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Childhood B-cell precursor (BCP) ALL is thought to be caused by a delayed immune response to an unidentified postnatal infection.
An association between BCP ALL and HLA class II (DR, DQ, DP) alleles could provide further clues to the identity of the infection,
since HLA molecules exhibit allotype-restricted binding of infection-derived antigenic peptides. We clustered 430 HLA-DPB1 alleles
into six predicted peptide-binding supertypes (DP1, 2, 3, 4, 6, and 8), based on amino acid di-morphisms at positions 11 (G/L), 69 (E/K),
and 84 (G/D) of the DPb1 domain. We found that the DPb11-69-84 supertype GEG (DP2), was 70% more frequent in BCP ALL
(n¼ 687; Po10�4), and 98% more frequent in cases diagnosed between 3 and 6 years (Po10�4), but not o3 or 46 years, than in
controls. Only one of 21 possible DPB1 supergenotypes, GEG/GKG (DP2/DP4) was significantly more frequent in BCP ALL
(P¼ 0.00004) than controls. These results suggest that susceptibility to BCP ALL is associated with the DP2 supertype, which is
predicted to bind peptides with positively charged, nonpolar aromatic residues at the P4 position, and hydrophobic residues at the P1
and P6 positions. Studies of peptide binding by DP2 alleles could help to identify infection(s) carrying these peptides.
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Acute lymphoblastic leukaemia (ALL) is the most common
childhood malignancy in developed countries, where it constitutes
over 30% of childhood cancers (Stiller et al, 1998; Smith et al,
1999). The striking age-incidence peak between 2 and 5 years of
age consists mainly of common, B-cell precursor (BCP) ALL
(Greaves et al, 1993, 1985; McKinney et al, 1993; Buckley et al,
1994). Molecular data indicate that BCP ALL can arise in utero in
association with acquired chromosomal rearrangements that result
in covert preleukaemic clones (Wiemels et al, 1999; Greaves, 2006),
but progression to clinical ALL requires additional clonal genetic
abnormalities, accumulated in a variable postnatal latent period.
These may arise under the influence of an immune response to
delayed infection (McNally and Eden, 2004; Greaves, 2006), but
lack of information incriminating a specific infectious agent
(Greaves, 2006; MacKenzie et al, 2006) has hindered verification of
this causal pathway.
Insights into the role of infection in the aetiology of BCP ALL

could be provided by associations with HLA class II alleles (Dorak
et al, 1995, 1999; Taylor et al, 1995, 1998, 2002). The highly
polymorphic HLA DR, DQ, and DP loci are encoded by genes in the

human major histocompatibility complex (MHC), and are
responsible for the binding and presentation of infection-derived
peptides to CD4þ T cells, leading to adaptive immune responses
to infections (Cooke and Hill, 2001). The affinity of different HLA
class II allotypes for infection-derived peptides is influenced by a
series of discrete peptide-binding pockets (PBP) embedded in the
antigen-binding groove of the HLA class II a/b heterodimer
(Hammer et al, 1997).
Since T-cell responses to infection in the presymptomatic phase

of BCP ALL are not readily accessible to functional analysis, HLA
class II alleles provide a potential PBP ‘footprint’ of the infection
that may be involved in this disease. However, tight linkage
between the HLA-DR and DQ loci makes it difficult to distinguish
the primary contribution of alleles at these loci. Contrasting
patterns of DR-DQ allelic linkage disequilibrium (LD) in different
ethnic groups (Oksenberg et al, 2004) could resolve this problem,
but such studies have yet to be reported in childhood leukaemia.
Since the HLA-DP locus is only weakly linked to DR-DQ (Begovich
et al, 1992; Cullen et al, 2002), analysis of DP alleles in BCP ALL
should identify associations independent of DR-DQ. We and others
have previously reported associations between DP alleles and
human leukaemia (Pawelec et al, 1988; Taylor et al, 1995, 2002).
Furthermore, DP alleles are known to be associated with, or to act
as restriction elements for a number of parasitic (Meyer et al, 1994;
May et al, 1998), microbial and viral diseases, including hepatitis B
and rabies (Celis and Karr, 1989; Celis et al, 1990), herpes simplex
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(Koelle et al, 2000), streptococcus (Dong et al, 1995), dengue virus
(Kurane et al, 1993; Okamoto et al, 1998), Epstein–Barr virus (Voo
et al, 2002), respiratory syncytial virus (RSV) (De Graaf et al, 2004;
De Waal et al, 2004), and HIV (Cohen et al, 2006).
Peptide binding by HLA class II allotypes, including DP, is the

outcome of interactions between the amino acid side chains of the
peptide and four major peptide-binding pockets (1, 4, 6, and 9;
Hammer et al, 1997). Since different alleles can have overlapping
peptide-binding properties, depending on the number of PBP that
they share (Southwood et al, 1998), this has permitted DR alleles
with the same amino acid polymorphisms lining specific peptide-
binding pockets to be clustered into supertypes (Sette and Sidney,
1998; Southwood et al, 1998; Doytchinova and Flower, 2005). Using
a similar approach, Castelli et al (2002) defined three DP supertype
clusters with shared amino acid residues in the P1 (b84) and P6
(b11) PBP. However, the P4 peptide-binding pocket, at position
b69, also makes an important contribution to antibody and
peptide-binding (Arroyo et al, 1995; Chicz et al, 1997), T-cell
responses (Berretta et al, 2003; Diaz et al, 2003) and disease
susceptibility (Potolicchio et al, 1999; Wang et al, 1999). For this
reason we clustered 430 DPB1 alleles into six supertypes based on
polymorphisms in three PBP, at positions 11, 69, and 84 of the b1
domain (i.e., pockets 6, 4, and 1). We compared their frequencies
in childhood BCP ALL, non-BCP leukaemia and solid tumours
recruited as part of the UK Childhood Cancer Study (2000) with
newborn controls. We discuss the implications of our findings in
relation to an infectious aetiology for BCP ALL.

MATERIALS AND METHODS

Cases and controls

Childhood leukaemia cases were recruited between 1992 and 98
as part of the UK Childhood Cancer Study (UKCCS, 2000).
Leukaemias were classified as BCP ALL (CD10þ , CD19þ ;
n¼ 687) or non-BCP acute leukaemia. The non-BCP leukaemias
were the sum of Pro-B ALL (CD10�, CD19þ ), T-ALL (CD2/
CD7þ , CD19�, DR�), and AML (n¼ 208). Diagnostic immuno-
phenotyping was carried out according to the protocol for UK
Medical Research Council leukaemia trials (UKCCS, 2000). Child-
hood solid tumour cases (n¼ 409) were also recruited as part of
the UKCCS (UKCCS, 2000). Umbilical cord blood samples from a
cross-sectional series of normal white UK newborns (n¼ 864) born
in Manchester UK between 1991 and 1997 were used as controls
(Taylor et al, 2002). Blood sample collection and HLA molecular
typing were carried out with national and local ethical consent.
UKCCS patient data (diagnoses, gender, ages, ethnic background)
were validated by the UKCCS data centre at the Epidemiology and
Genetics Unit, University of York.

HLA-DPB1 molecular typing

HLA-DPB1 molecular typing was carried out as previously
described in detail (Taylor et al, 2002) by amplifying a 327 bp
exon 2 product in each case and control genomic DNA sample
using a single pair of generic DPB1 PCR primers, spotting aliquots
of each PCR product onto 384 sample nylon filters, and
hybridising replicate filters with a panel of 28 32P-labelled
sequence specific oligonucleotide probes. Probe hybridisation
was detected using real-time autoradiography, and alleles assigned
from published DPB1 ideograms.

Data analysis

DPB1 alleles in cases and controls were grouped into the six
supertype clusters defined in this study (see Table 2 and Results
for further details). Supertype allele and genotype frequencies were
compared in cases and controls using global and univariate

statistical analysis. As discussed previously (Taylor et al, 2002)
ethical constraints precluded the collection of samples from case-
matched control children, so we used local white UK newborns as
controls. DPB1 alleles with a cumulative frequency of o5% that
did not fall within the supertype clustering system were excluded
from the analysis. Only sequence variation in the three peptide-
binding pockets (positions 11, 69, and 84; pockets 6, 4, and 1,
respectively) used for supertype clustering was included in the
analysis. Global case–control supertype frequencies were com-
pared using the CLUMP programme of Sham and Curtis (1995), a
Monte Carlo method that computes a Pearson w2 statistic (T1)
from a series of simulated case–control tables. In univariate
analysis, cross-product odds ratios (ORs), and 95% confidence
intervals were calculated from case–control supertype and
genotype frequencies by the RERI program in the Linkage Utility
Package, LINKUTIL, using the Sheehe method. The 2by2
programme in LINKUTIL was used to determine 2-sided P-values
for case–control supertype and genotype differences using Fisher’s
Exact test. Six supertypes require an uncorrected P-value o0.008,
and 21 supergenotypes an uncorrected value o0.002 to achieve
significance (P¼ 0.05). No correction for the total number of
classical DP alleles was applied. POPGENE version 1.31 was used to
test for two-locus linkage disequilibrium between DPB1 and DQA1,
or DQB1 alleles.

RESULTS

Case and control characteristics

The UKCCS is an epidemiological case–control study designed to
test the role of environmental factors in the aetiology of childhood
cancer and leukaemia (UKCCS, 2000). As part of the UKCCS, we
obtained HLA-DPB1 types for 982 cases of childhood leukaemia
(Taylor et al, 2002). Ninety-one percent of the leukaemia cases
were classified as white, based on parental information, the
remainder being Asian (3.8%), Black (1%), mixed ethnicity (1.9%),
other ethnic groups (0.5%) or unknown. Of 875 cases of ALL, 559
were identified as BCP ALL, and a further 228 ALL cases were
unclassified (Taylor et al, 2002). Subsequent diagnostic informa-
tion for the unclassified ALL cases enabled us to identify 128
additional BCP ALL, seven Pro-B ALL, and six T ALL cases. These
were included in the present study, which therefore comprises 895
DP-typed cases of childhood leukaemia with a confirmed
diagnosis, of which 687 were BCP ALL and 208 were non-BCP
leukaemia cases (Table 1). A mixed diagnostic series of childhood
solid tumour cases (n¼ 409), not including childhood lymphoma
(Taylor et al, 2002) is included for comparison. Of these, 405 cases
had informative ethnic data, being classified as white in 91%
of cases. Cord blood samples from a cross-sectional series of
normal white UK term newborns (n¼ 864) were used as controls.

Table 1 Number of cases and controls in this study

Number
Male/female

Study groupa Total Male Female ratio

Leukaemia 895 492 403 1.22
BCP ALL 687 373 314 1.19
Non-BCP leukaemia 208 119 89 1.33
Pro-B ALL 26 7 19 0.37
T ALL 75 51 24 2.12
AML 107 61 46 1.33

Solid tumour 409 218 191 1.14
Newborn controls 864 436 428 1.01

aLeukaemias are classified as B cell precursor ALL (BCP ALL) and non-BCP acute
leukaemia including Pro-B ALL, T ALL and AML.
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Male–female ratios were slightly higher in the leukaemia cases
(1.22) than the solid tumours (1.14) and controls (1.01).

HLA-DPB1 supertypes

The majority (90%) of 430 DPB1 alleles in the cases and controls
could be clustered into six supertypes (Table 2), consisting of three
pairs, each pair differing at position 69 for a glutamic acid (E) or
lysine (K) in pocket 4, but having the same residues at positions 11
(G or L; pocket 6) and 84 (G or D; pocket 1). We designated the six
supertypes by their position 11-69-84 residues as GEG, GKG, LED,
LKD, GED, and GKD, corresponding to dimorphisms in the
P6-P4-P1 peptide-binding pockets. Using a modification of the
hierarchical supertype clustering system for DP alleles developed
by Doytchinova and Flower (2005), we have provisionally called
these supertypes DP1 (GKD), DP2 (GEG), DP3 (LKD), DP4 (GKG),
DP6 (LED), and DP8 (GED).

HLA-DPB1 supertype frequency in childhood leukaemia

In the total leukaemia case series (n¼ 895) and the newborn
controls (n¼ 864), we identified 14 DPb69E alleles, of which four
are DP2 (GEG), seven are DP6 (LED), and three are DP8 (GED). Of
15 DPb69K alleles, six are DP4 (GKG), six are DP3 (LKD), and
three are DP1 (GKD). In global w2 analysis, the supertype
frequency in the total leukaemia series was significantly different
(Po10�6) from the controls (Table 3), but there was only a
marginal difference between the solid tumour cases and controls
(P¼ 0.04). In univariate analysis, DP2 (GEG) (OR, 95% confidence
interval (CI): 1.6, 95%, CI, 1.2–2.0; 2 sided P¼ 0.0002) and DP8
(GED) (OR, CI: 2.9, 1.4–6.3; P¼ 0.006) were significantly more
frequent in leukaemia cases than controls. DP6 (LED) (OR, CI: 1.3,

1.0–1.8; P¼ 0.04) was only marginally significant without correc-
tion for six supertypes, while DP2 and DP8 were significant after
correction.
Stratification of the leukaemias into BCP ALL (n¼ 687) and

non-BCP acute leukaemia (n¼ 208) revealed that DP supertypes in
BCP ALL differed significantly from the newborn controls
(Po10�6), but non-BCP leukaemia was only marginally significant
(P¼ 0.04) (Table 4). In univariate analysis, DP2 (GEG) (OR, CI: 1.7,
1.3–2.1; Po10�4) and DP8 (GED) (OR, CI: 3.2, 1.5–7.0; P¼ 0.004)
were significantly more frequent, after correction for six super-
types, than controls. DP6 (LED) was not significant in BCP ALL,
but was significant in non-BCP leukaemia (OR, CI: 1.8, 1.2–2.7;
P¼ 0.007). DP1 (GKD) was significantly less frequent, after
correction, than controls in BCP ALL (OR, CI: 0.5, 0.4–0.7;
Po10�5), but not in non-BCP leukaemia.
The association of BCP ALL with DP2 and DP8 raised the

possibility of a chance finding. To test this, supertype frequencies
in four BCP ALL case series were compared with controls: (1) cases
included in our previous study (n¼ 559; Taylor et al, 2002); (2)
half of the cases in the present study (n¼ 344); (3) half of the cases
in the previous study combined with the ‘new’ cases (n¼ 343); (4)
the ‘new’ cases (n¼ 128) alone. DP2 and DP8 were significant in all
four case series, though only DP2 remained significant after
correction (Table 5).
To determine the relationship between the age at diagnosis of

BCP ALL and DP supertype, we compared the frequencies in cases
diagnosed o3 years of age, 43–6 years, and 46 years, with
controls. Figure 1 shows that the risk of BCP ALL was increased by
98% in DP2þ cases diagnosed at 43–6 years (OR, CI: 1.9, 1.4–
2.6; P¼ 10�4), but was not significant in BCP ALL diagnosed o3
or 46 years. DP4 was significantly increased in BCP ALL
diagnosed o3 years, though not after correction. DP8 was not
significant after correction, while DP1 protected from BCP ALL in
all age groups.

HLA-DPB1 supergenotype frequency

To determine which combination of supertype alleles was
associated with BCP ALL, we compared the frequency of all 21
possible supergenotypes (six homozygous, 15 heterozygous) in
BCP ALL, non-BCP leukaemia, and solid tumours with newborn
controls (Table 6). Note that certain heterozygous DPB1 genotypes,
such as DPB1*0201/0202 can have a homozygous supergenotype
(DP2/DP2:GEG/GEG) (Table 2). Of the 21 supergenotypes, only
one (DP2/DP4), was associated with a significantly increased
risk (110%), after correction, of BCP ALL (OR, CI: 2.1, 1.5–2.9;
P¼ 0.00004). DP2/DP4 was associated with an increased risk
(130%) of BCP ALL arising between 3 and 6 years of age (OR, 95%
CI: 2.3, 1.4–3.8; P¼ 0.04), but not o3 or 46 years of age. No DP2

Table 2 DPB1 supertypes of DPB1 alleles

DPB1
supertype

Peptide-binding
motif a DPB1 alleles with this supertype

DP2 GEG 0201, 0202, 3301, 4801
DP4 GKG 0401, 0402, 2301, 2401, 4901, 5101
DP6 LED 0601, 0901, 1001, 1301, 1701, 2101,

3001
DP3 LKD 0301, 1401, 2001, 2501, 2601, 3501
DP8 GED 0801, 1601, 1901
DP1 GKD 0101, 0501, 5001

aDPB1 supertypes assigned from di-allelic amino acids at positions b111 (G,L), b169
(E,K) and b184 (G,D).

Table 3 DPB1 supertype frequency in childhood leukaemia and solid
tumours compared with controls

Leukaemia Solid tumour

DPB1
supertype % OR 95% CI P % OR 95% CI P

Newborn
controls %

DP2 (GEG) 10.3 1.6 1.2–2.0 0.0002* 7.3 1.1 0.8–1.5 0.6 6.8
DP4 (GKG) 59.6 1.1 0.9–1.2 0.38 60.3 1.1 0.9–1.3 0.3 58.0
DP6 (LED) 6.8 1.3 1.0–1.8 0.04 6.5 1.3 0.9–1.8 0.2 5.2
DP3 (LKD) 12.0 0.9 0.7–1.1 0.29 12.8 0.9 0.8–1.2 0.8 13.2
DP8 (GED) 1.4 2.9 1.4–6.3 0.006* 0.6 1.4 0.5–3.9 0.8 0.5
DP1 (GKD) 6.9 0.6 0.5–0.7 o10�4* 8.6 0.8 0.6–1.1 0.09 11.1
Global w2 o10�6** 0.04
Number¼ 895 409 864

*Significant (Po0.05) after correction for six supertypes. **Significant (Po0.05) in
global w2 (CLUMP) analysis.

Table 4 DPB1 supertype frequency in BCP ALL and non-BCP leukaemia
compared with controls

BCP ALL Non-BCP leukaemia

DPB1
supertype % OR 95% CI P % OR 95% CI P

DP2 (GEG) 10.8 1.7 1.3–2.1 o10�4* 8.4 1.3 0.9–1.9 0.3
DP4 (GKG) 60.0 1.1 0.9–1.2 0.27 57.9 0.9 0.8–1.2 1.0
DP6 (LED) 6.2 1.2 0.9–1.6 0.24 8.9 1.8 1.2–2.7 0.007*
DP3 (LKD) 11.6 0.9 0.7–1.1 0.21 13.0 0.9 0.7–1.3 0.9
DP6 (GED) 1.5 3.2 1.5–7.0 0.004* 1.0 2.2 0.7–6.6 0.4
DP1 (GKD) 6.4 0.5 0.4–0.7 o10�5* 8.4 0.7 0.5–1.1 0.1
Global w2 o10�6** 0.04**
Number¼ 687 208

*Significant after correction for six supertypes. **Significant (Po0.05) in global w2

(CLUMP) analysis.
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supergenotypes were significant in non-BCP leukaemia or solid
tumours. DP4/DP6 (GKG/LED) was significant in non-BCP
leukaemia after correction (OR, CI: 2.7, 1.6–4.9; P¼ 0.002), but
not in BCP ALL or solid tumours. Homozygous DP1 (GKD/GKD)
significantly protected, after correction, against BCP ALL (OR, CI:
0.2, 0.1–0.5; P¼ 0.00004). No other DPB1 supergenotypes were
significant at any of the diagnostic ages.

Linkage disequilibrium analysis

To test whether the DP supertype associations could be explained
by LD with HLA-DQ alleles, we analysed the co-occurrence of DP
and DQ alleles in 451 BCP ALL cases, using POPGENE. We
detected only one DP allele, 1601, in LD with DQ (DQB1*0401;
w2¼ 37.4; uncorrected Po10�4). Five BCP ALL cases (0.4%) typed

for DPB1*1601, a frequency not significantly greater than in the
controls, indicating that the DP-supertype results cannot be
explained by LD between DP and DQ alleles.

DISCUSSION

Selective peptide binding by HLA allotypes is a prerequisite for the
recognition of antigens by T cells leading to adaptive immunity
(Madden, 1995). Such a mechanism may underpin the immune-
mediated progression of pre-ALL to overt leukaemia following
delayed postnatal infection (Greaves, 2006). In our previous study,
we suggested that the presence in pocket 4 of a glutamic acid (E)
residue at position 69 of the DPb1 domain was associated with BCP
ALL (Taylor et al, 2002). However, HLA class II allotype-associated
peptide binding is not the property of a single PBP; rather, it is the
sum of a series of key PBP forming a DP allotype-associated
peptide-binding motif or ‘footprint’. Polymorphisms in PBP
accommodating the P1, 4, 6, and 9 amino acid anchors appear
primarily to influence the DP allotype footprint (Hammer et al,
1997; Diaz et al, 2003, 2005). Since pocket 9 is composed of
polymorphisms in residues 9, 35, 36, 55, and 56 (Diaz et al, 2003),
we excluded this level of complexity. Furthermore, grouping
amino-acid polymorphisms at positions 36, 56, and 76 failed to
define recognised supertypes, and were not associated with
leukaemia (data not shown). Clustering of DP alleles into six
supertypes based on amino acid dimorphisms at positions 84 (P1
pocket), 69 (P4 pocket), and 11 (P6 pocket) represents an
expanded version of the scheme proposed by Castelli et al
(2002) based on peptide binding, and a slightly modified version of
the hierarchical clustering scheme proposed by Doytchinova and
Flower (2005). We have provisionally denoted the six supertypes
DP1 (GKD), DP2 (GEG), DP3 (LKD), DP4 (GKG), DP6 (LED), and
DP8 (GED) since they broadly resemble those defined in the
primed lymphocyte test (PLT) as DPw specificites (De Koster et al,
1991). Furthermore, HLA-DPw2 defined by PLT was previously
reported to be associated with ALL (Pawelec et al, 1988).
The DPB1 locus is the second most polymorphic HLA class II

locus after DRB1, with at least 120 alleles identified to date (http://
anthonynolan.org.uk/HIG/lists/class2list.html). In a rare disease
such as BCP ALL in which there are likely to be multiple
aetiological factors, weak HLA associations potentially require
hundreds of cases and controls to allow for correction for multiple
testing. Supertype analysis, in which alleles are clustered according
to common functional (i.e., peptide binding) properties, over-
comes this problem. DPB1 alleles comprise combinatorial series of
six variable regions (A-F) encoded by exon 2 (Bugawan et al,
1988), in which alleles with the same variable region polymorph-
isms have the same peptide-binding pockets. DP alleles with the
same polymorphisms at position 11 in variable region A, position

Table 5 DPB1 supertype-associated risk of BCP ALL in replicate series of cases compared with controls

Series 1a Series 2 Series 3 Series 4

DPB1 supertype OR CI P OR CI P OR CI P OR CI P

DP2 1.6 1.2–2.1 0.001* 1.8 1.3–2.4 0.003* 1.6 1.1–2.1 0.007* 1.9 1.3–2.9 0.006*
DP4 1.1 0.9–1.3 0.19 1.1 0.9–1.3 0.23 1.05 0.9–1.3 0.59 0.9 0.8–1.3 0.99
DP6 1.3 0.9–1.7 0.17 1.2 0.8–1.7 0.48 1.3 0.9–1.8 0.26 1.02 0.6–1.8 0.99
DP3 0.9 0.7–1.1 0.41 0.9 0.7–1.1 0.33 0.9 0.7–1.1 0.34 0.7 0.5–1.1 0.14
DP8 3.0 1.3–6.8 0.01 3.1 1.3–7.6 0.02 3.4 1.4–8.2 0.01 4.4 1.6–12.5 0.03
DP1 0.5 0.4–0.7 o10�4* 0.5 0.3–0.7 o10�3* 0.6 0.5–0.9 0.008* 0.7 0.4–1.1 0.13

Number¼ 559 344 343 128

aSeries 1: see Taylor et al (2002); series 2: 50% of series 1; series 3: 215 cases from series 1+128 cases from series 4; series 4: new cases in this study. *Significant (Po0.05) after
correction for six supertypes.
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Figure 1 Odds ratios for DPB1 supertype frequencies compared with
normal newborns in relation to the age at diagnosis of BCP-ALL. Ages at
diagnosis: 0–o3 years (white bar), 3–6 years (grey bar), 46 years
(checked bar). Vertical limits are 95% confidence intervals. wOne-sided,
corrected Fishers P-values: 0–o3 years: DP4¼ 0.018, DP3¼ 0.012;
DP1¼ 0.012. 3–6 years: DP2¼ 0.0006, DP1¼ 0.012. 46 years:
DP8¼ 0.018; DP1¼ 0.03.
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69 in variable region D, and position 84 in variable region F
(Bugawan et al, 1988) can be predicted to have similar immune
functions, based on identical (P6, P4, and P1, respectively) PBP.
Our supertype classification includes position 69 (P4 pocket) since
this is known to influence antibody-binding (Arroyo et al, 1995),
allorecognition and peptide binding (Diaz et al, 2005), and disease
susceptibility (Potolicchio et al, 1999; Wang et al, 1999).
Furthermore it allowed us to split b69E alleles into three
supertypes (GEG (DP2), LED (DP6), GED (DP8)), and to compare
these with three homologous b69K series (GKG (DP4), LKD (DP3),
GKD (DP1)).
We observed a 70% increase in BCP ALL risk in children typing

for DP2 (GEG), a 98% increase in DP2-associated risk between 3
and 6 years of age, and a 130% increased risk associated with a
single supergenotype, DP2/DP4. This association was not present
in BCP ALL diagnosed o3 or 46 years of age, and leads us to
conclude that the peak of BCP ALL (Greaves et al, 1993, 1985) may
be influenced by the immunological sequelae of age-related
interactions between DP2/DP4 and a specific antigenic peptide
derived from delayed infection.
Analysis of replicate case series, including the 128 BCP ALL

cases new to this study, suggest strongly that the association with
DP2 was unlikely to be due to chance. Furthermore, DP6, which
also has E at position 69 was not associated with BCP ALL, but was
associated with non-BCP leukaemia. Phylogenetic analysis sug-
gests that the DPB1 peptide-binding motif may have undergone
rapid recent diversification and b69E alleles, such as DPB1*0201
and DPB1*0601, are not all closely related (Gyllensten et al, 1996).
Supertype analysis groups HLA alleles with convergent immuno-
logical properties (Hughes et al, 1996; Trachtenberg et al, 2003),
based on common peptide-binding motifs, and may be more
relevant to BCP ALL aetiology than individual alleles.
We measured the significance of case–control supertype

frequency differences using Fisher’s Exact tests, corrected for six
supertypes or 21 supergenotypes. We did not correct for total DP
alleles since our analysis was informed by the results of our
previous study (Taylor et al, 2002) and would have been overly

influenced by low frequency alleles. Nevertheless, our results
require confirmation with independent case–control series.
Although associations between childhood ALL and DR, DQ and

DP alleles have been reported in previous studies (Dorak et al,
1995, 1999; Taylor et al, 1995, 2002), there has been no test of the
effect of LD between alleles at the different loci. We found no
evidence that the association of BCP ALL with DP2 could be
explained by LD with DQ alleles, suggesting that DP has a primary
role in susceptibility to BCP ALL.
It is unlikely that the association of BCP ALL with DP2 is due to

a defect in the immune response to an oncogenic virus (immune
evasion). There is no evidence that childhood BCP ALL is caused
by an oncogenic virus (MacKenzie et al, 2006), and the positive
association with DP2 suggests that binding of specific peptide(s)
and T-cell activation are involved in causation, which is
inconsistent with immune evasion by an oncogenic virus. The
negative association of DP1 with BCP ALL may be due to the
binding and recognition of TEL-AML1 peptide(s) in children with
pre-ALL with this supertype, as discussed elsewhere (Taylor et al,
2008), since a TEL-AML1 junctional peptide has been shown to
elicit a DPB1*0501-restricted (DP1) CD4þ T cell response (Yun
et al, 1999).
The delayed response to infection hypothesis for BCP ALL

(Greaves, 2006) proposes that a child carrying an in utero-initiated
preleukaemic clone is vulnerable to the development of leukaemia
if it is insulated from infection during the early postnatal
period, but exposed at a later age. We previously reported that
the risk of BCP ALL was greater in DPB1*0201 heterozygotes
than homozygotes (Taylor et al, 2002), suggesting that BCP ALL
might be the rare ‘down-side’ of the advantage that MHC-
heterozygosity confers on immune responses to infection.
Although evolution of HLA allelic diversity is thought to favour
heterozygotes (Takahata and Nei, 1990), a recent study suggests
that this advantage may be allele-specific (Lipsitch et al, 2003).
Our finding that only one (DP2/DP4) of 15 heterozygous
supergenotypes (GEG/GKG) is associated with BCP ALL fits
this model.

Table 6 Risk of BCP ALL, non-BCP leukaemia and paediatric solid tumours associated with DPB1 supergenotypes, compared with controls

BCP ALL Non BCP leukaemia Solid tumour

Supergenotype OR 95% CI P OR 95% CI P OR 95% CI P

DP2/DP2 (GEG/GEG) 0.9 0.4–1.9 0.99 0.9 0.3–2.8 0.99 1.02 0.4–2.4 0.99
DP2/DP4 (GEG/GKG) 2.1 1.5–2.9 0.00004* 1.6 0.9–2.7 0.14 1.1 0.7–1.8 0.7
DP2/DP6 (GEG/LED) 2.5 1.0–5.8 0.06 2.5 0.8–7.7 0.3 1.5 0.5–4.5 0.6
DP2/DP3 (GEG/LKD) 1.5 0.7–3.1 0.42 0.8 0.3–3.6 0.99 1.1 0.4–2.8 0.99
DP2/DP8 (GEG/GED) 3.8 0.3–41.7 0.88 12.5 1.1–138.5 0.38 — — —
DP2/DP1 (GEG/GKD) 1.1 0.5–2.7 0.96 0.6 0.1–7.9 0.99 0.9 0.3–2.6 0.99
DP4/DP4 (GKG/GKG) 0.9 0.7–1.1 0.40 0.8 0.6–1.1 0.17 1.1 0.9–1.4 0.3
DP4/DP6 (GKG/LED) 1.9 1.2–3.0 0.006 2.7 1.6–4.9 0.002* 1.7 1.0–2.9 0.06
DP4/DP3 (GKG/LKD) 1.1 0.8–1.4 0.80 1.2 1.2–14.6 0.1 1.1 0.7–1.5 0.8
DP4/DP8 (GKG/GED) 2.7 0.9–7.1 0.08 1.9 0.1–15.3 0.99 0.6 0.1–2.9 0.7
DP4/DP1 (GKG/GKD) 0.8 0.6–1.2 0.40 0.9 0.6–2.0 0.8 0.6 0.4–0.9 0.04
DP6/DP6 (LED/LED) 0.6 0.2–1.7 0.48 1.1 0.3–4.0 0.99 1.7 0.7–4.3 0.4
DP6/DP3 (LED/LKD) 0.5 0.2–1.1 0.09 1.1 0.04–3.1 0.67 0.2 0.07–0.81 0.02
DP6/DP8 (LED/GED) — — — — — — 6.3 0.6–70.2 0.6
DP6/DP1 (LED/GKD) 0.8 0.3–2.3 0.89 2.2 0.7–6.7 0.37 0.9 0.3–2.8 0.99
DP3/DP3 (LKD/LKD) 0.7 0.4–1.2 0.23 0.8 0.4–1.8 0.76 1.1 0.6–1.9 0.9
DP3/DP8 (LKD/GED) 3.3 0.8–12.8 0.16 2.5 0.4–15.0 0.95 2.1 0.4–10.5 0.7
DP3/DP1 (LKD/GKD) 0.5 0.2–1.2 0.15 1.6 0.5–3.9 0.85 1.2 0.5–2.7 0.8
DP8/DP8 (GED/GED) — — — — — — — — —
DP8/DP1 (GED/GKD) 3.8 0.3–41.7 0.88 — — — — — —
DP1/DP1 (GKD/GKD) 0.2 0.1–0.5 0.00004* 0.4 0.1–1.06 0.06 0.8 0.4–1.5 0.6
Number¼ 687 208 409

*Significant (Po0.05) after correction for 21 supergenotypes.

HLA-DPB1 supertypes in childhood BCP ALL

GM Taylor et al

1129

British Journal of Cancer (2008) 98(6), 1125 – 1131& 2008 Cancer Research UK

G
e
n
e
ti
c
s
a
n
d
G
e
n
o
m
ic
s



Using DPB1*0201 peptide-binding data and molecular modelling
(Diaz et al, 2005), it is possible to make predictions about the amino
acid anchors at P1, P4, and P6 of peptides binding to DP2. Pocket 4
of DP2 is deeper, more negatively charged than DP4 (Diaz et al,
2003), giving it a greater affinity for positively charged nonpolar
aromatic residues, such as glutamine (Q), arginine (R), and lysine
(K). Furthermore, glycine (G) makes pocket 1 (b84) and pocket 6
(b11) deep and hydrophilic, preferentially-binding hydrophobic and
aromatic amino acids, notably phenylalanine (F), and tyrosine (Y)
(Berretta et al, 2003; Diaz et al, 2003, 2005). This predicts that
infectious peptides with an 1FXXKXFXXA/V9 motif (where X is
unknown, and P9 can be A or V) are likely to bind to DP2.
In this context, Van Steensel-Moll et al (1986) reported a

negative (protective) association between childhood ALL and
infections in the first year of life, and Rosenbaum et al (2005)
documented a weak negative association between childhood ALL
and bronchiolitis and pneumonia. Roman et al (2007) found a
slight deficit in lower respiratory tract infection in the first year of
life of UKCCS ALL cases diagnosed at 2–5 years. Together these
findings suggest that the immune response to RSV infection may
be a factor in BCP ALL. RSV is a highly contagious, weakly
pathogenic, but strongly immunogenic virus that is widely
distributed in the childhood population (Handforth et al, 2000;
McNamara and Smyth, 2002). The G protein of RSV elicits CD4þ
T-cell responses (De Graaf et al, 2004; De Waal et al, 2004), the

peptide 162D-N179 containing two overlapping T-cell epitopes,
163FHFEVFNFV171 and 165FEVFNFVPC173 that are restricted by
DPB1*0401 (DP4), and DPB1*0201 (DP2) (De Graaf et al, 2004).
Both peptides have F at P1 and P6 suggestive of binding to GEG
(DP2) and GKG (DP4), consistent with the association of BCP ALL
with DP2/DP4. While this conclusion is speculative it points to a
need for detailed sero-epidemiological studies of RSV in BCP ALL.
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