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The ErbB3 binding protein (Ebp1) is a transcriptional corepressor that inhibits the activity of proliferation-associated genes and the
growth of human breast cancer cell lines. Treatment of breast cancer cells with the ErbB3 ligand heregulin (HRG) results in increased
phosphorylation of Ebp1 and transcriptional repression. The p21-activated serine/threonine kinase 1 (PAK1), which plays an
important role in breast cancer progression and resistance to the anti-oestrogen tamoxifen, is also activated by HRG. We therefore
examined the ability of PAK1 to phosphorylate and regulate the function of Ebp1. We found that PAK1 phosphorylated Ebp1 in vitro
and mapped the phosphorylation site to threonine 261. Both HRG treatment and expression of a constitutively activated PAK1 in
MCF-7 breast cancer cells enhanced threonine phosphorylation of Ebp1. In MCF-7 cells, ectopically expressed Ebp1 bound
endogenous PAK1 and this association was enhanced by treatment with HRG. Mutation of the PAK1 phosphorylation site to glutamic
acid, mimicking a phosphorylated state, completely abrogated the ability of Ebp1 to repress transcription, inhibit growth of breast
cancer cell lines and contribute to tamoxifen sensitivity. These studies demonstrate for the first time that Ebp1 is a substrate of PAK1
and the importance of the PAK1 phosphorylation site for the functional activity of Ebp1 in breast cancer cells.
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The ErbB family of tyrosine kinase receptors regulates the growth,
differentiation and survival of human breast epithelial cells
(Holbro et al, 2003b). The EGFR family members include EGFR,
also known as the human EGF receptor 1 (HER1, ErbB1), HER2
(ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Ligand binding to
ErbB receptors results in the formation of homo- or heterodimers
leading to tyrosine phosphorylation of the cytoplasmic C-terminal
domains, which provide docking sites for effectors of intracellular
signalling (Yarden, 2001). ErbB3 is the only member of the ErbB
receptor family that lacks tyrosine kinase activity due to amino-
acid substitutions in the conserved kinase domain (Kraus et al,
1989). Over a dozen peptides activate the ErbB family, including
ligands of the EGF class that bind EGFR and ErbB4 and the
heregulin (HRG/NRG) family that bind to ErbB3/4 receptors. The
ErbB2 receptor has no known soluble ligand (Holbro et al, 2003b).
A wealth of clinical data demonstrates the aberrant expression of

ErbB family members in breast cancer (Holbro et al, 2003b; Hynes
and Lane, 2005). The ErbB2 gene is amplified in 20–30% of breast
carcinomas contributing to more aggressive disease (Slamon et al,
1989). The overexpression of ErbB2 has been successfully exploited
therapeutically by use of the monoclonal antibody Trastuzumab
and tyrosine kinase inhibitors. EGFR is overexpressed in 40%

of primary breast cancers and preclinical studies demonstrated the
efficacy of the EGFR inhibitor gefitinib in ER-positive EGFR
overexpressing tumours. However, clinical efficacy is still being
evaluated (Johnston, 2006). ErbB3 overexpression has been noted
in breast cancer for some time (Lemoine et al, 1992), but the
aetiologic and prognostic role of ErbB3 in breast carcinogenesis
has only recently been widely recognised. Coexpression of ErbB2
and ErbB3 is significantly associated with decreased patient
survival (Wiseman et al, 2005). The ErbB2/ErbB3 receptor pair
forms the most potent mitogenic receptor complex in vitro
(Pinkas-Kramarski et al, 1996b) and is key to the proliferation of
human breast cancer cells (Holbro et al, 2003a). The importance of
ErbB3 expression in breast cancer has been recently highlighted by
the demonstration that continued oncogenic signalling through
ErbB3 in human breast cancer cell lines results in the failure of
gefitinib to completely inhibit the kinase activity of ErbB2 (Sergina
et al, 2007).
The lack of an active tyrosine kinase domain necessitates the

interaction of ErbB3 with other proteins to exert its biological
effects. For example, ErbB2 heterodimerizes with ErbB3 after HRG
stimulation, leading to phosphorylation and activation of down-
stream substrates (Pinkas-Kramarski et al, 1996a). The RING
finger E3 ubiquitin ligase neuregulin receptor degradation protein-
1 associates with ErbB3 in an activation-independent manner and
is involved in ErbB3 trafficking or localisation (Diamonti et al,
2002; Qiu and Goldberg, 2002). Another ErbB3 binding protein
(Ebp1) was isolated in our laboratory during a yeast two-hybrid
screen (Yoo et al, 2000). ErbB3 binding protein binds ErbB3 in
human breast cancer cells (Yoo et al, 2000; Ahn et al, 2006), but
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dissociates from the receptor in response to HRG (Yoo et al, 2000).
Overexpression of Ebp1 inhibits the transcription of reporter genes
controlled by Cyclin D1, Cyclin E and c-myc promoters and the
transcription of endogenous E2F1 and c-myc genes via its binding
to an E2F1 consensus element (Xia et al, 2001; Zhang et al, 2003;
Zhang and Hamburger, 2004). The interaction of Ebp1 with
histone deacetylase 2 (HDAC2), Rb and Sin3A is needed for Ebp1
to repress transcription (Zhang et al, 2003, 2005; Zhang and
Hamburger, 2004). Heregulin, under conditions associated with
growth arrest, increases binding of Ebp1 to the E2F1 promoter
complex and enhances Ebp1-mediated repression of E2F1-
regulated gene transcription (Zhang and Hamburger, 2004).
Overexpression of Ebp1 in breast cancer cells inhibits cell growth,
while promoting G2/M cell cycle arrest and cellular differentiation
(Lessor et al, 2000). Previous work from our laboratory has
demonstrated, via orthophosphate labelling of whole cells, that
Ebp1 is a phosphoprotein. Ser and Thr residues are basally
phosphorylated, and this phosphorylation is increased in response
to HRG (Lessor and Hamburger, 2001). Specific phosphorylation
sites include Ser 360 (Liu et al, 2006) and S363 (Akinmade et al,
2007) that are important in Ebp1 function. Phosphorylation of
Ebp1 at Ser 360 is needed for proper nuclear localisation, and for
binding ErbB3 and nuclear AKT (Ahn et al, 2006). Phosphoryla-
tion at Ser 363 is needed for Ebp1 to bind Sin3A and HDAC2,
resulting in repression of Cyclin D1- and Cyclin E-regulated
promoters (Akinmade et al, 2007).
P21-activated kinase 1 (PAK1), a member of the yeast sterile 20

(Ste20) family of protein kinases (Kumar and Vadlamudi, 2002),
is also regulated by HRG and involved in breast cancer progression.
P21-activated kinase 1 was first demonstrated to be autophos-
phorylated via directly binding to the Rho GTPases, cdc42 and rac
(Adam et al, 1998). Lipids such as sphingosine also activate 3-
phosphoinositide-dependent kinase-1, which then directly phos-
phorylates and activates PAK1 (King et al, 2000). Heregulin also
indirectly activates PAK1 via the PI3K/AKT pathway (Adam et al,
1998). Recent data indicate an important role for PAK1 in breast
cancer progression. Activation of PAK1 results in actin phosphory-
lation in breast cancer cells, leading to a reorganisation of the
cytoskeleton that favours cell migration and invasiveness (Adam
et al, 1998). Activated PAK1 also phosphorylates and activates
oestrogen receptor-a (ERa) independently of ligand stimulation,
leading to increased Cyclin D1 expression and cell cycle
progression (Holm et al, 2006). Mammary glands from catalytically
active PAK1 transgenic mice exhibit hyperplasia (Balasenthil et al,
2004). Most recently, an association between PAK1 expression and
resistance to the anti-oestrogen tamoxifen has been demonstrated.
Activation of PAK1 inhibits tamoxifen action in vitro and in
animal models (Rayala et al, 2006). Clinically, the overexpression
and nuclear localisation of PAK1 are associated with tamoxifen
resistance in a subset of ER-positive tumours (Holm et al, 2006).
In light of the potential role of both PAK1 and Ebp1 in breast

cancer progression and their activation by HRG, we determined if
Ebp1 was a substrate for PAK1. We show here that Ebp1 was
phosphorylated by PAK1 on Thr 261 in vitro. We found that
ectopically expressed Ebp1 bound PAK1 in MCF-7 cells and that
this binding was increased by HRG treatment. Mutation of the Thr
261 phosphorylation site significantly affected the biological
activity of Ebp1 in breast cancer cell lines.

MATERIALS AND METHODS

Cell culture and transfections

MCF-7 and AU565 cells were obtained from the American Type
Culture Collection (Manassas, VA, USA) and maintained at 371C
in a humidified atmosphere of 5% CO2 in air in RPMI 1640
(Biofluids, Rockville, MD, USA) supplemented with 10% foetal

bovine serum (FBS, Sigma, St Louis, MO, USA) and 1% penicillin/
streptomycin (P/S). Cells were transfected using Optimem I media
(Invitrogen, Carlsbad, CA, USA) and the Fugene 6 mammalian
transfection reagent (Roche, Indianapolis, IN, USA) according to
the manufacturer’s instructions.

Reagents

Heregulin b1 (HRGb1) was obtained from R&D Systems Inc.
(Minneapolis, MN, USA) and Geneticin (G418) from Invitrogen.

Plasmids

The glutathione S-transferase (GST)-Ebp1 full-length and deletion
constructs and their purification have been described previously
(Zhang et al, 2002). All PAK1 site mutations were created in this
vector by site-directed mutagenesis using Stratagene’s QuikChange
II XL Site-Directed Mutagenesis Kit (La Jolla, CA, USA). The
S252A, T261A, S335A and S375A mutations were created in GST-
Ebp1 using the following forward primers with sequences starting
from the 50 end:

S252A: CAAACGAGACCCGCTAAACAGTATGGACTG
T261A: CAGTATGGACTGAAAATGAAAGCTTCACGTGCCTTC

TTCAGTGAG
S335A: CATGCGGATAACCGCTGGTCCCTTCGAG
S375A: GAAAAAAAAGAAGGCCGCCAAGACTGCAGAGAATG

The CMV10-Ebp1 p52 and GFP-Ebp1 p52 plasmids, encoding
Ebp1 translated from the first ATG initiation site (1–394), have
been described previously (Akinmade et al, 2007). T261A and
T261E mutations were created in GFP-Ebp1 using the following
forward primers with sequences starting from the 50 end:

T261A: CAGTATGGACTGAAAATGAAAGCTTCACGTGCCTTC
TTCAGTGAG

T261E: CAGTATGGACTGAAAATGAAAGAGTCACGTGCCTTC
TTCAGTGAG

All forward primers were reverse complemented to get the
reverse primers and were synthesised at the Biopolymer Core Lab
at University of Maryland, Baltimore (BCL-UMB). All mutations
were verified by automated sequencing in the University of
Maryland Biopolymer Core Laboratory. CMV6M-PAK1 (wild type)
and the PAK1 mutant (T423E) were a gift of Dr Jonathan Chernoff,
Fox Chase Cancer Center (Philadelphia, PA, USA).

P21-activated kinase 1 assay

In vitro kinase assays were performed as described previously
(Barnes et al, 2003b). Briefly, GST-tagged Ebp1 proteins were used
as substrates. The reaction was set up in HEPES buffer (50mM

HEPES, 10mM MgCl2, 2mM MnCl2, 0.2mM DTT) containing 100 ng
of purified human GST-PAK1 enzyme (Alexis Biochemicals, San
Diego, CA, USA), 10 mCi of [g-32P] ATP and 25mM cold ATP.
Glutathione S-transferase-tagged proteins were resolved by SDS–
PAGE and phosphorylated proteins detected by autoradiography.

Western blot assay

Total cell lysates were prepared by direct lysis with NTEN buffer
(20mM Tris-HCl pH 8.0, 150mM NaCl, 1mM EDTA, 0.5% NP-40,
10% glycerol). Protein concentrations were determined using the
Biorad detergent compatible Protein Assay Kit. The samples were
mixed with Laemmli sample buffer and resolved by SDS–PAGE.
Proteins were transferred to PVDF membranes and immuno-
blotted with the appropriate primary and secondary antibodies. An
ECL detection kit (Pierce, Rockford, IL, USA) was used to visualise
the bands.
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Antibodies

Primary antibodies included those directed against Ebp1 (rabbit,
Upstate, Temecula, CA, USA), Flag M2 (mouse, Sigma), GFP
(mouse, Clontech, Mountain View, CA, USA), PAK1 (rabbit, Cell
Signaling, Beverly, MA, USA), phosphothreonine (Zymed, Carlsbad,
CA, USA) and Actin (rabbit, Sigma). Secondary antibodies
included goat anti-rabbit HRP (Biorad, Richmond, CA, USA),
goat anti-rat HRP (KPL, Gaithersburg, MD, USA) and sheep anti-
mouse HRP (Amersham, Piscataway, NJ, USA).

Immunoprecipitation

Flag-Ebp1 was immunoprecipitated from MCF-7 cell lysates using
anti-Flag M2 Agarose beads (Sigma) as described previously (Xia
et al, 2001). GFP-Ebp1 was immunoprecipitated from cell lysates
using anti-GFP Agarose beads (Medical & Biological Laboratories
(MBL), Woburn, MA, USA). The immunoprecipitated proteins
were resolved by SDS–PAGE and analysed by western blotting.

Immunofluorescence

MCF-7 cells stably transfected with GFP-C1 control, GFP-Ebp1 or
GFP-Ebp1 mutants were visualised using a Carl Zeiss Axiovert 200
microscope and images were captured using the attached digital
AxioCam HR and analysed with the AxioVision digital imaging
software.

Dual luciferase assay

A total of 5� 104 MCF-7 cells per well were transfected with 0.5 mg
of GFP, GFP-Ebp1, GFP-Ebp1 T261A or GFP-Ebp1 T261E plasmids,
0.5mg of pE2F1-luc (a firefly luciferase reporter gene under the
control of the �225 to þ 1 region of the E2F1 promoter) (Johnson
et al, 1994), or a Cyclin D1-luc reporter (1–163 of the Cyclin D1
promoter) (Xia et al, 2001) and 5 ng of pRL-TK vector (a Renilla
luciferase reporter gene under the control of the thymidine kinase
promoter) using Fugene 6 (Boerhringer Mannheim). Forty-eight
hours after transfection, cells were lysed and luciferase activity
determined using a dual-luciferase reporter assay (Promega,
Madison, WI, USA). The activities of Renilla luciferase were used
to normalise any variations in transfection efficiency.

Colony inhibition assays

Cells were seeded into 12-well plates at 1� 104 cells per well and
cultured in complete media. Cells were transfected with 2 mg of
GFP, GFP-Ebp1, GFP-Ebp1 T261A or GFP-Ebp1 T261E plasmids
using Fugene 6. After 3 weeks of selection with G418 (800 mgml�1),
the plates were stained with crystal violet and the number of
surviving colonies was counted.

Creation of stably transfected cell lines

To establish ebp1-overexpressing stable transfectants, subcon-
fluent MCF-7 cells in 100-mm tissue culture dishes were
transfected with 10 mg of GFP-tagged wild-type ebp1 or the T261
mutant plasmids using Fugene-6 according to the manufacturer’s
protocol. Cells were selected in G418 (800 mgml�1) for 4 weeks and
mass cultures obtained.
For creation of ebp1-silenced MCF-7 cell lines, siRNA targeted

against the coding region beginning at nucleotide 476 (Genbank
accession number U87954) (AAGCGACCAGGAUUAUAUUCU)
was cloned into the pRNAT-U6.1 lentiviral vector (GenScript
Corp., Scotch Plains, NJ, USA). A synthetic oligo encoding this
sequence was previously demonstrated to decrease Ebp1 expres-
sion in prostate cancer cell lines (Zhang and Hamburger,
2005). Lentiviral particles were prepared using the Invitrogen

ViraPowert system in 293FT cells as described by the manu-
facturer. MCF-7 cells were transduced with lentiviral stock and
polybrene (6 mgml�1) and mass cultures were selected in G418
(800mgml�1).

B GST GST-Ebp1 B GST  GST-Ebp1

GST-PAK auto

GST-Ebp1

3941

133 306

1 136

394133

306 394
∗∗

∗∗

∗ ∗

∗ ∗

∗ ∗

1–394 133–306 306–394 306–394 133–394GST

AutoradiogramPonceau

A

B

C 1–136

Ponceau

Autoradiogram

Figure 1 P21-activated kinase 1 phosphorylates Ebp1 in vitro. (A) An in
vitro kinase reaction was performed using recombinant GST-PAK1 enzyme
and GST or GST-Ebp1 as substrates as described in the Materials and
methods. Cell lysates were captured on glutathione agarose beads and
phosphorylation of Ebp1 was analysed by SDS–PAGE followed by
autoradiography (right panel). The expression of the substrates was
analysed by Ponceau staining (left panel). B, beads incubated with enzyme
but no substrate. A representative of two experiments is shown.
(B) Diagram of Ebp1 portion of GST-Ebp1 fusion proteins. The predicted
PAK1 phosphorylation sites are indicated by the asterisks. (C) The
indicated GST-Ebp1 deletion constructs were used as substrates in an in
vitro PAK1 kinase assay as described in (A). A representative of two
experiments is shown.
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Proliferation assays

For studies assessing the effect of tamoxifen on cell growth, cells (5� 103)
were plated in 96-well plates in complete media. Media were replaced
24h later with complete media containing the indicated concentrations
of tamoxifen (Sigma). Relative cell numbers were determined using a
Promega Proliferation Reagent as per manufacturer’s instructions with
absorbance being read at 490nm using a Dynex plate reader.

Statistical analysis

Data were analysed using a two-tailed Student’s t-test using
Microsoft Excel. Differences with a Po0.05 were deemed significant.

RESULTS

ErbB3 binding protein is a substrate of PAK1

As both Ebp1 and PAK1 are activated by HRG, we tested if PAK1
could phosphorylate Ebp1 in vitro. We scanned the Ebp1 sequence
for the PAK1 motif (K/R-K/X-X-S/T) and found four putative
PAK1 phosphorylation sites at S252, T261, S335 and S375. We first
tested the ability of PAK1 to phosphorylate wild-type GST-Ebp1
and Ebp1 deletion constructs. Purified PAK1 enzyme phosphory-
lated full-length GST-Ebp1 and was autophosphorylated as
reported (Barnes et al, 2003a) (Figure 1A). We next used GST-
Ebp1 deletion constructs (Figure 1B) to further determine the site

GST  WT S252A S335A S375A  S252/335A S252/375A S335/375A S252/335/375A

Coomassie

Autoradiography

GST    WT         T261A GST WT     T261A

Ponceau Autoradiogram

A

B

Figure 2 P21-activated kinase 1 phosphorylates Ebp1 at Thr 261. (A) Single- and multisite mutations of putative Ser PAK1 sites (S252, S335 and S375)
were created in wild-type GST-Ebp1. The resulting mutant proteins were immobilised on glutathione agarose beads and resolved by SDS–PAGE. Gels were
stained with Coomassie Blue (top panel). The GST proteins were used as substrates in a PAK1 kinase assay as described in the Materials and methods.
Phosphorylation of Ebp1 was analysed by SDS–PAGE followed by autoradiography. Representative of two experiments. (B) Mutation of GST-Ebp1 at Thr
261 was created in wild-type GST-Ebp1. The GST proteins were used as substrates in a PAK1 kinase assay as described in the Materials and methods.
Phosphorylation of Ebp1 was analysed by SDS–PAGE followed by autoradiography. Representative of two experiments.
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of PAK1 phosphorylation. One construct encoding amino acids 1–
136 did not contain any predicted sites. Another construct
encoding amino acids 133–306 contained the S252 and T261 sites.
The GST-Ebp1 306–394 construct contained the S335 and S375
sites. Use of these Ebp1 deletion constructs indicated that the Ebp1
phosphorylation site(s) was located between amino acids 133–306
(Figure 1C) in keeping with two of the predicted PAK1
phosphorylation sites.
To identify specific PAK1 phosphorylation sites in Ebp1, we

created single- and double-site mutations of the predicted PAK1
sites in wild-type GST-Ebp1. The resulting mutants were
immobilised on glutathione agarose beads. The samples were
resolved by SDS–PAGE and Coomassie stained to ensure correct
expression (Figure 2A, top). Mutation of putative PAK1 serine
phosphorylation sites did not prevent PAK1 phosphorylation
(Figure 2A, bottom). In contrast, a single point mutation of Thr
261 to Ala completely abolished PAK1 phosphorylation of Ebp1 in
vitro (Figure 2B).
We next tested if treatment with HRG, a physiological activator

of PAK1, could enhance phosphorylation of Ebp1 at Thr residues
in vivo. MCF-7 cells stably transfected with GFP-ebp1 were treated
with HRG and then immunoprecipitated with GFP and probed
with an anti-Thr antibody. ErbB3 binding protein Ebp1 was basally

phosphorylated at Thr and Thr phosphorylation was increased
after HRG treatment (Figure 3A) in keeping with previously
published data on endogenous Ebp1 in AU565 cells (Lessor and
Hamburger, 2001). To determine if overexpression of PAK1 could
increase Thr phosphorylation of Ebp1, we transfected MCF-7 GFP-
ebp1 cells with wild-type or constitutively active PAK1 (T423E)
and tested Thr phosphorylation of Ebp1. These data indicated that
Ebp1 Thr phosphorylation was enhanced after transfection of
constitutively activated PAK1 (Figure 3B).

ErbB3 binding protein Ebp1 interacts with PAK1 in vitro
and in vivo

We next tested the interaction of Ebp1 and PAK1 in MCF-7 cells.
MCF-7 cells were transfected with a Flag-tagged Ebp1 and a PAK1
expression vector. ErbB3 binding protein was immunoprecipitated
with an anti-Flag antibody and immunoprecipitated proteins
probed for the presence of Ebp1 and PAK1. We found that both
PAK1 and Ebp1 were immunoprecipitated with the Flag antibody
(Figure 4A).
As the activity of both PAK1 and Ebp1 is modulated by HRG, we

determined the effect of HRG treatment on PAK1–Ebp1 interac-
tions. MCF-7 cells expressing Flag-tagged Ebp1 were treated with
20 ngml�1 HRG for 10min. Cell lysates were immunoprecipitated
using Flag-agarose beads and immunoprecipitated proteins probed
for PAK1 and Ebp1. We found that the binding of Ebp1 to PAK1
was increased in response to HRG treatment (Figure 4B).

P21-activated kinase 1 regulation of Ebp1 corepressor
functions

To examine the possibility that the PAK1 phosphorylation site
plays a role in Ebp1 function, we created T261A and T261E
mutants in the context of full-length Ebp1 for use in functional
assays. The data in Figure 5A demonstrate that the GFP mutants
were expressed at approximately equal levels. ErbB3 binding
protein has previously been reported to be primarily localised in
the nucleolus and cytoplasm, with weak nucleoplasmic staining
(Xia et al, 2001; Squatrito et al, 2004; Ahn et al, 2006). The
subcellular localisation of Ebp1 was not altered by mutation of
T261 as demonstrated by immunofluorescence microscopy
(Figure 5B).
Transcription of both endogenous and exogenous E2F1-

regulated genes is repressed by Ebp1 (Zhang et al, 2003). We
therefore next investigated the effect of the PAK1 site mutations on
the ability of Ebp1 to repress activity of luciferase reporters
controlled by the E2F1 and Cyclin D1 promoters. MCF-7 cells were
transfected with pRL-TK, an E2F1-Luc reporter (�225 to þ 1) or a
Cyclin D1 reporter (1–163) and with GFP, GFP-Ebp1, GFP-Ebp1
T261E or GFP-Ebp1 T261A. Forty-eight hours after transfection,
promoter activity was determined using the dual luciferase
reporter assay. Wild-type ebp1 inhibited transcription of both
the E2F1 and Cyclin D1 genes 50% as reported previously (Zhang
et al, 2003). Mutation of T261 to E, mimicking a phosphorylated
state, completely abrogated the ability of Ebp1 to repress activity of
both the E2F1 and Cyclin D1 promoters (Figure 5C and D). In fact,
luciferase activity was significantly stimulated by the T261E
mutant (Po0.05). The T261A mutant was more effective
at inhibiting promoter activity in both cases than wild-type ebp1
(Po0.05).

Mutation at T261 affects the ability of Ebp1 to inhibit cell
growth

Ectopic expression of Ebp1 in breast cancer cell lines inhibits
colony formation (Lessor et al, 2000). We therefore performed
a colony-forming assay to determine the effects of the PAK1 site
mutation on Ebp1’s ability to inhibit cell growth. MCF-7(ERþ )

IP: GFP IP: GFP

GFP

pThr

IB
− +

C CA WT IB

pThr

GFP

A B

Figure 3 In vivo phosphorylation of Ebp1 at Thr residues. (A) Thr
phosphorylation in response to HRG. MCF-7 cells stably transfected with
GFP-ebp1 were treated with HRG (20 ngml�1) for 10min (þ ) or left
untreated (�). ErbB3 binding protein was immunoprecipitated with GFP-
agarose beads prior to separation by SDS–PAGE. Proteins were
transferred to PVDF membranes, and immunoblotted with antibodies to
phosphothreonine (pThr) or GFP as indicated. Representative of two
independent experiments. (B) Constitutively activated PAK1 induces Ebp1
Thr phosphorylation, MCF-7 cells stably transfected with GFP-ebp1 were
transiently transfected with a control plasmid (C), a constitutively activated
PAK1 (T423E) or a wild-type PAK1 (WT). Two days after transfection, cells
were harvested and immunoprecipitated with GFP-agarose beads.
Immunoprecipitated proteins were transferred to PVDF membranes, and
immunoblotted with antibodies to phosphothreonine (pThr) or GFP as
indicated. Representative of two independent experiments.

IP: Flag

Flag-Ebp1
Flag-Ebp1

PAK1PAK1
IBIB

HRG
+−FlagIgG

IP
A B

Figure 4 P21-activated kinase 1 and Ebp1 interact in vivo. (A) MCF-7
cells were transfected with Flag-ebp1 and a wild-type PAK1 expression
construct. Cell lysates were immunoprecipitated with a Flag antibody and
blots probed for PAK1 or Flag-tagged Ebp1 as indicated. Representative to
three independent experiments. (B) MCF-7 cells transfected with Flag-
tagged ebp1 were treated with HRG (20 ngml�1) for 10min (þ ) or left
untreated (�). Cell lysates were immunoprecipitated with the Flag
antibody and immunoprecipitated proteins probed for PAK1 or Flag-
Ebp1 as indicated. Representative of three independent experiments.
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and AU565(ER�) cells were transfected with GFP, GFP-Ebp1, GFP-
Ebp1 T261E or GFP-Ebp1 T261A and selected for 3 weeks with
G418. The surviving colonies were then stained and counted. GFP-
Ebp1 inhibited colony formation of both cell lines as reported
previously (Lessor et al, 2000). In contrast, the T261E mutant was
completely unable to inhibit colony formation. GFP-Ebp1 T261A
decreased colony growth to a greater extent than wild-type Ebp1
(Po0.05) (Figure 6A and B).

Functional Ebp1 is required for tamoxifen sensitivity

P21-activated kinase 1 has been reported to inhibit tamoxifen
action in MCF-7 cells via activation of ERa through phosphoryla-
tion of Ser 305 (Rayala et al, 2006). We postulated that inactivation
of Ebp1 by PAK1 may also contribute to tamoxifen resistance in
hormone-dependent cells. We first tested the contribution of Ebp1
to tamoxifen sensitivity by knockdown of endogenous Ebp1
expression. As shown in Figure 7A, transduction of MCF-7 cells
with an shRNA vector targeted to ebp1 reduced Ebp1 expression
compared to a lentiviral control. MCF-7 vector control cells were
inhibited by tamoxifen treatment at 1 mM as expected (Jhabvala-
Romero et al, 2003). In contrast, growth of the Ebp1 knockdown
cells was significantly increased at the highest concentration of
tamoxifen tested (Figure 7B).
We next tested if the T261E mutant could function as a

dominant negative to inhibit the ability of wild-type Ebp1 to
contribute to tamoxifen sensitivity. Therefore, the sensitivity of
MCF-7 cells, stably transfected with wild-type ebp1 or the T261A or
T261E mutants, to tamoxifen was examined. We found that MCF-7
cells stably transfected with the T261E mutant was no longer
sensitive to tamoxifen (Figure 7C).

DISCUSSION

A role for the PAK (p21-activated kinase) serine/threonine kinases
in regulation of growth of breast cancer cells both in pre-clinical
models and in patients is emerging (Kumar et al, 2006).

P21-activated kinases are activated via a variety of extracellular
stimuli and transduce their signals through multiple binding
partners. Known PAK1 effectors in breast cancer pathogenesis
include proteins involved in actin reorganisation, metabolic
regulation, apoptosis, differentiation and transcriptional regula-
tion (Kumar et al, 2006). We report here that Ebp1, a protein that
binds ErbB3 and acts as a transcriptional corepressor, is a PAK1
substrate. Mutation of the Ebp1 PAK1 phosphorylation site results
in inactivation of the ability of Ebp1 to repress transcription of cell
cycle-regulated genes and inhibit breast cancer cell growth.
As PAK1 is activated through stimulation of cells with the ErbB3

receptor ligand, HRG (Adam et al, 1998), we initially hypothesised
that Ebp1 could be a PAK1 substrate. Scanning the Ebp1 sequence
yielded four putative PAK1 phosphorylation sites at S252, T261,
S335 and S375 possessing the PAK1 motif (K/R-K/X-X-S/T). We
initially found that GST-Ebp1, aa 133–306, which contains two of
these sites, was phosphorylated by PAK1 in an in vitro kinase
assay. In addition, PAK1 associated with Ebp1 in MCF-7 cells and
this association was increased by HRG treatment, further
supporting the relevance of the in vitro phosphorylation.
We, therefore, created single- and multisite alanine mutations of

these predicted phosphorylation sites in GST-Ebp1 for use in
a PAK1 kinase assay. Mutation of all of the putative Ser
phosphorylation sites failed to alter the ability of PAK1 to
phosphorylate Ebp1. However, we found that mutation of Thr
261 to Ala abrogated the ability of PAK1 to phosphorylate Ebp1.
Therefore, we studied the functional significance of Thr 261
in vivo. Mutation of the Thr 261 site to Ala or Glu did not alter the
subcellular distribution of Ebp1 in MCF-7 cells. However, mutation
of Thr 261 to Ala completely abrogated the ability of Ebp1 to
inhibit transcription of Cyclin D1 and Cyclin E genes in reporter
assays.
P21-activated kinase 1 has previously been shown to alter the

activities of other transcriptional repressors. Thus, data reported
here strengthen the role of PAK1 in corepressor regulation. P21-
activated kinase 1 inactivates the transcriptional corepressor CtBP,
due to the changes in its cellular localisation (Barnes et al, 2003a).
Conversely, the activity of the Notch pathway repressor SHARP is
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enhanced by PAK1 phosphorylation. The mechanism of the
inhibition of Ebp1 transcriptional repression by PAK1 is not
known. Unlike PAK1 phosphorylated CtBP, the subcellular
localisation of Ebp1 mutated at the PAK1 phosphorylation site
was unchanged from that of wild type. The transcriptional
repression domain of Ebp1 has been mapped to the last 72 amino
acids of the C terminal domain (322–394) (Xia et al, 2001), but it is
possible that phosphorylation at Thr 261 results in changes in the
three dimensional structure of Ebp1. The crystal structure of Ebp1
has recently been solved (Monie et al, 2007). These studies suggest
that as Thr 261 is located at the beginning of an a-helix, its
mutation may destabilise the helix.
In addition, Thr 261 phosphorylation may inhibit the interac-

tion of Ebp1 with other transcriptional corepressors. For example,
mutation of Ser 363 to Ala abrogates Ebp1 binding to the Sin3A
and HDAC2 transcriptional corepressors (Akinmade et al, 2007).
However, mutation at Thr 261 to either Ala or Glu did not prevent
binding of Ebp1 to Sin3A or HDAC2 (data not shown). Thr 261 is
located in an amphipathic domain predicted to interact with DNA
and protein. Therefore, it is possible that a mutation at this site
interrupts the interaction of Ebp1 with as yet unidentified proteins
important in transcriptional repression.
Alternatively, we have shown that Ebp1 can bind to the E2F1

consensus element of endogenous promoters in a complex with
Sin3A and HDAC2. It is possible that Ebp1–PAK1 interaction

recruits PAK1 to a corepressor complex on E2F1 binding sites
within chromatin, where PAK1 may phosphorylate and activate
transcriptional repressors. In addition, we have not yet examined
how mutation of Thr 261 affects the ability of Ebp1 to bind at
E2F1-regulated promoters.
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Overexpression of Ebp1 inhibits growth of both ER-positive and
ER-negative breast cancer cells (Lessor et al, 2000). The T261E
mutant was unable to inhibit growth of either ER-positive or ER-
negative cell lines, in keeping with its inability to repress activity of
Cyclin D1 and E2F1 promoters. The fact that this effect was
observed in both ER-positive and ER-negative cell lines suggests
that the effects of Ebp1 are not mediated via the ER. We do not yet
know if the failure of mutant Ebp1 to inhibit overall cell growth is
due to changes in its ability to affect the rate of cell division or
apoptosis or a combination of the two. P21-activated kinase 1 has
previously been shown to contribute to breast cancer cell growth
via its phosphorylation of ERa at Ser 305, leading to
ligand-independent growth. Our findings suggest that the phos-
phorylation and inactivation of Ebp1 by PAK1, with subsequent
abrogation of Ebp1’s growth inhibitory effects, is a new mechan-
ism whereby PAK1 induces growth of breast cancer cells.
We have previously found that Ebp1 is phosphorylated and

activated by HRG treatment. Thus, it appears paradoxical that the
T261E mutant is inactive. It is possible that in cells, which weakly
express PAK1 (such as MCF-7) (Rayala et al, 2006), T261

phosphorylation is low and Ebp1 remains active. In the face of
high levels of PAK1, as is observed in tamoxifen resistant cells,
Ebp1 becomes heavily phosphorylated, inactivating its function.
This leads to the inability of Ebp1 to repress activity of
E2F1-regulated cell cycle genes and inhibit cell growth. Thus,
inactivation of Ebp1 may play a role in the ability of PAK1 to
contribute to breast cancer progression and tamoxifen resistance.
In summary, the results reported here reveal that Ebp1 is a new

substrate for the PAK1 kinase. In addition, our studies suggest that
tamoxifen resistance induced by PAK1 overexpression may be
related to its ability to inhibit Ebp1 function, in addition to its
ligand-independent activation of ERa.
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