
Complementary effects of HDAC inhibitor 4-PB on gap junction
communication and cellular export mechanisms support
restoration of chemosensitivity of PDAC cells

O Ammerpohl1, A Trauzold1, B Schniewind1, U Griep1, C Pilarsky2, R Grutzmann2, H-D Saeger2, O Janssen3,
B Sipos4, G Kloppel4 and H Kalthoff*,1

1Section Molecular Oncology, Clinic for General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller Strasse 7,
Kiel 24105, Germany; 2Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technical University of Dresden,
Dresden 01307, Germany; 3Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany; 4Institute of Pathology,
University Hospital Schleswig-Holstein Campus Kiel, Kiel 24105, Germany

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease and one of the cancer entities with the lowest life expectancy. Beside
surgical therapy, no effective therapeutic options are available yet. Here, we show that 4-phenylbutyrate (4-PB), a known and well-
tolerable inhibitor of histone deacetylases (HDAC), induces up to 70% apoptosis in all cell lines tested (Panc 1, T4M-4, COLO 357,
BxPc3). In contrast, it leads to cell cycle arrest in only half of the cell lines tested. This drug increases gap junction communication
between adjacent T3M-4 cells in a concentration-dependent manner and efficiently inhibits cellular export mechanisms in Panc 1,
T4M-4, COLO 357 and BxPc3 cells. Consequently, in combination with gemcitabine 4-PB shows an overadditive effect on induction
of apoptosis in BxPc3 and T3M-4 cells (up to 4.5-fold compared to single drug treatment) with accompanied activation of Caspase 8,
BH3 interacting domain death agonist (Bid) and poly (ADP-ribose) polymerase family, member 1 (PARP) cleavage. Although the
inhibition of the mitogen-activated protein kinase-pathway has no influence on fulminant induction of apoptosis, the inhibition of the
JNK-pathway by SP600125 completely abolishes the overadditive effect induced by the combined application of both drugs, firstly
reported by this study.
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Patients with pancreatic ductal adenocarcinoma (PDAC) still suffer
from a very poor prognosis. Pancreatic ductal adenocarcinoma is
ranked fourth among the cancer-related death in the US, responsible
for approximately 31 000 deaths per year and the overall 5-year
survival rate is less than 5%. Despite major progress in medical
science during the last decades, the annual cancer-related death rate
for PDAC has not changed significantly during these decades (Jemal
et al, 2005). Additionally, therapies proven to be successful for
treating many other tumour entities, failed in PDAC treatment.
Deregulated genes in PDAC have been published recently by us

and others (Crnogorac-Jurcevic et al, 2002; Iacobuzio-Donahue
et al, 2003; Logsdon et al, 2003; Grutzmann et al, 2004). These
genes included candidates involved in cell cycle control, apoptosis,
cell motility or other tumour relevant pathways, but druggable key
players have to be defined yet. Thus, new therapies for PDAC are
urgently required. Because given gene therapy, directly addressing

single deregulated genes, still suffers from inefficient gene transfer
and tumour targeting, we focused on other drugs like histone
deacetylases (HDAC) inhibitors, generally influencing the activity
of deregulated genes by changing the chromatin status. Acetylation
of histones is associated with gene activation, whereas deacetyla-
tion mediated by HDAC is associated with gene silencing,
classifying HDAC as a powerful drug target (Yoshida et al,
2001). Inhibitors of HDAC modulate chromatin structure resulting
in loosening of the chromatin and changing transcription factor
loading to the DNA (Nakano et al, 1997).
This modulates the expression pattern of various tumour

relevant genes for the control of the cell cycle or apoptosis (Huang
et al, 2000; Kim et al, 2004) causing inhibition of cell growth and
differentiation (Feinman et al, 2002; Svechnikova et al, 2003;
Yokota et al, 2004).
4-phenylbutyrate (4-PB) is one of few histone deacetylase

inhibitors (HDACi) already tested in clinical trials in the treatment
of recurrent malignant gliomas or the myelodysplastic syndrome
(Bhalla and List, 2004; Phuphanich et al, 2005). Additionally, it is
a FDA-approved and well-tolerated drug for urea cycle disorders
(Rubenstein and Zeitlin, 1998), therefore being an attractive
candidate for other therapies.

Revised 6 November 2006; accepted 7 November 2006; published
online 12 December 2006

*Correspondence: Dr H Kalthoff;
E-mail: hkalthoff@email.uni-kiel.de

British Journal of Cancer (2007) 96, 73 – 81

& 2007 Cancer Research UK All rights reserved 0007 – 0920/07 $30.00

www.bjcancer.com

T
ra
n
sl
a
ti
o
n
a
l
T
h
e
ra
p
e
u
ti
c
s



Gemcitabine is a widely used drug in the treatment of several
cancer entities, including lung, breast and pancreatic carcinoma.
Gemcitabine belongs to the antimetabolites interfering with the cell
cycle progression. In several studies gemcitabine was combined
with other established anticancer drugs like 5-FU, cisplatin,
docetaxel and radiotherapy to address or to overcome the
extraordinary resistance of pancreatic carcinoma to chemotherapy
(Eisenberg et al, 2005; Ko and Tempero, 2005; Pipas et al, 2005).
In this study, we investigated the effect of 4-PB as a single drug

on various cancer-related parameters like proliferation, induction
of apoptosis and intercellular communication in several PDAC cell
lines. Furthermore, although comparing the effects of single drug
treatment with gemcitabine and 4-PB, we show overadditive effects
in a combined treatment with both drugs. This study provides a
comprehensive insight into the effects and advantages of the use of
the HDACi 4-PB in the treatment of PDAC. Additionally, for the
first time, we could show synergistic effects when combining 4-PB
treatment with gemcitabine, a classical chemotherapeutical drug.

MATERIALS AND METHODS

Cell culture

Pancreatic carcinoma cell lines COLO 357, Panc 1, T3M-4; BxPc3
(Sipos et al, 2003) and primary human fibroblasts were grown
as described (Grutzmann et al, 2004). HPDE6-E6E7-c7 cells
(H6c7) (Furukawa et al, 1996; Ouyang et al, 2000) were grown in
a medium containing FCS (10%, PAN Biotech, Aidenbach,
Germany), RPMI 1640 (45%), Keratinocyte-SFM (45%), Bovine
Pituitary Extract (25mg l�1) and hEGF (2.5mg l�1, all Invitrogen,
Karlsruhe, Germany). Cells were treated with 4-PB (Triple Crown
America, dissolved in phosphate-buffered saline (PBS)), JNK
inhibitor II (SP600125; Calbiochem, Merck, Darmstadt, Germany)
or zVAD (Bachem, Weit am Rhein, Germany) as indicated. Cell
counting was performed using a CASY1 TT-cell counter (Schärfe
System, Reutlingen, Germany) according to the manufacturer’s
instruction.

Isolation of human PBMC

Peripheral blood mononuclear cells (PBMC) were isolated by
Ficoll–Hypaque density gradient centrifugation of buffy coat
preparations obtained from healthy blood donors. T-cell blasts
were generated from unseparated PBMC in the presence of
phytohemagglutinin (PHA 0.5mgml�1, Murex Biotech Ltd, Abbott,
Wiesbaden, Germany). After 3 days, dead cells were removed by
Ficoll density gradient centrifugation and T-cell blasts were
expanded in RPMI 1640 with 5% FBS, antibiotics, L-glutamine
and HEPES supplemented with 50Uml�1 rIL-2 (Chiron Behring,
Novurtis, Marburg, Germany). Cells were kept at 371C in a
humidified atmosphere with 5% CO2. For cytotoxicity/viability
assays, freshly isolated PBMC or PHA blasts (day 14) were
incubated for 20 h with or without gemcitabine (1.0 mgml�1) in the
presence or absence of different concentrations of 4-PB from 0.5 to
5.0mM. FACS analysis was performed as described below.

Cell cycle analysis and accompanied apoptosis
measurement

After two washes with PBS, cells were trypsinised, pelleted,
resuspended in PBS containing 5mM EDTA and fixed by adding
one volume of ethanol (Merck). After RNase-treatment (40 ng
RNaseA ml�1, Sigma-Aldrich, Munich, Germany) cells were
pelleted, resuspended in PBS containing propidium iodide
(200mgml�1) and subjected to FACS analysis. Cell cytometry was
conducted using a FACScan cell analyzer (Becton-Dickinson
Bioscience, Heidelberg, Germany). WinMDI2.8 (http://facs.scripps.
edu) was used for analysing FACS data.

Gap junction communication

Subconfluent cells were trypsinised, pelleted, resuspended in RPMI
1640 medium and divided into equal portions. Two samples were
treated either without or with 1.0mM or 5.0mM 4-PB, respectively.
Additionally, one of the corresponding cell portions was treated
with calcein-AM (Molecular Probes, Invitrogen, Karlsruhe,
Germany) at a concentration of 67 nM. After 40min at 371C, cells
were washed three times in PBS and the corresponding portions
treated with identical 4-PB concentrations were combined and
plated onto a cell culture vessel. After 5 h additional incubation at
371C, cells were trypsinised, washed, resuspended in PBS and
analysed by FACS analysis.
Samples containing only unstained or stained cells served as a

control and were also used for validating staining of the cells.

Multi drug resistance

Cells were treated without or with 2.0, 5.0, 10.0mM 4-PB or 100mM
verapamil for up to 72 h. Then, Calcein-AM was added to a final
concentration of 100 nM to the medium. After 2 h, cells were
trypsinised, washed two times and resuspended in PBS. The
intracellular accumulation of the dye was determined by cell
cytometry (Karaszi et al, 2001).

Apoptosis assays

The JAM assay was performed as described previously (Unge-
froren et al, 1998). In some cases, apoptosis was also measured
using ApoAlert annexin-V binding assay (Clontech, Saint-
Germain-en-Laye, France) according to the manufacturer’s
protocol.

Histone deacetylase activity assay

BxPc3 and T3M-4 cells untreated or treated with 2.0mM 4-
phenylbutyrate for 48 h were released by trypsinisation and washed
in PBS. After centrifugation, the cell pellet was resuspendet in
PBS and cells were lysed by three cycles of freezing and thawing
followed by sonification. The HDAC activity in the supernatant
was determined using the Histone Deacetylase Activity Assay Kit,
colorimetric (Calbiochem) according to the manufacturer’s
instruction.

Western blot analysis

Western blot analysis was performed as described before
(Trauzold et al, 2003). Primary antibodies used were purchased
from different companies as indicated: anti-PARP-mab (Ab-2,
Calbiochem), anti-Caspase 8 (StressGen Biotechnology, Biomol,
Hamburg, Germany), anti-Bid (R&D Systems, Wiesbaden-
Nordenstadt, Germany), anti-b-actin (Sigma-Aldrich), anti-phospho
JNK and anti-JNK (Cell Signaling, Danvers, MA, USA).

Computer based analysis

T-test; ANOVA analysis and graphical presentations were per-
formed using GraphPad Prism version 4.02. for Windows
(GraphPad Software). Photoshop CS (Adobe) was used for
preparing microscopic photos.

RESULTS

4-phenylbutyrate inhibits HDAC activity in pancreatic
cancer cells

To verify the assumed inhibitory effect of 4-PB on the HDAC
activity in pancreatic cancer cells, we determined the HDAC

Synergistic effects of 4-phenylbutyrate and gemcitabine

O Ammerpohl et al

74

British Journal of Cancer (2007) 96(1), 73 – 81 & 2007 Cancer Research UK

T
ra
n
sla

tio
n
a
l
T
h
e
ra
p
e
u
tic

s



activity in T3M-4 and BxPc3 cells treated with the drug and
compared the results with an untreated control. After 48 h of
treatment, even concentration of 4-PB as low as 2.0mM led to a
60–70% decrease in HDAC activity in both cell lines (Figure 1).
Thus, 4-PB has a tremendous effect on the activity of the HDAC
activity in pancreatic cancer cells.

4-phenylbutyrate treatment inhibits growth and induces
apoptosis of ductal pancreatic adenocarcinoma cells

To study the influence of 4-PB on PDAC cells, we analysed growth,
morphology and viability of T3M-4, BxPc3, COLO 357 and Panc 1
cells treated with different concentrations of 4-PB for up to 72 h. By
counting cell numbers, we found that 4-PB significantly reduced
cell growth in a dose-, time- and cell line-dependent manner
(Figure 2). Whereas even low concentrations of 4-PB (1.0mM)
strongly inhibited growth of T3M-4, BxPc3, Panc 1 and COLO 357
cells, primary cultures of human diploid fibroblasts that grew very
slowly appeared much less sensitive to 4-PB treatment. Concen-
trations up to 10.0mM did not essentially influence number of
these cells even after 72 h of treatment (Figure 2). Performing an
ANOVA test, the correlation of the decrease in cell number and the
concentration of 4-PB was found to be extremely significant for all
pancreatic tumour cell lines (Po0.0001). Microscopical analyses
revealed clear changes in the morphology of all pancreatic tumour
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Figure 1 4-phenylbutyrate inhibits HDAC activity in pancreatic cancer
cell lines. T3M-4 and BxPc3 cells were untreated or treated with 2.0mM 4-
PB for 48 h. Histone deacetylases activity of untreated cells was determined
colorimetrically and set to 100%. The relative HDAC activity in treated cells
was calculated. Results from five measurements are presented (mean7
s.e.m). The observed inhibition proved to be highly significant (t-test;
Po0.0001).
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Figure 2 4-phenylbutyrate reduced cell number of pancreatic carcinoma cell lines in vitro. Panc 1, T3M-4, COLO 357, BxPc3, primary human fibroblasts or
H6c7 cells were cultivated in the absence (black square) or presence of increasing 4-PB concentrations (0.5mM (triangle), 1.0mM (inverted triangle), 2.0mM

(diamond), 5.0mM (circle)) up to 10.0mM (white square). After 0, 24, 48 and 72 h, the cell number per 1ml medium was determined from every sample by
cell counting using the CASY1 TT-cell counter. Mean and s.e.m from at least three experiments are presented. To document morphological changes, a
photo from each cell line taken after 48 h of treatment with 5.0mM 4-PB (lower photo) and a corresponding untreated control (upper photo) is presented,
respectively.
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cells tested (Figure 2), indicating cell death already 48 h after
treatment with 4-PB. In contrast to human fibroblasts that
remained unaffected in this regard, human pancreatic ductal
epithelial cell line H6c7, which is rapidly growing comparable to
the cancer cell lines is sensitive to 4-PB treatment when the
concentration of the drug exceeds 2.0mM.
As 4-PB-mediated growth inhibition could reflect induction of

cell death or cell cycle arrest, we performed propidium iodide
staining of cells treated for 48 h with increasing concentrations of
4-PB and analysed the percentage of cells in sub-G1 phase of the
cell cycle.
As shown in Figure 3A, 4-PB increased the number of cells in

sub-G1 in all cell lines tested in a concentration-dependent
manner. COLO 357 cells appeared most sensitive. Forty-eight
hours exposition to 4-PB concentrations as low as 2.0mM led to
death of approximately 30% of these cells and more than 70% died
when exposed to 10.0mM 4-PB. Although Panc 1, BxPc3 and T3M-

4 cells were more resistant to 4-PB treatment, higher 4-PB
concentrations, for example, 10.0mM also resulted in significant
cell death. To prove mechanisms of cell death, we performed
cell cytometry with Panc 1 cells and COLO 357 cells treated with
4-PB with or without pre-incubation with the broad spectrum
caspase inhibitor zVAD-fmk. As shown in Figure 3B, cell death
was significantly reduced in the presence of zVAD, indicating
that the observed cell death was apoptotic. In parallel, cell cycle
analysis showed a concentration-dependent cell cycle arrest
of T3M-4 and COLO 357 cells. This arrest could not be
demonstrated for Panc 1 and BxPc3 cells (Figure 3A), even after
prolonged incubation times of 72 h. Thus, cell cycle arrest is no
prerequisite for the induction of apoptosis. In contrast, normal
mononuclear cells isolated from peripheral blood of human
donors showed only weak response to treatment up to 5.0mM 4-
PB (Figure 5C and data not shown), underlining the tolerance of
non-malignant cells for 4-PB.
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Figure 3 4-phenylbutyrate induced apoptosis and cell cycle arrest of pancreatic cell lines in a concentration-dependent manner. (A) Panc 1, BxPc3, T3M-
4 and COLO 357 cells were treated with different concentrations of 4-PB for 48 h. Cells were trypsinised and stained with propidium iodide. The
percentages of apoptotic cells (black), cells in G1-phase (grey) or S- and G2-phase (white) were determined by flow cytometry. The mean from at least
three samples is presented. (B) ZVAD inhibited 4-PB induced apoptosis. Panc 1 and COLO 357 cells were treated either with 5.0mM 4-PB alone or a
combination of 5.0mM 4-PB and 23 mgml�1 zVAD for 72 h. Cells were trypsinised and stained with propidium iodide. The percentage of apoptotic cells was
determined by flow cytometry. Prism4 was used to perform t-test analysis. Effects of zVAD treatment proved to be highly significant (Po0.0001).
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4-phenylbutyrate increased intercellular communication
between pancreatic carcinoma cells

In order to investigate intercellular communications of adjacent
tumour cells, T3M-4 cells were labelled with calcein. After trypsinising
and washing, cells were plated onto unlabelled cells of the same
origin. Calcein loaded cells can attach to and transfer the dye into
non-labelled cells via gap junctions (Asklund et al, 2004). Because
the concentration of the dye in these afore unstained cells (now
‘intermediately stained cells’, Figure 4A) is lower than in the pre-
labelled cells, their fluorescence is also weaker. Thus, these cells can
be identified by flow cytometry. When the tumour cells were cultured
in the presence of 4-PB for 24h preceding and during the dye
transfer, the intercellular dye transfer was enhanced. Although 1.0mM

4-PB induced dye transfer only marginally after 5 h of co-culture, it
nearly tripled dye transfer at a concentration of 5.0mM. Figure 4A
shows a typical outcome of the experiment conducted three times.

4-phenylbutyrate inhibits cellular export mechanisms in a
concentration-dependent manner

One reason for the poor response of PDAC to chemotherapy is the
drug resistance achieved by membrane protein pumps (Glavinas

et al, 2004) developed by this cancer. In order to investigate the
effect of 4-PB on cellular efflux and to identify possible benefits
of a combinatorial treatment with other chemotherapeutics, the
ability of cancer cells to export calcein-AM added to the cell
culture medium was determined by flow cytometry. If this ability
of the cell is reduced, calcein-AM accumulates in the cell and
becomes a substrate of cellular esterases. The product of this
enzymatic reaction, calcein, is a strong fluorescent. Thus,
the fluorescence intensity of a cell inversely correlates with the
cellular export (Karaszi et al, 2001). Pancreatic carcinoma cell lines
Panc 1, BxPc3, T3M-4 and COLO 357 were treated with 0.0, 2.0,
5.0 or 10.0mM 4-PB or 100 mM verapamil, a known inhibitor of
MDR1-mediated efflux (Hindenburg et al, 1987) as a control to
assure an adequate experimental design. Although Panc 1 cells
only showed a response to 10.0mM 4-PB after 72 h of treatment
and this maximum response was comparable to verapamil
treatment, BxPc3, T3M-4 and COLO 357 responded already to
lower doses of 4-PB, COLO 357 even much stronger than to
verapamil (Figure 4B). Interestingly, the effect of the drug on
cellular export increases even more with the time of treatment
(data not shown). These results demonstrated that cellular export
mechanisms of pancreatic carcinoma cell lines can be effectively
influenced by 4-PB.
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Figure 4 4-phenylbutyrate reduced cellular export and increased intercellular communication. (A) Pancreatic carcinoma cells either untreated, treated
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4-phenylbutyrate increases gemcitabine-mediated
apoptosis in pancreatic tumour cells

Gemcitabine is one of the currently used substances to treat
pancreatic adenocarcinoma. However, it does not improve the
long-term survival of the patients (Bengala et al, 2005; Gelibter
et al, 2005). Here, we tested the influence of concomitant use of 4-
PB and gemcitabine on two resistant pancreatic adenocarcinoma
cell lines T3M-4 and BxPc3. Using DNA-fragmentation assay
(JAM, Figure 5A) as well as annexin V/propidium iodide staining
(Figure 5B), we found that 4-PB strongly enhanced gemcitabine-
induced apoptosis in both cell lines. As shown in Figure 5A, low
dose of gemcitabine (1.0 mgml�1) resulted in BxPC3 cells in only
moderate cell death. Similarly, low dose of 4-PB (1.0mM) only
slightly induced cell death. Interestingly, concomitant treatment
of cells with both, gemcitabine and 4-PB strongly enhanced the
effects of each of the substances alone and over 60% (determined
by JAM assay, Figure 5A) or 50% (FACS analysis, Figure 5A) of
cells died after 48 h of treatment. Similar results were obtained
with T3M-4 cells (Figure 5A and B). Higher doses of 4-PB (2.0mM

and 5.0mM) only slightly increased the sensitising effects (data not
shown).
In contrast to PDAC cell lines, PBMC isolated from human

donors and cultured in vitro were much less sensitive to the drug
treatment and did not show a significant response to the

combinatorial treatment compared to the single drug treatment
(Figure 5C).
Western blot analyses (Figure 5D) of lysates prepared from cells

treated with 4-PB, gemcitabine or with both agents demonstrate
that 4-PB strongly enhanced gemcitabine-mediated Caspase 8- and
Bid-cleavage as well as PARP-cleavage assayed as a marker for
Caspase 3-activation (Figure 5D).
Interestingly, 4-PB treatment led in both cell lines to upregula-

tion of the expression of Caspase 8 and Bid. No differences in the
expression levels of Caspase 3, Caspase 2 and IAPs were found in
4-PB-treated cells compared to untreated controls.
Recently, it has been shown that in gemcitabine-sensitive

pancreatic tumour cell lines PK-1 and PCI-43, the drug-mediated
apoptosis required the activation of p38 mitogen-activated protein
kinase (MAPK) (Habiro et al, 2004). Thus, we analysed the
involvement of p38 as well as MEK and JNK in gemcitabine-
mediated apoptosis of BxPc3- and T3M-4 cells that were only
moderately sensitive to gemcitabine treatment. Using specific
MAPK inhibitors, we found no influence of MEK or p38 on
gemcitabine-mediated cell death in these cells (data not shown). In
contrast, inhibition of JNK completely abolished the sensitising
effect of 4-PB (Figure 5B). Western blot analyses revealed that
treatment of both cell lines with gemcitabine led to an increased
JNK activity, the effect that was strongly enhanced by 4-PB
(Figure 5D).
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Figure 5 4-phenylbutyrate and gemcitabine induced apoptosis synergistically due to activation of Caspase 8 and BID in a JNK-pathway-dependent
manner. (A) Cells were either not treated (fine dotted), treated with gemcitabine (1.0 mgml�1, dotted), 4-PB (1.0mM, dashed) or gemcitabine and 4-PB
simultaneously for 48 h and utilised for JAM assay. Mean and s.d of the number of viable cells (compared to control) from at least three experiments are
shown. Differences between the single drug and the combinatorial treatment proved to be significant (t-test). (B) BxPc3 or T3M-4 cells either not treated or
treated with gemcitabine (1.0 mgml�1), 4-PB (1.0mM), JNKi (SP600125, inhibitor of c-Jun N-terminale kinase, 20 mM) or different combination of these drugs
for 48 h as indicated in the legend were stained by annexin V/propidium iodide and employed for cell cytometry. Number of viable cells is presented. The
gemcitabine-induced cell death (as single drug or in combination with 4-PB) could be inhibited by inhibition of JNK. (C) Peripheral blood mononuclear cells
were isolated from two human donors (no. 1 and no. 2) as described in Materials and Methods. Cells were not treated or treated with gemcitabine, 4-PB or
a combination of both for 20 h. Cells were collected, stained by annexin V/propidium iodide and FACS analysis was conducted. The number of viable cells is
presented. (D) After isolating proteins from BcPc3 or T3M-4 cells not treated (�) or treated (þ ) with 1.0mM 4-PB and/or 1.0 mgml�1 gemcitabine for 48 h,
20mg protein were used to conduct Western blot analysis using specific antibodies against Caspase 8, Bid, PARP, phosphorylated JNK/SAPK, whole JNK/
SAPK or b-actin as a control (p18: cleaving product of Caspase 8 activation).
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DISCUSSION

In several current gene expression studies of pancreatic
tumour cells, the authors have identified numerous genes
differently expressed in tumour tissue compared to normal tissue
(Crnogorac-Jurcevic et al, 2002; Iacobuzio-Donahue et al, 2003;
Logsdon et al, 2003; Grutzmann et al, 2004) in order to identify
possible therapeutic targets. But no key player whose expression
could be modified in the context of a specific therapy has been
identified yet.
Instead of addressing the expression of only one or few specific

genes, drugs influencing general mechanisms of gene regulation
could address the aberrant expression of various genes simulta-
neously (Sowa and Sakai, 2000). As low differentiation grades of
carcinomas correlate with a bad prognosis, drugs inducing a
differentiated phenotype could be a substantial benefit for patients
with tumours like PDAC. Either single drug treatment itself, or
more likely, combinatorial treatment with established anticancer
regimens, might prove to be efficient by downregulating genes
responsible for apoptosis resistance. Acetylation of histones, for
example, by transcription factors induces changes in the
chromatin structure and increases the accessibility of the DNA
leading to gene activation. On the other hand, deacetylation of
histones by HDAC inactivates gene expression (Kuo and Allis,
1998; Hess-Stumpp, 2005). Inhibitors of HDACs might
be a promising additive in cancer therapy as they can activate
numerous genes and thus might reactivate pathways controlling
apoptosis, differentiation or growth control (Huang et al,
2000; Sowa and Sakai, 2000). The HDAC inhibitor 4-PB (Jung,
2001) belongs to the family of short fatty acids and is long used
for treatment of inborn defects of the urea cycle. Patient suffering
from this disease have been treated with 4-PB for years with-
out major side effects at a similar dose that was used in this
study (recommended treatment for urea cycle disorders:
3.0 g kg�1 bodyweight day�1 according to the manufacturer;
http://www.tributyrate.com/html/urea_cycle_disorder.php).
Here, we demonstrated that 4-PB efficiently increases gap

junction communications (GJCs) and inhibits cellular export
mechanisms in PDAC cell lines along with overcoming drug
resistance, induction of apoptosis and reduction of tumour cell
numbers.
An induction of apoptosis upon 4-PB treatment is in agreement

with studies showing this in cancer cell lines derived from other
tumour entities like prostate cancer (Carducci et al, 1996),
medulloblastoma (Li et al, 2004) or colon cancer (Feinman et al,
2002). Furthermore, in a rat model system 4-PB caused regression
of tumours derived from hepatocarcinoma (Hep3B) or hepato-
blastoma (HepT1) cells (Svechnikova et al, 2003).
Interestingly, we found that H6c7- cells, a pancreatic ductal

epithelial cell line is also sensitive to 4-PB treatment with
concentrations exceeding 2.0mM. Even if not from malignant
origin and with nearly normal phenotype, these E6/E7 transformed
cells (Furukawa et al, 1996; Ouyang et al, 2000) bear some
characteristics of tumour cells like immortality and a high
proliferation rate. Thus, our data support the idea that 4-PB acts
not specifically on malignant but also on other highly proliferating
immortalised cells. Low proliferating primary human fibroblasts
and PBMC were not effected by 4-PB in the concentrations tested.
Partly in contrast to other studies reporting a cell cycle arrest of
tumour cells upon 4-PB treatment (DiGiuseppe et al, 1999; Clarke
et al, 2001), only half of the cell lines investigated by us showed an
arrest of the cell cycle in the G1-phase. This divergence namely of
the PDAC cells might be explained by significant differences in the
transcriptome of these cell lines (Grutzmann et al, 2004). It has
been previously described that the cell cycle arrest in tumour cells
upon 4-PB treatment depends on p21 (DiGiuseppe et al, 1999).
Interestingly, according to a microarray-based study (Grutzmann
et al, 2004), cells showing a cell cycle arrest in this study (T3M-4

and Colo357) express p21 to a higher extend than the non-
arresting cells (Panc1 and BxPc3). Whether this is indeed the
reason for the differential behaviour upon the drug treatment or
if other differentially expressed cell cycle regulators play a pivotal
role remains to be shown.
Gap junctions are important for the transfer of small molecules

between adjacent cells. The resulting intercellular communication
is essential for both proliferation and activation of differentiation
pathways (Seo et al, 2006). It has been shown that highly
proliferating malignant cells have less gap junctions than more
differentiated ones (Yamasaki and Naus, 1996). Interestingly, we
found that 4-PB increases GJC in PDAC similar to previous
analyses in glioblastoma (Asklund et al, 2004). Besides the fact that
4-PB already induces apoptosis of pancreatic carcinoma cells
when applied as a single drug, the increase in GJC might allow
an exchange of apoptotic signals between neighbouring cells.
Furthermore, an increase in GJC is of benefit when additional
anticancer drugs are administrated simultaneously and especially
when bystander killing effects are important (Ammerpohl et al,
2004).
Upon chemotherapy tumour cells often gain resistance to

established drugs. One way to achieve this resistance is the
activation of export mechanisms. Cellular pumps like ABCG2,
MDR1 or MRP1 can export a broad spectrum of molecules,
including chemotherapeutics out of the cells (Glavinas et al, 2004;
Katragadda et al, 2005), preventing them from killing the tumour
cell. In this study, we could show that 4-PB reduces the cellular
export of calcein-AM in all cell lines tested. In the case of COLO
357 and BxPc3 cells, the inhibition by 4-PB is even stronger than
the one caused by verapamil, a known inhibitor of MDR1
(Hindenburg et al, 1987). Because concentrations of verapamil
up to 500 mM could not further inhibit cellular export in our
experiment (data not shown) it is likely, that the verapamil
concentration applied led already to a maximum inhibition of
MDR1. Thus, the additional inhibition by 4-PB compared to
verapamil is probably caused by the inhibition of additional or
other cellular pumps than MDR1, which are not effected by
verapamil. In contrast to verapamil, which as a ‘classical’ inhibitor
caused maximum inhibition in less than 2 h (data not shown), 4-
PB needed at least 24 h to cause any inhibition of cellular export
and furthermore this inhibition increased with the time of
treatment. Because high activities of cellular transporters were
found to be associated with low differentiation grades (e.g. like in
stem cells) (Islam et al, 2005a, b), the decrease in cellular export
caused by 4-PB might be due to induction of differentiation. This
would be supported by other reports describing the potential of 4-
PB to induce differentiation in tumour cells (Samid et al, 1997;
Bar-Ner et al, 1999; Li et al, 2004). Thus, our findings that 4-PB
increases the susceptibility of pancreatic carcinoma cells to
apoptosis, that it increases intercellular communications and
reduces cellular export makes 4-PB a promising drug for a
combinatorial treatment with a ‘classical’ chemotherapeutical drug
like gemcitabine or 5-FU, because higher differentiations grades
are also associated with increased sensitivity to chemotherapy.
As gemcitabine is an established drug in the regimen against

pancreatic adenocarcinoma, we combined this drug with 4-PB and
tested the responsiveness of two pancreatic tumour cell lines
BxPC3 and T3M-4. Most promising for future therapies, we found
that 4-PB clearly potentiated gemcitabine-mediated cell death.
Analysing the 4-PB-mediated sensitising effect, we demonstrated
that 4-PB increased the expression of proapoptotic proteins
Caspase-8 and Bid and strongly enhanced the gemcitabine-
mediated activation of JNK. Although in other model systems like
colon cancer or liver cancer induction of Caspase 3 by 4-PB
treatment was described (Clarke et al, 2001; Svechnikova et al,
2003), we found only Caspase 8 to be upregulated.
Recently, it has been reported that high constitutive activity of

NF-kB inhibits chemotherapeutic agent-mediated apoptosis in
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pancreatic tumour cells (Arlt et al, 2003). By using EMSA and
NF-kB ELISA, we found no influence of 4-PB on NF-kB activity
(data not shown). We conclude that 4-PB does not influence this
antiapoptotic pathway. Instead, inhibition of JNK-activity by JNK
inhibitor II not only partially reduced gemcitabine-mediated
apoptosis but also completely abolished the sensitising effects of
4-PB. This finding is in line with a recent study demonstrating the
relevance of the JNK-pathway for apoptosis induction upon single
drug 4-PB treatment in lung carcinoma cells (Zhang et al, 2004).
In our model system, inhibition of the JNK-pathway primarily
decreased the gemcitabine depending cell killing.
In contrast, Habiro et al (2004) showed that JNKs are not

activated following gemcitabine treatment in pancreatic tumour
cell lines PK-1 and PCI-43 and are dispensable for gemcitabine-
induced apoptosis and in these cells. Instead, the authors
postulated the involvement of p38 MAPK in this apoptotic
pathway, the effects which we could not confirm in BxPC3 and
T3M-4 cells, even using the same pharmacological inhibitor
SB203580 (data not shown). These discrepancies may be explained
by the cell lines used for investigations. Nevertheless, our results
demonstrate that gemcitabine induces JNK in BxPC3 and T3M-4
cells and this effect is partially involved in gemcitabine-mediated
cell death observed in these cells. Moreover, 4-PB strongly
increases JNK-activity and this obviously represents one of the
mechanisms by which 4-PB sensitises cells towards gemcitabine
therapy.
Interestingly, the sensitising effects of 4-PB were observed in low

concentration of both 4-PB and gemcitabine and no significant
further enhancement of apoptosis could be achieved neither by the
increase of 4-PB concentration nor by the increase of gemcitabine
(data not shown).
Highly relevant for the clinical use, 4-PB acts specifically on

malignant cells, as non-malignant cells like primary human
fibroblasts and PBMC were significantly less sensitive to this
treatment. This important finding is supported by other authors
showing the insensitivity of HBE4-E6/E7-cells, a non-transformed
cell line, to 4-PB treatment (Zhang et al, 2004). This tolerance of
non-malignant cells makes 4-PB an interesting drug also in a

combinatorial therapy with established chemotherapeutics where
side effects would prevent a combination with other cytotoxic
drugs.
4-phenylbutyrate has been shown to have additional anticancer

effects non-related to HDAC inhibition, for example, by inducing
glutamine depletion (Darmaun et al, 1998). Even if we cannot
rule out similar effects in pancreatic cancer cells, which could
also contribute to the anticancer effect of the drug, a major
contribution to the chemosensitising effect of 4-PB is very likely
given by the inhibition of HDAC activity. The inhibition of HDAC
activity probably induces changes in the expression of
genes involved in cellular export mechanisms or GJC. This is
also supported by findings in erythroleukemia cells and human
leukaemic cells (Lea et al, 1999) denying a growth inhibitory
effect depended on glutamine depletion upon 4-PB treatment.
Further own findings by RT–PCR analysis showing an upregula-
tion of tumour suppressor genes like fgfr2 or a downregulation
of oncogenes like gadd45b, ccnb1, cflar or cdc25b in pancreatic
cancer cells upon 4-PB treatment (data not shown) argue
also for the involvement of general transcription regulating
mechanisms like chromatin modifications, as these genes have
been previously described to be deregulated in PDAC (Grutzmann
et al, 2004).
Taken together, these findings provide evidence that the well-

tolerated and FDA-approved drug 4-PB (Rubenstein and Zeitlin,
1998) is to be seen as a promising supplemental therapeutic agent
for the treatment of PDAC patients.
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