determined with a PET scanner as well
as a gamma counter and no differences were found between the
two methods. The advantage of quantification using PET is that
cells do not have to be transferred to another plate (or tube),
possibly losing cells and thereby causing reduction of the signal
and measurement errors.
5-fluorouracil incubation decreased FDG and FLT uptake by

approximately 50% after 72 h incubation. Doxorubicin increased
FDG uptake (424%) at 24, 48 and 72 h, but increased FLT uptake
irrespective of incubation time (424%). Paclitaxel induced an
increase in FDG uptake (4100%) at 48 and 72 h, and an increased
FLT uptake (66%) at 72 h. The GEE showed a significant difference
in FDG uptake after 5-FU incubation, irrespective of incubation
time (4 h: b¼ 0.79, 24 h: b¼ 0.82, 48 h: b¼ 0.80, 72 h: b¼ 0.43,
Po0.005) and after 48 h of paclitaxel incubation (48 h: b¼ 0.94,
72 h: b¼ 1.0 Po0.001). For 5-FU, FLT uptake after 72 h incubation
was significant according to GEE (72 h: b¼ 0.04, Po0.005),
whereas changes were already significant after 48 h incubation
for doxorubicin (48 h: b¼ 0.17, 72 h: b¼ 0.15, Po0.005) and
paclitaxel (48 h: b¼ 0.07, 72 h: b¼ 0.10, Po0.0001).
One hour after adding FLT, cells were disrupted and cell lysates

were loaded on a TLC plate to separate FLT and FLT phosphate.
In this case, more than 80% of cellular radioactivity counts were
due to FLT phosphate, implying that less than 20% was unphos-
phorylated FLT.

DISCUSSION

The purpose of this study was to assess FDG and FLT uptake
in vitro in human breast cancer cells in relation to the effects
of chemotherapy. Insight into molecular mechanisms involved in
tracer uptake and retention will provide directions for interpreta-
tion how these tracers can be used to monitor chemotherapy in a
clinical setting. Changes in tracer uptake were related to TK enzyme
levels after exposure to three different chemotherapeutic agents.
In MDA MB231 human breast cancer cells, exposure to 5-FU

decreased FDG uptake, possibly related to a decreased activity of
either the glucose transporter Glut-1 or the phosphorylation
enzyme HK. In MCF-7 breast cancer cells, increased Glut-1 mRNA
levels were found in the first 24 h of 5-FU and doxorubicin
treatment, whereas Glut-1 protein levels in doxorubicin-treated
cells decreased (Engles et al, 2006). Also, [3H]FDG uptake
decreased after both treatments, parallel to a decline in HK II
mRNA levels (Engles et al, 2006). In this study, also decreased
FDG uptake after 5-FU and within the first 24 h of doxorubicin
treatment was found. 30-deoxy-30-[18F]fluorothymidine uptake in
5-FU exposed MDA MB231 cells was also decreased. Although cells
showed a G1 arrest (where TK-1 activity should be low), increased
TK protein levels were found, but enzyme activity remained
similar or increased much less compared with TK-1 levels in
untreated cells. Dittmann et al (2002) reported an S-phase arrest
after 5-FU using OSC-1 oesophageal squamous carcinoma cells
(where TK levels and activity should be high), whereas Mirjolet
et al (2002) reported G1/S phase accumulation rather than a G0/G1
accumulation due to 5-FU cytotoxicity. Above reports are highly
indicative of different effects of 5-FU, depending on the cell line.
Decreased FLT uptake could be explained by differences in
thymidine providing pathways in the cell. 5-fluorouracil inhibits
the de novo TMP synthesis pathway. The salvage pathway,
however, facilitates FLT uptake and this pathway will be more
activated when the de novo pathway is blocked, which might
result in increased FLT uptake, as TS inhibition results in
increased thymidine uptake and utilisation. Indeed, in radio-
induced fibrosarcoma (RIF) and oesophageal carcinoma cells
increased [3H]thymidine was observed after 6 h of 5-FU incubation
(Dittmann et al, 2002; Yau et al, 2006). However, prolonged
treatment (starting from 24 h onwards) resulted in decreased
thymidine uptake in RIF-1, HT29 colon cancer cells (Yau et al,
2006) and C6 glioma cells (van Waarde et al, 2006), and in
RIF tumours (Barthel et al, 2003). In addition, decreased TK levels
in intestinal mucosal cells (Kralovanszky et al, 1993) have been
reported. Both findings are in agreement with the present results
in MDA MB231 cells.
Doxorubicin treatment induced a massive increase in FLT

uptake, next to accumulation of cells in the G2/M phase.
Doxorubicin binds to topoisomerase II, which is high in the
G2/M phase. Consequently, DNA replication is no longer possible
and cells are arrested in the G2/M cell cycle phase (Potter and
Rabinovitch, 2005). It has been reported that in the G2/M phase,
TK activity is high (Sherley and Kelly, 1988; Munch-Petersen et al,
1991), which is supported by the present results.
In this study, breast cancer cells incubated with paclitaxel

showed an increase in FDG uptake. A G2/M arrest in paclitaxel
incubated MDA MB231 cells was observed within 24 h of
incubation, which is in agreement with other published data
(Wang et al, 2000). 30-deoxy-30-[18F]fluorothymidine uptake after
72 h of paclitaxel incubation was slightly increased, probably due
to increased TK activity in these cells. However, TK levels were
decreased starting from 24 h incubation. So far, no other studies
have been published on the effects of paclitaxel (or other taxanes)
on uptake of thymidine (or thymidine analogues).
Controversy exists on whether FLT is a substrate for TK-2.

Munch-Petersen et al (1991) reported that FLT is not phosphory-
lated by TK-2. In contrast, in this study, good affinity of FLT for

Table 1 Mean (±s.d.) change (%) in TK-1 protein levels of MDA MB231
cells following incubation with IC50 concentrations of 5-FU, doxorubicin
and paclitaxel compared with untreated cells (set to 100%)

4h 24 h 48h 72h

5-FU 163±1 122±38 184±53 443±58
Doxorubicin 64±6 130±78 177±71 473±348
Paclitaxel 103±6 62±4 54±16 52±32

5-FU¼ 5-fluorouracil; TK¼ thymidine kinase.

Table 2 Mean (±s.d.) change (%) in FDG and FLT uptake in MDA
MB231 cells after incubation with IC50 concentrations of 5-FU, doxorubicin
and paclitaxel compared with untreated cells (set to 100%)

5-FU Doxorubicin Paclitaxel

FDG FLT FDG FLT FDG FLT

4 h 67±2 99±45 57±35 123±83 105±41 108±2
24 h 70±13 113±7 124±59 137±52 125±99 112±54
48 h 69±21 101±8 133±45 494±232 207±163 118±14
72 h 45±20 46±32 171±0 273±209 228±182 166±18

FDG¼ 20-deoxy-20-[18F]fluoro-D-glucose; FLT¼ 30-deoxy-30-[18F]fluorothymidine;
5-FU¼ 5-fluorouracil; TK¼ thymidine kinase.
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(purified) TK-2 was found. The TK-2 inhibitors used, nearly
blocked all of FLT-phosphorylation, although there was a
difference between dCTP and KIN52, possibly due to the fact that
dCTP may also inhibit TK-1 activity to some degree. Most of the
TK activity in tumour cells is expected to be TK-1 activity, as
tumour cells are (highly) proliferating and TK-1 is an S-phase-
regulated enzyme. In contrast, TK-2 is predominant in nonproli-
ferating cells (Eriksson et al, 2002). At present, however, it is not
clear whether FLT could reach the mitochondria to be phosphory-
lated by TK-2 in intact tumour cells. The present results suggest
that FLT is trapped in all cells, irrespective of the TK isoform being
expressed.
Response monitoring early during chemotherapy is extremely

valuable to select nonresponders as early as possible to prevent
unnecessary toxicity. At present, PET is the most promising

technique for early response monitoring. However, many potential
selective (eg FLT) and less selective (eg FDG) PET tracers are
available. More insight into cellular mechanisms involved in tracer
uptake could aid in understanding and subsequent selection of the
optimal tracer for a specific chemotherapeutic agent. In theory,
in vitro studies such as those presented here could provide
guidelines on expected effects in vivo. Further studies in patients
should validate this concept.
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