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Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its
function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression
profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to
DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in response to DNA
damage. Although examination of the response showed that overall expression of p53 target gene expression patterns was similarly
altered in both control and Snai2-deficient cells, we have identified and validated candidate Snai2 target genes linked to Snai2 gene
function in response to DNA damage. This work defines for the first time the effect of Snai2 on p53 target genes in cells undergoing
growth arrest, elucidates the Snai2-dependent molecular network induced by DNA damage, points to novel putative Snai2 targets,
and suggest a mechanistic model, which has implications for cancer management.
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Uncommitted progenitor cells express Snai2 and aberrant activa-
tion of Snai2 pathways is key in the development of cancers
derived from many tissues (Inoue et al, 2002; Perez-Losada et al,
2002; Perez-Mancera et al, 2005). The implication of SNAI2 in
human cancer seems to be wider than initially expected (Elloul
et al, 2005; Gupta et al, 2005; Shih et al, 2005; Bermejo-Rodriguez
et al, 2006; Come et al, 2006). Nevertheless, the molecular
mechanisms by which SNAI2 participates in these biological
processes are not yet clear. In vitro studies have shown that Snai2
confers resistance to cell death induced by the withdrawal of
survival factors (Inoue et al, 2002; Perez-Losada et al, 2002; Perez-
Mancera et al, 2005). To understand the relevance of SNAI2 to
human cancer Snai2-expressing mice were generated (Perez-
Mancera et al, 2005). The analysis of the Snai2-expressing mice
identified that ‘uncontrolled’ Snai2 expression induces cancer in
mice. These findings further indicated that overexpression of
SNAI2 by human tumours could be of importance to both cell fate
selection by genotoxic anticancer agents (Perez-Mancera et al,
2005) and clinical management of human cancer patients (Elloul
et al, 2005; Shih et al, 2005; Bermejo-Rodriguez et al, 2006; Come
et al, 2006). These results suggested that Snai2 expression was
protecting cells from death by genetic alterations as a consequence
of an inherent, basal level of genetic instability (Sanchez-Garcia,

1997; Pérez-Caro et al, 2005; Perez-Mancera et al, 2005). Consistent
with this interpretation, in the haematopoietic system Snai2-
deficient cells are radiosensitive to DNA damage (Inoue et al, 2002;
Perez-Losada et al, 2003; Wu et al, 2005). In fact, SNAI2 expression
seems to be associated with a patient’s resistance to chemo-
therapeutic agents in human mesotheliomas (Catalano et al, 2004).
Thus, constitutive activation of Snai2 could confer resistance
properties to the tumour-target cells connecting DNA damage with
the requirement of a critical level of Snai2 for cancer development.
In agreement with these results, recently it has been shown Snai2 is
a p53 target that antagonises p53-mediated apoptosis of haemato-
poietic progenitors (Wu et al, 2005). However, the effect of Snai2
on p53 target genes remains an open question (Haupt et al, 2006).

In this study, we have investigated the role of Snai2 in DNA
damage. To explore the role of Snai2 in DNA damage response, we
used primary mouse embryonic fibroblasts (MEFs), which under-
go p53-dependent growth arrest in response to DNA damage.
Snai2 wild-type and null MEFs were subjected to DNA damage and
the global gene expression patterns were examined. Although
overall the expression of the majority of the spotted genes was not
altered in Snai2-deficient cells compared to control MEFs, we have
identified candidate Snai2 target genes linked to Snai2 gene
function in response to DNA damage.

MATERIALS AND METHODS

Preparation of MEF RNA populations

Wild-type, p53�/� and Snai2-deficient MEFs were isolated as
described previously (Bermejo-Rodriguez et al, 2006). To prepare
the RNA population for microarray studies, wild-type and
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Snai2-deficient MEFs (passage 4) were synchronised by growing to
confluence in DMEM plus 10% FCS for 3 days. To stimulate re-
entry into the cell cycle, the cells were reseeded into DMEM plus
10% FCS at 1.0� 106 cells per 10-cm dish. After 6 h, 0.2 mg ml�1

doxorubicin (Sigma-Aldrich, Madrid, Spain) was added to induce
G1 arrest. After 12 h treatment, cells were collected by trypsinisa-
tion and frozen as a pellet for subsequent RNA and/or protein
preparation. Dishes of both untreated and treated wild-type and
Snai2-deficient MEFs were collected after 16 h of doxorubicin
treatment for FACS analysis to verify a p53-dependent G1 arrest as
described previously (Attardi et al, 2000).
g-Irradiation was performed using a 137Cs source. Asynchro-

nously growing wild-type, p53�/� and Snai2-deficient MEFs were
treated with 5 and 8 Gray (Gy) of g-irradiation, which induces a
well-characterised arrest in both G1 and G2 (Kastan et al, 1992).
We chose to examine the effects at 18 h, a time point at which these
arrest responses have been demonstrated previously.

RNA extraction Total RNA was isolated in two steps using TRIzol
(Life Technologies Inc., Grand Island, NY, USA) followed by
Rneasy Mini-Kit (Qiagen Inc., Valencia, CA, USA) purification
following the manufacturer’s RNA Clean-up protocol with the
optional on-column DNase treatment. The integrity and the quality
of RNA was verified by electrophoresis and its concentration
measured.

Microarray procedures

A measure of 30 mg of total RNA from each sample was directly
labelled with cyanine 3-conjugated dUTP (Cy3), whereas 30 mg of
RNA from the Universal Mouse Reference RNA (Stratagene, VWR
International, Spain) was labelled with cyanine 5-conjugated dUTP
(Cy5) as reference. For all of the microarray studies the CNIO
MouseChip was used (Bermejo-Rodriguez et al, 2006). Hybridisa-
tions were performed as described (Bermejo-Rodriguez et al,
2006). After washing, the slides were scanned using a Scanarray
5000 XL (GSI Lumonics Kanata, Ontario, Canada) and images were
analysed with the GenePix 4.0 program (Axon Instruments Inc.,
Union City, CA, USA). All experiments were repeated four times
using cells from different embryos.

Data analysis Data obtained from each hybridisation were stored
in a database for analysis. The Cy3 : Cy5 ratios were normalised to
the median ratio value of all of the spots in the array. After
normalisation, spots with intensities for both channels (sum of
medians) less than that of the local background were discarded.
The ratios of the remaining spots were log transformed (base 2),
and duplicated spots on the MouseChip were averaged to the
median. To obtain the expression profile of wild-type and Snai2-
deficient MEFs, we referred the ratios of control and Snai2-
deficient DNA-damaged cells to the undamaged counterparts. The
Ingenuity Pathways Analysis program (http://www.ingenuity.com/
index.html) was used to further analyse the cellular functions and
pathways that were significantly regulated by Snai2 in response to
DNA damage.

Quantitative RT–PCR Control and Snai2�/� MEF RNA (1 mg)
was reverse-transcribed by using Advantage RT for PCR kit (BD
Biosciences, Becton Dickinson, Madrid, Spain). SYBR Green PCR
Master mix (Applied Biosystems, USA) was used for template
amplification with the primers specific for each of the transcripts
examined. PCR with RT sample were used as negative controls.
Thermocycling for all targets were carried out in 30 ml reaction for
40 cycles in triplicate. Each cycle consisted of 941C for 15 s, 561C
for 30 s and 721C for 30 s. Incorporation of the SYBR Green dye
into PCR products was monitored in real time with an ABI PRISM
7000 sequence detection system (Applied Biosystems). SDS system
software was used to convert the fluorescent data into threshold

cycle (Ct) at which exponential amplification of products begins.
The differences in the Ct values (dCt) between the transcript of
interest and endogenous control (GAPDH) were used to determine
the relative expression of the gene in each sample and the ddCt

method was used to calculate fold expression. To determine
correlation between expression of two genes in the same set of
samples dCt values were used to calculate regression coefficient.

Western blot analysis Western blot analysis of control,
p53�/�and Snai2�/� MEFs were carried out essentially as
described (Castellanos et al, 1997). Extracts were normalised for
protein content by Bradford analysis (Bio-Rad Laboratories Inc.,
Melville, NY, USA) and Coomassie blue gel staining. Lysates
were run on a 10% SDS–PAGE gel and transferred on to a PVDF
membrane. After blocking, the membrane was probed with the
following primary antibodies: p53 (Ab3, Oncogene Research),
Phospho-p53 (Ser15) (no. 9284, Cell Signaling Technology,
IZASA, Barcelona, Spain), Puma/bbc3 (P4743, Sigma), Bid
(sc-11423, Santa Cruz Biotechnology, Quimigen, Madrid, Spain),
p27 (sc-1641, Santa Cruz Biotechnology), Atm (sc-1214, Santa
Cruz) and actin (I-19) (sc-1616, Santa Cruz Biotechnology).
Reactive bands were detected with an ECL system (Amersham,
GE Healthcare, Madrid, Spain).

RESULTS

Normal G1 arrest in Snai2-deficient MEFs in response to
doxorubicin treatment

Expression patterns were studied in wild-type MEFs and Snai2-
deficient MEFs to search for Snai2-regulated species in response
to DNA damage. We chose to use the DNA-damaging agent
doxorubicin for this study as it effectively induced p53-dependent
G1 arrest in MEFs (Attardi et al, 2000). To prepare RNA for screen
wild-type MEFs and Snai2-deficient MEFs were treated with
0.2mg ml�1 doxorubicin for 12 h. This time point was chosen
because it had previously shown it to be a point of peak expression
of known p53 target genes (Attardi et al, 2000). That G1 arrest
had occurred was confirmed by FACS analysis, which showed
a G1 arrest in both the wild-type and the Snai2-deficient cells
(Figure 1).

Normal p53 activation in Snai2-deficient MEFs in response
to doxorubicin treatment

It has been previously shown that Snai2-deficient bone marrow
cells are radiosensitive to DNA damage induced by g-irradiation
(Inoue et al, 2002; Perez-Losada et al, 2003; Wu et al, 2005).
p53 is centrally involved in the cellular response to DNA
damage (Attardi et al, 2000). Exposure to DNA damage agents
causes an increase in the intracellular levels of p53 (Attardi et al,
2000). Thus, we next explored if the DNA damage-protective
potential of Snai2 was based on interference with p53 activation
in MEFs in response to doxorubicin treatment. As shown
in Figure 2, we measured the p53 protein levels in wild-type
MEFs and Snai2-deficient MEFs after DNA damage induced by
doxorubicin. The activation of p53 in both control and
Snai2-deficient cells was similar (Figure 2), indicating that p53
regulation in response to DNA damage is not affected in
Slug-deficient MEF.

Identification of Snai2-target genes in response to DNA
damage by mouse cDNA Microarray analysis in MEFs

Expression analyses were performing with a mouse cDNA
microarray (Mousechip-CNIO) containing 15 000 clones
(Bermejo-Rodriguez et al, 2006). Expression patterns were studied
in wild-type MEFs and Snai2-deficient MEFs. Three independent
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mouse cDNA microarrays were used to search for Snai2-regulated
species in MEFs in response to DNA damage. To obtain a
global view of the number of genes regulated by Snai2 in response
to DNA damage, we hybridised differentially labelled RNA
from control MEFs versus the Snai2-deficient MEFs to a
mouse cDNA microarray. This system allows us to identify
physiologically relevant Snai2 targets in response to DNA damage.
Overall the expression of the majority of the spotted genes was not
altered in Snai2-deficient cells in response to doxorubicin
treatment.

To confirm that this microarray analysis could be used to
identify Snai2 target genes, we first examined whether known
target genes were modulated in control MEFs after doxorubicin
treatment. As expected, the main sensor of DNA damage p53 was
upregulated close to genes involved in cell cycle arrest (Ku70),
apoptosis (Casp3, Puma, Lrdd) and DNA repair (mdm2, Rad1)
(Figure 3A). Puma is a Bcl-2 family member involved in p53-
induced apoptosis (Jeffers et al, 2003) and Puma/bbc3 expression
was upregulated in control MEFs in response to DNA damage. On
the contrary, survival gene expression was downregulated in
control MEFs after DNA doxorubicin treatment (Figure 3A).
Analysis of the expression of the same set of genes revealed that
overall expression was not altered in Snai2-deficient cells in
response to doxorubicin treatment (Figure 3B). The expression of

the previously implicated Snai2-target gene Puma/bbc3 (Wu et al,
2005; Bermejo-Rodriguez et al, 2006) was not significantly
modulated in Snai2-deficient cells in response to DNA damage.
To confirm this result, we next measured the Puma/bbc3 protein
levels in wild-type MEFs and Snai2-deficient MEFs after DNA
damage induced by doxorubicin. In agreement with our previous
observations (Bermejo-Rodriguez et al, 2006), the Puma/bbc3
protein levels in Snai2-deficient MEFs were lower than in control
MEFs (Figure 3C). However, the activation of Puma/bbc3 in both
control and Snai2-deficient cells in response to doxorubicin
treatment was similar (Figure 3C), indicating that Puma/bbc3
regulation in response to DNA damage is not affected in
Snai2-deficient MEF. These results suggest that p53 does not
require Snai2 for Puma/bbc3 regulation in response to DNA
damage in MEFs.

We further characterised our microarray data using the
Ingenuity program (a software that identifies molecular networks
by relating each gene entry with a database of known physical
transcriptional or protein interactions). This study revealed
the existence in the Snai2-dependent transcriptome of three
proteins whose expression was altered in Snai2-deficient cells in
response to DNA damage: Atm, Cdkn1b/p27 and Bid (Figure 3D).
These results led us to demonstrate that these transcriptional
factors were indeed downregulated in Snai2-deficient cells in
response to DNA damage, by quantitative RT–PCR (qRT –PCR) in
the case of Atm (Figure 3E) and by using specific antibodies to Bid,
Atm and Cdkn1b/p27 (Figure 3F and G). Because Snai2 DNA-
binding sites (Inukai et al, 1999) were present in promoter regions
of Atm, and Cdkn1b/p27 and Bid (Figure 3H), Snai2 might be
directly involved in the control of transcription-repression of
these targets.

We next examined if Snai2 was regulating these three targets,
Atm, Cdkn1b/p27 and Bid, in response to DNA damage by
g-irradiation. To prepare protein for analysis, wild-type MEFs,
p53�/� and Snai2-deficient MEFs were treated with 5 and 8 Gy of
g-irradiation, which induces a well-characterised arrest in both
G1 and G2 (Kastan et al, 1992). As shown in Figure 3I,
these transcription factors were downregulated in Snai2-deficient
MEFs in response to DNA damage by g-irradiation. Thus,

IP  ->
0 256 512 768 1024

IP  ->
0 256 512 768 1024

Control MEFs Snai2–/– MEFs

IP  ->
0 256 512 768 1024

IP  ->
0 256 512 768 1024

Control MEFs + DOX Snai2–/– MEFs+DOX

Figure 1 Doxorubicin induces a G1 arrest in Snai2-deficient mouse embryonic fibroblasts (MEFs). Dishes of both untreated (A) treated (B) wild-type and
Snai2-deficient MEFs were collected after 16 h of doxorubicin treatment for FACS analysis to verify a G1 arrest. FACS profiles include G1-arrested without
and with doxorubicin of both wild-type and Snai2-deficient MEFs.

Control MEFs Snai2–/– MEFs

Doxorubicin – –+ +

p53

Actin

Figure 2 Levels of p53 protein in Snai2-deficient mouse embryonic
fibroblast (MEF) cells in response to DNA damage treatment with
doxorubicin. p53 protein was detected by western blotting in wild-type and
Snai2-deficient MEFs. Actin was used as a loading control.
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g-irradiation is similar to doxorubicin in regulating the
Snai2-dependent expression of these proteins. Moreover,
the activation of Puma/bbc3 in both control and Snai2-deficient

cells in response to g-ray treatment was similar (Figure 3I), further
indicating that Puma/bbc3 regulation in response to DNA damage
is not affected in Snai2-deficient MEF.

Snai2–/– MEFs 

Control MEFs Snai2–/– MEFs

Doxorubicin – +  – +

Puma/bbc3

Actin

3 2 1 32 1
Pcna
Brca1
Ccnd3
Chek1
Bcl2
Brca2
Casp2
Ku80
Atr
Fadd
H2B
HUS1
Bcl-xL
Bid
Cdkn1b
Chek2
Daxx
Ercc3
Atm
Hst1

Puma
Ku70
Rad1

Lrdd
Trp53
Pm1
Hdm2
Casp3

Smac/Diablo

Cytochrome_c

Pcna
Brca1

Ccnd3

Chek1

Bcl2

Brca2

Casp2

Ku80

Atr

H2B

HUS1

Bcl-xL

Bid

Cdkn1b

Chek2

Daxx

Ercc3

Atm

Hst1

Puma

Ku70

Rad1

Lrdd
Trp53

Pm1

Hdm2

Casp3
Smac/Diablo

Cytochrome_c

–2.4 +2.40 –2.4 +2.40

Control MEFs 

Snai2–/– MEFsControl MEFs 

A

C

D

B

Figure 3 Graphical depiction of expression data for known target genes in response to DNA damage (cell cycle and apoptosis related genes) in wild-type
mouse embryonic fibroblasts (MEFs) (A) and Snai2-deficient MEFs (B). Each gene (identified at right) represented by a single row of coloured boxes; each
independent experiment is represented by one single column. (C) Puma expression in control MEFs and Snai2�/� MEFs in response to DNA damage
treatment by doxorubicin. Puma protein analysis in control and Snai2�/� MEFs after DNA damage by western blot. Actin was used as a loading control. (D)
Identification of Slug-dependent proteins using the Ingenuity database. Nodes are colour-coded in red (upregulated) or green (downregulated) according to
their fold changes value. (E) Confirmation of the microarray results by qPCR performed as described in the Materials and Methods section. (F and G)
Expression of Bid (F) and Atm and Cdkn1b/ p27 (G) in control MEFs and Snai2�/� MEFs in response to DNA damage treatment by doxorubicin. Bid, Atm
and Cdkn1b/p27 protein analysis in control and Snai2�/� MEFs after DNA damage by western blot. Actin was used as a loading control. (H) Identification
of Snai2 DNA-binding sites within promoter regions of murine Atm, Bid and p27 genes (bp, base pairs). (I) Expression of p53, Puma, Bid, Atm and Cdkn1b/ p27
(G) in control, Snai2�/� and p53�/� MEFs in response to DNA damage treatment by g-irradiation. p53 protein was detected by western blot in wild-type
and Snai2-deficient MEFs. Puma, Bid, Atm and Cdkn1b/p27 protein analysis by western blot in control, Snai2�/� and p53�/� MEFs after DNA damage
treatment with 5 and 8 Gy of g-irradiation. Actin was used as a loading control.
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Effect of Snai2 on p53 target genes in cells undergoing
growth arrest in response to DNA damage

It is well established that there is a tissue specificity in the relative
induction of several known p53 target genes in response to DNA
damage (Burns et al, 2001; Burns and El-Deiry, 2003). Thus, we
next examined how these genes were modulated in control and
Snai2-deficient MEFs after doxorubicin treatment. As shown in
Figures 4 and 5 the overall expression of these p53 target gene
expression patterns was similarly altered in both control and
Snai2-deficient cells, indicating that p53 does not require Snai2 for
regulation of majority of these genes in response to DNA damage
in MEFs. However, the regulation of a significant number of p53
target genes in response to DNA damage in both control and
Snai2-deficient MEFs differs from how they are regulated in the
spleen and thymus in response to DNA damage (Burns et al, 2001;
Burns and El-Deiry, 2003), confirming the striking cell specificity
for p53-dependent transcription and repression (Burns et al, 2001;
Burns and El-Deiry, 2003).

Analysis of the expression microarray data revealed six
candidate p53 target genes (two genes whose expression was
increased in Snai2-deficient MEFs compared to control MEFs in
response to DNA damage: Hspb1 and Tgm2; and four genes whose
expression was decreased in Snai2-deficient MEFs compared to
control MEFs in response to DNA damage: Mt1, Cxcl1, Foxg1 and
Fos). The Ingenuity program confirmed the existence in the Snai2-
dependent transcriptome of six genes whose expression was
altered in Snai2-deficient cells in response to DNA damage: Hspb1,
Tgm2, Mt1, Cxcl1, Foxg1 and Fos (Figures 4C and 5C). Good
concordance was found between array and qPCR data for the
selected p53 target genes regulated by Snai2 (Figure 3E), suggest-
ing an interesting link between these genes and Snai2. These p53
target genes modulated by Snai2 belong mainly to the following
categories on the basis of the biological or pathological function:
metastasis (Cxcl1); cell cycle/DNA/oxidative damage (Hspb1, Mt1,
Fos); survival (Tgm2), and cell development (Foxg1b). These
results indicate that Snai2 regulates a limited set of p53 target
genes in MEFs in response to DNA damage. Moreover, the

presence of Snai2 DNA-binding sites (Inukai et al, 1999) in the
promoter regions of these p53 target genes modulated by Snai2
(Figure 5D) suggests Snai2 could be directly involved in the control
of transcription-repression of these targets.

DISCUSSION

In this study, we have applied a functional genomics approach that
combined gene expression profiling and computational molecular
network analysis to obtain global dissection of the Snai2-
dependent transcriptional response to DNA damage and to dissect
the contribution of Snai2 on p53 target genes. As a model system,
we used primary MEFs. Mouse embryonic fibroblasts represent an
ideal cell system in which the activities of p53 can be studied.
When treated with DNA-damaging agents, wild-type MEFs activate
the cell cycle checkpoint by arresting in G1 (Attardi et al, 2000).
This response is clearly p53 dependent as p53-null MEFs fail to
undergo G1 arrest upon DNA damage treatment. Majority of
approaches used to identify the role of p53-responsive genes such
as p21 have typically entailed comparing gene-expression profiles
of cell lines lacking p53 with cell lines overexpressing p53 (El-Deiry
et al, 1993; Okamoto and Beach, 1994; Buckbinder et al, 1995;
Polyak et al, 1996). Another advantage of the strategy used here is
that it relies on the response of endogenous cellular p53 to DNA
damage and is performed using primary cells, making it very
physiological.

Before using this approach to identify Snai2 target genes linked
to Snai2 gene function in response to DNA damage, we
demonstrated that normal G1 arrest and normal p53 activation
took place in Snai2-deficient MEFs in response to doxorubicin
treatment. These observations indicated that p53 does not require
Snai2 to activate the cell cycle checkpoint by arresting in G1.
Moreover, these results indicate Snai2 does not require p53 for its
DNA damage protective function in MEFs in agreement with
previous data in haematopoietic precursors (Perez-Losada et al,
2002; Perez-Mancera et al, 2005; Wu et al, 2005). To confirm that
our approach could be used to study the role of the p53-responsive
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Figure 3 Continued.
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gene Snai2 in DNA damage response, we next examined whether
known target genes were modulated in control and Snai2-deficient
MEFs after DNA doxorubicin treatment. Expression of these genes
was modulated as expected in control MEFs and their expression
was not altered in Snai2-deficient cells in response to doxorubicin

treatment. These results further confirm the approach used is
physiologically relevant.

In addition to the elucidation of the genetic program of Snai2
and the identification of transcriptionally regulated protein
networks, one of the main results of this work is the observation
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Figure 4 Graphical expression pattern in wild-type mouse embryonic fibroblasts (MEFs) (A) and Snai2-deficient MEFs (B) of genes upregulated and
downregulated by p53 in response to DNA damage. Described genes upregulated and downregulated by p53 in the thymus and spleen (Burns and El-Deiry,
2003) in response to DNA damage were analysed. Each gene (identified at right) represented by a single row of coloured boxes; each independent
experiment is represented by one single column. A red asterisk indicates major changes between control and Snai2-deficient MEFs. (C) Identification of Slug-
dependent proteins using the Ingenuity database. Nodes are colour-coded in red (upregulated) or green (downregulated) according to their fold changes
value.
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that p53 triggers similar transcriptomal programs in Snai2-
deficient cells in response to DNA damage. However, these results
do not rule out that the functional specificity of Snai2 may be
established outside the transcriptional program or, alternatively,
that it may require additional regulatory components and/or
specific cell backgrounds. Further work in this area will be
required to address these possibilities.

Another important observation of this work is the identification
of a limited set of protein network (Atm, Bid and p27) and p53-
target genes (Hspb1, Tgm2, Mt1, Cxcl1, Foxg1 and Fos) whose
expression is regulated by Snai2 in response to DNA damage. The

presence of Snai2 DNA-binding sites (Inukai et al, 1999) in the
promoter regions of these target genes modulated by Snai2
suggests Snai2 could be directly involved in the control of
transcription-repression of these targets. Two of these targets
(Atm and Bid) had already been identified as Snai2 targets
describing the resistance to doxorubicin treatment of Snai2-
expressing MCF7 cells (Kajita et al, 2004). In addition, Snai2 was
shown in that study to bind Bid promoter (Kajita et al, 2004). The
zinc-finger protein Snai2 is considered a transcriptional repressor.
In agreement with this idea, expression of Hspb1 and Tgm2 was
increased in Snai2-deficient MEFs compared to control MEFs in
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Figure 5 Graphical representation of the expression pattern in wild-type mouse embryonic fibroblasts (MEFs) (A) and Snai2-deficient MEFs (B) of genes
known to be specifically increased by p53 in response to DNA damage. Genes known to be specifically increased by p53 in either thymus and spleen (Burns
and El-Deiry, 2003) in response to DNA damage were studied. Each gene (identified at right) represented by a single row of coloured boxes; each
independent experiment is represented by one single column. A red asterisk indicates the main expression differences between control and Snai2-deficient
MEFs. (C) Identification of Slug-dependent proteins using the Ingenuity database. Nodes are colour-coded in red (upregulated) or green (downregulated)
according to their fold changes value. (D) Identification of Snai2 DNA-binding sites within promoter regions of human and mouse of p53 target genes
modulated by Snai2.
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response to DNA damage. However, majority of Snai2-target genes
(Atm, Bid, p27, Mt1, Cxcl1, Foxg1 and Fos) were downregulated in
Snai2-deficient MEFs in response to DNA damage, supporting the
view that Snai2 can also behave as a positive transcriptional
regulator or act by repressing the transcription of a repressor
(Bermejo-Rodriguez et al, 2006). All these novel Snai2 targets have
been implicated in DNA damage and survival regulation (Wang
et al, 1991; Beattie et al, 1998; Park et al, 2000; Nanda et al, 2001;
Katoh and Katoh, 2004; Minn et al, 2005). Thus, the regulation of
these genes by Snai2 in response to DNA damage could be
important in preserving integrity of tumour target cells and
supports the view that failure to control Snai2 expression can
produce cancer and alterations in development (Perez-Mancera
et al, 2005; Perez-Mancera et al, 2006). These Snai2-target genes
could represent novel pharmacological targets and/or biomarkers
in cancers linked to Snai2 (Perez-Mancera et al, 2005; Bermejo-
Rodriguez et al, 2006; Perez-Caro and Sanchez-Garcia, 2006).

The expression of the previously implicated Snai2-target gene
Puma/bbc3 (Wu et al, 2005; Bermejo-Rodriguez et al, 2006) was
not significantly modulated in Snai2-deficient cells in response to
DNA damage, indicating that Puma/bbc3 regulation in response to
DNA damage is not affected in Snai2-deficient MEFs. These results
suggest that p53 does not require Snai2 for Puma/bbc3 regulation
in response to DNA damage in MEFs, suggesting cellular context is
of great importance for interpretation of Snai2 function. This
tissue specificity of Snai2 is also supported by the fact that many
Snai2-expressing lineages showed no obvious phenotypes in Snai2
mutant mice (Jiang et al, 1998; Perez-Losada et al, 2002; Sanchez-
Martin et al, 2002, 2004), suggesting that Snai2 function in these
cell types either is not required or can be compensated through
synergy with other Snail family members. Moreover, this observa-
tion is in agreement with the known tissue specificity in the
relative induction of several known p53 target genes (Burns et al,
2001; Burns and El-Deiry, 2003). Our results clearly show that the
regulation of a significant number of p53 target genes in response

to DNA damage in both control and Snai2-deficient MEFs differ
from how they are regulated in the spleen and thymus in response
to DNA damage (Burns and El-Deiry, 2003), confirming the
striking cell specificity for p53-dependent transcription and
repression.

In summary, these results have provided a comprehensive picture
of the transcriptional events regulated by Snai2 during the DNA-
damage process. From this analysis, we have obtained information
regarding the Snai2-dependent molecular routes induced by DNA
damage, defined the effect of Snai2 on p53 target genes, pointed to
novel putative Snai2 targets, and suggested a mechanistic model. The
emerging model suggests that targeting the Snai2-mediated arm
could effectively increase the radiosensitivity of Snai2-dependent
cancers. Given that our work has been focused on MEF cells, it would
be interesting to expand these studies to other cell types in the future
to get an idea of the level of conservation of the transcriptional
programs of Snai2 in different tissues. Future studies will define if
cancer maintaining cells (or cancer stem cells) keep constitutively
active part of the original genetic programme controlled by Snai2 in
MEFs in response to DNA damage.
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M Pérez-Caro et al

488

British Journal of Cancer (2008) 98(2), 480 – 488 & 2008 Cancer Research UK

G
e
n

e
tic

s
a
n

d
G

e
n

o
m

ic
s

http://atlasgeneticsoncology.org//Genes/SNAI2ID453.html
http://atlasgeneticsoncology.org//Genes/SNAI2ID453.html

	Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)
	Main
	Materials and methods
	Preparation of MEF RNA populations
	RNA extraction

	Microarray procedures
	Data analysis
	Quantitative RT–PCR
	Western blot analysis


	Results
	Normal G1 arrest in Snai2-deficient MEFs in response to doxorubicin treatment
	Normal p53 activation in Snai2-deficient MEFs in response to doxorubicin treatment
	Identification of Snai2-target genes in response to DNA damage by mouse cDNA Microarray analysis in MEFs
	Effect of Snai2 on p53 target genes in cells undergoing growth arrest in response to DNA damage

	Discussion
	Acknowledgements
	References


