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In this study we investigated the in vitro time dependence of radiosensitisation, pharmacokinetics and metabolism of NU7026, a novel
inhibitor of the DNA repair enzyme DNA-dependent protein kinase (DNA-PK). At a dose of 10mM, which is nontoxic to cells per se,
a minimum NU7026 exposure of 4 h in combination with 3Gy radiation is required for a significant radiosensitisation effect in CH1
human ovarian cancer cells. Following intravenous administration to mice at 5mg kg�1, NU7026 underwent rapid plasma clearance
(0.108 l h�1) and this was largely attributed to extensive metabolism. Bioavailability following interperitoneal (i.p.) and p.o.
administration at 20mg kg�1 was 20 and 15%, respectively. Investigation of NU7026 metabolism profiles in plasma and urine
indicated that the compound undergoes multiple hydroxylations. A glucuronide conjugate of a bis-hydroxylated metabolite
represented the major excretion product in urine. Identification of the major oxidation site as C-2 of the morpholine ring was
confirmed by the fact that the plasma clearance of NU7107 (an analogue of NU7026 methylated at C-2 and C-6 of the morpholine
ring) was four-fold slower than that of NU7026. The pharmacokinetic simulations performed predict that NU7026 will have to be
administered four times per day at 100mg kg�1 i.p. in order to obtain the drug exposure required for radiosensitisation.
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There is currently much interest in the discovery and development
of novel small molecule inhibitors of enzymes involved in DNA
repair (Martin, 2001; Fugmann, 2002). One such enzyme is DNA-
dependent protein kinase (DNA-PK), which is a key component of
the nonhomologous end-joining pathway of DNA double-strand
break (DSB) repair in mammalian cells (Featherstone and Jackson,
1999; Lee and Kim, 2002). DSBs are generated by exogenous insults
such as chemical attacks by reactive oxygen species and ionising
radiation, the latter remaining an important treatment modality
for cancer patients. DNA-PK is a nuclear serine/threonine protein
kinase consisting of a heterodimeric DNA-binding subunit (Ku70/
80) and a catalytic subunit (DNA-PKCS) (Jackson, 1997), and is a
member of the phosphoinositide 3-kinase-like kinase (PIKK)
family. Mutations in DNA-PK have been identified in radio-
sensitive cell lines and differential expression has been noted
between normal and cancer cell lines (Moll et al, 1999; Vaganay-
Juery et al, 2000; Auckley et al, 2001; Eriksson et al, 2002). DNA-
PK inhibitors, such as LY294002 and wortmannin, and also
antisense oligonucleotides have been shown to induce radio-

sensitisation in a variety of cancer cell lines (Rosenzweig et al,
1997; Chernikova et al, 1999; Chiosis et al, 2001; Kim et al, 2002;
Sak et al, 2002). Furthermore, a deficiency in DNA repair has been
reported in the radiosensitive BALB/c mouse (Okayasu et al, 2000).
Therefore, combining ionising radiation, or any therapy that
induces DSBs, with DNA-PK inhibitors may enhance the
effectiveness of these therapies (Yarnold, 1997; Yoshida et al,
2002). Ideally, the DNA-PK inhibitor should induce radiosensitisa-
tion at doses that are nontoxic to nonirradiated cells.
NU7026 (Figure 1) is a novel specific DNA-PK inhibitor (IC50:

0.23mM for DNA-PK, 13 mM for phosphoinositide 3-kinase,
4100mM for ataxia telangiectasia mutated kinase (ATM) and
ataxia telangiectasia and rad 3-related kinases (ATR)), which has
been shown to sensitise mouse embryonic fibroblasts and Chinese
hamster ovary cells to radiation in vitro (Veuger et al, 2003, 2004;
Griffin et al 2005). In order to achieve a radiosensitisation effect in
vivo, the inhibitor should be present in the cells at sufficient
concentration and for the duration required to produce radio-
sensitisation in vitro as part of the ongoing optimisation of a
chemical series. Of this, NU7026 is a prototype and we have
studied the pharmacokinetics and metabolism of this agent in mice
following intravenous (i.v.), oral and intraperitoneal (i.p.) admin-
istration. In view of possible antitumour experiments combining
NU7026 with radiation in animal models, pharmacokinetic
modelling of this agent is also presented that suggests a schedule
of administration. The importance of metabolism in the elimina-
tion of NU7026 is confirmed by studying the pharmacokinetics of a
structural analogue in which metabolically sensitive positions on
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the morpholine ring have been substituted. This study exemplifies
some of the challenges faced during the process of lead
optimisation. It is often the case that metabolic liability is a major
limiting factor in preclinical development. In this specific instance,
a dosing regime is suggested that should allow the in vivo
evaluation of the lead compound. The results also suggest that the
structure of NU7026 might be optimised to improve its in vivo
properties en route to the identification of a compound for clinical
administration.

MATERIALS AND METHODS

Materials

Unless otherwise stated, materials were from Sigma-Aldrich
Company Ltd (Gillingham, Dorset, UK).

Animals

Female BALB/c mice were supplied by Charles River UK Ltd
(Margate, Kent, UK) and maintained on SDA Expanded Rodent
diet and water ad libitum. All experiments complied with the
United Kingdom Coordinating Committee for Cancer Research
(UKCCR) guidelines for animal welfare in experimental neoplasia
(Workman et al, 1997).

Test compounds

NU7026 (2-(morpholin-4-yl)-benzo[H]chromen-4-one), NU7031
(4-(morpholin-4-yl)-6-methoxy-1-benzopyran-2-one) and NU7199
(2-[bis-(2-hydroxyethyl)-amino]-benzo[H]chromen-4-one) were
synthesised as described (Griffin et al, 2005). NU7200 (2-[2-
(2-hydroxyethoxy)-ethylamino]-benzo[H]chromen-4-one) and
NU7107 (2-((2S,6R)-2,6-dimethylmorpholin-4-yl)-pyrimido[2,1-
a]isoquinolin-4-one) were both synthesised by a similar procedure
to that used for NU7026.

Radiosensitisation experiments and clonogenic assays

These experiments were not designed as classical radiosensitisa-
tion experiments, that is, radiation dose finding study, but rather
as experiments to investigate the minimum drug exposure

required to observe radiosensitisation. CH1 human ovarian
carcinoma cells were chosen as as a model because of their
relative radiosensitivity (Kelland, personnal communication).
They were grown as monolayers in Dubelcco’s modified Eagle’s
medium (Invitrogen, Paisley, Scotland) augmented with 10% heat-
inactivated fetal calf serum, 2mM L-glutamine, minimal essential
medium nonessential amino acid (Invitrogen) and 0.5 mgml�1

hydrocortisone in a 6.5% CO2/93.5% air atmosphere.

Clonogenic survival assay

Cells were seeded at 1000 per 10ml into 25 cm3 flasks and left to
attach overnight. Each group consisted of triplicate flasks.
Following the addition of NU7026 (10mM) or dimethyl sulphoxide
(DMSO) solvent control for 24 h (final concentration of DMSO
was 0.5%), cells were irradiated with a cobalt source (60Co) for
3min and 9 s at a distance of 40 cm to give a total dose of 2 Gy, or
2min and 49 s at a distance of 30 cm to give a final dose of 3 Gy,
or 6min and 18 s at a distance of 40 cm to give a total dose of 4 Gy.
Control cells were not treated with either drug or ionising
radiation. Group 2 cells were treated with NU7026 only and
Group 3 cells were irradiated only. Groups 4–7 were treated with
NU7026 and irradiated with 2, 3 or 4 Gy. The drug was washed off
by aspiration of the medium and rinsing with 10mM phosphate-
buffered saline (PBS) 2 h (Group 4), 4 h (Group 5), 6 h (Group 6)
and 24 h (Group 7) after exposure. Following the addition of drug-
free medium, cells were left to grow until colonies were visible.
Colonies were then counted after 9 days and expressed as a
percentage of controls. The doubling time of the cells was
approximately 16 h.

In vivo experiments

NU7026 was formulated in 10% DMSO and 5% Tween 20 in saline
for i.p. and perorally (p.o.) administration at 20 and 50mg kg�1,
respectively. For i.v. dosing at 5mg kg�1, NU7026 was formulated
in 10% ethanol, 25% PEG 200 and 5% Tween 20 in saline. Control
animals received the vehicle alone. Groups of three mice were
injected per time point. Blood was collected by cardiac puncture
following transient anaesthesia with halothane at 0.083, 0.25, 0.5, 1,
2, 4, 6, and 24 h post administration. Following centrifugation at
1500 g for 2min to obtain plasma, samples were stored at �201C
until analysis. For urinary excretion studies, NU7026 was
administered at 5mg kg�1 i.v. Urine was collected over 24 h in
metabolic cages, and stored at �201C until required.

Analytical method

Samples were analysed by liquid chromatography tandem mass
spectrometry (LC/MS/MS). Chromatography was performed using
a 50� 4.6mm ID 5 mm zwitterionic ABZþ column (Supelco,
Poole, Dorset, UK) and a gradient of 20% methanol (MeOH) in
formic acid (0.1%) to 100% MeOH over 3min, followed by an
isocratic period at a flow rate of 0.6mlmin�1. The total run time
was 7min. Detection by multiple reaction monitoring was
performed on a TSQ700 triple quadrupole mass spectrometer
equipped with an electrospray source and operated in positive ion
mode (Thermoquest Ltd, Hemel Hempstead, Herts, UK). The
heated capillary was maintained at 2801C and at a voltage of 4.5 kV.
The following transitions were monitored: m/z (mass to charge
ratio) 282.4-m/z 171 for NU7026; m/z 262.3-m/z 121 for
NU7031; m/z 300-m/z 256 for NU7119; m/z 300-m/z 238 for
NU7200. Calibration standards (20, 200, 500, 1000, 2000, 5000,
10 000, 20 000 and 50 000 nM) were prepared in blank mouse
plasma. Following the addition of internal standard (30ml of 2 mM
solution of NU7031), plasma proteins were precipitated with 300 ml
MeOH. Samples were then centrifuged and 20 ml of supernatant
was injected onto the column. Peak area was plotted against
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Figure 1 Chemical structures of NU7026, NU7031, NU7107, NU7199,
NU7200 and the rearrangement product (naphtopropiolactone) observed
in the mass spectrometer (m/z 171) during the fragmentation of NU7026.
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concentration and unknown concentrations derived from the
linear plot (analysed with Prism 2.01, Graphpad Software, San
Diego, CA, USA).
For metabolism studies, LC/MS and LC/MS/MS were carried out

on an LCQ ion trap instrument (ThermoFinnigan, UK). Separation
was achieved using the same column as above. A linear gradient of
90% formic acid (0.1%) : 10% MeOH to 10% formic acid
(0.1%) : 90% MeOH was run at 1mlmin�1 from 0.5 to 6.5min
followed by 3.5min isocratic. The capillary temperature was set to
2001C and the scan range from m/z 50 to m/z 850. For
confirmation of metabolite structures, metabolites were spiked in
control matrix and MS/MS fragmentation patterns and retention
times were compared to those of biological samples.

Pharmacokinetic calculations

Pharmacokinetic parameters were evaluated by noncompartmental
analysis (model 200 for p.o. and i.p. administration and 201 for i.v.
administration) using WinNonlins Professional Version 3.2
(Pharsight Corporation, Mountain View, CA, USA). For simulation
studies, parameters were derived from compartmental analysis.

RESULTS

Initially, experiments were carried out to determine the minimum
drug exposure required to demonstrate radiosensitisation. Follow-
ing irradiation of CH1 human ovarian carcinoma cells with 2, 3
and 4Gy, cell survival was reduced to 51, 28 and 12%, respectively,
as measured by a clonogenic survival assay. NU7026 alone (10 mM
for 24 h) had minimal effect as shown by a surviving fraction of
91713% of control cells. However, when combined with radiation,
cell survival was reduced to 15, 9 and 1% of the solvent-treated
group with 2, 3 and 4Gy, respectively (Figure 2A). The time course
with NU7026 showed that following a 2 h treatment with 10mM
NU7026 in combination with 3Gy irradiation, there was no
significant difference compared to treatment with radiation alone
(t test, P40.1). However, following a 4, 6 and 24 h exposure to
NU7026, a significant radiosensitisation effect was observed
(Po0.01) with a cell count of 61, 47 and 13% of the radiation
control group (Figure 2B). The results show that relatively

prolonged exposure of NU7026 is required for radiosensitisation
in vitro. This suggests that pharmacokinetic properties will be
important for the therapeutic activity of this compound.
The analytical method developed for pharmacokinetic studies

was specific (no peaks observed in control samples), sensitive
(limit of quantitation was 20 nM) and rapid (total run time of
7min). NU7026 and the internal standard NU7031 were eluted at
7.24 and 6.57min, respectively. Quality control samples were
within 15% of nominal concentrations (data not shown).
The plasma clearance of NU7026 following i.v. administration

was rapid and the compound was undetectable at 4 h post
administration (Figure 3, Table 1). Compound levels were above
10 mM for less than 1 h. Following i.p. administration at 20mg kg�1,
the time course of NU7026 in plasma was very similar to that
observed after i.v. administration (Figure 3). Assuming linear
pharmacokinetics following i.v. administration, the bioavailability
by the i.p. route was 20%. Following oral administration with
50mg kg�1, a maximum concentration of 2.2 mM was observed 1 h
after administration. Based on linear i.v. pharmacokinetics, the
oral bioavailability was calculated as 15%.
Figure 4A–C show the estimated concentrations of the

metabolites based on the relative ion current (signal relative to
that of the internal standard) of the metabolites vs parent
compound in plasma following i.p., i.v. and p.o. administration
of NU7026, respectively. This calculation assumes that the
metabolites ionise to the same extent as the parent compound.
Metabolism was rapid, with peak levels of all metabolites observed
15min post administration. Assuming that the metabolites and
parent compound ionise to the same extent, the major metabolites
observed in plasma correspond to mþ 16 (monohydroxylated
product, M1; m/z¼ 298) following administration by all routes.
Two metabolites were observed at mþ 18 (M2 and M3; m/z¼ 300)
with M2 showing a higher ion current than M3. In addition, a
metabolite M4 was observed at mþ 48 (m/z¼ 330).
Examination of 24 h urine samples showed trace levels of

the parent compound and significant amounts of M1, M2 and M3,
but no M4. The most intense signals were observed at mþ 32
(M5 and M6; m/z¼ 314). In addition, two peaks at mþ 192 (M7
and M8; m/z¼ 474) were also observed. An mþ 16 peak (M9) was
also detected, but had a different retention time to that of M1
(Figure 5).
There are several positions on NU7026 that may be susceptible

to oxidative metabolism within both the morpholine ring and the
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Figure 2 (A) Radiosensitisation effect of NU7026 (10 mM) as measured
by colony formation assay in radiosensitive CH1 human ovarian cells
following 2, 3 and 4Gy irradiation with a cobalt source. Results are
expressed as percentage of control cells (B). Time course of the
radiosensitisation effect following 10 mM NU7026. Results are expressed
as percentage of irradiated controls.
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Figure 3 Time dependence of plasma concentration of NU7026 as
measured by liquid chromatography tandem mass spectrometry following
administration at 5mg kg�1 i.v., 20mg kg�1 i.p. and 50mg kg�1 p.o. to mice.
Female BALB/c mice were injected with 0.1ml/10 g drug solution or
vehicle. NU7026 was formulated in 10% DMSO and 5% Tween 20 in saline
for i.p. and p.o. administion. For i.v. dosing at 5mg kg�1, NU7026 was
formulated in 10% ethanol, 25% PEG 200 and 5% Tween 20 in saline.
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benzochromenone ring system. The fragmentation patterns of
NU7026 and its plasma metabolites were consistent with the major
site of oxidation being at C-2 of the morpholine ring. Fragmenta-
tion of the molecular ion (MHþ ) of the parent compound
generated a product ion (m/z¼ 171) corresponding to a proto-
nated naphthopropiolactone (Figure 1), which would result from
degradation of the pyrone moiety of the benzochromenone system.
This fragment was hydroxy-substituted (m/z¼ 187) when hydro-
xylation occurred on the naphthalene part of the benzochrome-
none ring system and remained unchanged (m/z¼ 171) when
hydroxylation occurred on the morpholine ring. From this
observation, together with other fragments generated by the
morpholino ring (data not shown), it was deduced that M1 was
hydroxylated on the morpholino ring while M9 was hydroxylated
on the benzochromenone ring system. M5 and M6 were both bis-
hydroxylated on the morpholine ring. Bis-hydroxylation could
occur at C-2 and C-6, C-2 and C-3, C-2 and C-5 or C-3 and C-5. For
each of these bis-hydroxylation points, there are two possible
diastereoisomers. From the information available it is not possible
to define the nature of the bis-hydroxylated metabolites, although
in each case it is likely that C-2 is hydroxylated, given that
oxidation at this position is responsible for the major mono-
hydroxylated metabolite (M1). M7 and M8 were identified as
glucuronide conjugates of M9 and M1, respectively. M4 corre-
sponded to a tri-hydroxylated product and was a mixture of two
compounds, one of which was hydroxylated on the benzochro-
menone ring system. The fragmentation patterns of M2 and M3
suggested that they were derived from hydroxylation of the
morpholine ring at C-2 and C-3, respectively. The products from
these hydroxylations (M1 for hydroxylation at C-2) will be in
equilibrium with ring-opened aldehyde tautomers, reduction of
which affords M2 and M3. In order to confirm the nature of M2
and M3, authentic samples of both NU7199 and NU7200 (Figure 1)
were compared to the spectra of the pseudomolecular ions at m/z
300 in plasma and urine. Two peaks were detected at m/z 300 in
both plasma and urine and retention times and product ion

Table 1 Plasma pharmacokinetics following administration of NU7026 to mice at 20mg kg�1 i.p., 5mg kg�1 i.v. and 50mg kg�1 p.o.

Route Cmax (nmol l�1) Tmax (h) AUC last (nM l h�1) t1/2 (h) Cl obs. (l h�1) Vd (l)

I.p. 7359 0.083 2940 0.87 0.44 0.55
I.v. 5123 0 3616 1.22 0.09 0.16
P.o. 2230 1 5191 1.48 0.63 1.34

Parameters are Cmax (maximum concentration), AUC (area under the concentration vs time curve), Cl (clearance), t1/2 (half-life), Vd (volume of distribution based on the
elimination phase). Parameters were calculated by noncompartmental analysis.
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spectra indicated that M2 corresponds to NU7199 and M3 to
NU7200 (data not shown).
Following re-extraction and quantitation (Table 2), it appeared

that NU7199 was the most prevalent of the two metabolites

(10% in both plasma and urine), thus suggesting that the main
hydroxylation position is the 2 position of the morpholino ring.
A general scheme of the metabolism of NU7026 is shown in
Figure 6.

Table 2 Plasma pharmacokinetics of NU7026 and its metabolites NU7199 and NU7200 following administration of NU7026 at 5mg kg�1 i.v. to mice

Compound Cmax (nmol l�1) Tmax (h) AUC last (nmol l h�1) t1/2 (h) Cl obs. (l h�1) Vd (l)

7026 5123 0 3616 1.22 0.09 0.16
7199 705 0.25 414 0.2 0.82 0.23
7200 293 0.25 143 0.16 2.44 0.55

Parameters are Cmax (maximum concentration), AUC (area under the concentration vs time curve), Cl (Clearance), t1/2 (half-life), Vd (volume of distribution based on the
elimination phase).
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In order to confirm if substitution of the hydroxylation
positions could decrease metabolism and therefore plasma
clearance, a bis-methylated morpholino derivative of NU7026
(NU7107) (Figure 1) was synthesised and administered to mice i.p.
at 20mg kg�1. The pharmacokinetic profile of NU7107 was
significantly improved compared with NU7026 (Figure 7, Table 3),
with a four-fold decrease in plasma clearance. Although there was
no significant difference in the terminal half-life, NU7107 was still
detectable 6 h post administration (Figure 7). Although NU7107 is
significantly weaker at inhibiting DNA-PK (IC50410 mM) in
comparison to NU7026, synthesis of this compound demonstrated
the importance of metabolism in the clearance of NU7026 and
showed that pharmacokinetic properties can be modulated by the
appropriate substitution.
Pharmacokinetic simulations performed for a schedule of

administration of NU7026 i.p. are shown in Figure 8. Following
four repeat administrations of 50 or 100mg kg�1 NU7026 at 1 h
intervals, NU7026 was present at concentrations above 10 mM for
approximately 2 and 4 h, respectively.

DISCUSSION

The current investigation describes the radiosensitisation, phar-
macokinetic and metabolism studies of a novel DNA-PK inhibitor
NU7026. This compound has similar structural features to
LY294002, in particular the morpholino group, but unlike
LY294002 has no inhibitory effect on phosphoinositide 3-kinase
(Veuger et al, 2003, 2004; Griffin et al, 2005). A recent report on
IC87361 shows a significant radiosensitisation in LCC and B16F0
cells with 6Gy, which translates into a significant growth delay in
xenograft models (Shinohara et al, 2005). Our study shows that at
10mM, the compound alone has no intrinsic growth inhibition
properties but it significantly potentiates the effect of radiation in

CH1 human ovarian cancer cells. The radiosensitisation effect
of this compound has previously been shown to compare very
well with results that have been reported for LY294002 and
wortmannin (Rosenzweig et al, 1997; Fukuchi et al, 2000;
Kim et al, 2002). We examined the effect of drug exposure on
the relatively radiosensitive CH1 human ovarian carcinoma
cell line. In previous experiments in Chinese hamster ovary cells
and mouse embryonic fibroblasts (Veuger et al, 2003, 2004),
cells were preincubated with the drug for 24 h prior to irradiation.
Here, we have evaluated the minimum exposure required to
observe a radiosensitisation effect. We found that at least 4 h
exposure at 10mM NU7026 is necessary and that 24 h produced an
even greater effect. This requirement may be dependent on
the kinetics of cellular uptake of the drug, the kon and koff of the
inhibitor as well as the kinetics of double strand DNA repair.
These in vitro experiments are important because they suggest that
drug exposure is likely to be important in vivo and hence
that pharmacokinetic properties of the agents will be important
for the therapeutic effects of NU7026. The pharmacokinetics of
NU7026 show that the drug is cleared very rapidly from the general
circulation, with plasma clearance values equivalent to mouse
liver blood flow. Assuming that the pharmacokinetics of NU7026
are linear, the i.p. and p.o. bioavailability of this agent are 20 and
15%, respectively. The chief cause for the rapid clearance was
oxidative metabolism. Multiple oxidations were identified followed
by glucuronidation as the major metabolic routes. Our study
clearly indicates that the main site of oxidative metabolism is at
C-2 of the morpholino ring. This finding was confirmed by
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Figure 7 Comparison of plasma concentration vs time profiles of
NU7026 and NU7107 following i.p. administration at 20mg kg�1 in 10%
DMSO to female BALB/c mice. Measurements are done by LC/MS/MS
with multiple reaction monitoring following addition of internal standard
and plasma extraction by protein precipitation. Quantification was
performed by external calibration.

Table 3 Plasma pharmacokinetics of NU7026 and NU7107 following administration at 20mg kg�1 i.p. to mice

Compound Cmax (nmol l�1) Tmax (h) AUC last (nmol l h�1) t1/2 (h) Cl obs. (l h�1) Vd (l)

7026 5123 0.083 7349 0.87 0.44 0.55
7107 10390 0.25 12165 0.79 0.11 0.12

Parameters are Cmax (maximum concentration), AUC (area under the concentration vs time curve), Cl (clearance), t1/2 (half-life), Vd (volume of distribution based on the
elimination phase).
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Figure 8 (A, B) Simulation study of plasma concentrations following 4 h
repeat administrations of NU7026 at 100 and 50mg kg�1 i.p. The
simulation was carried out using parameters determined by WinNonlin
compartmental analysis.
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comparison with synthetic reference standards. Furthermore, we
showed that NU7107, which has two positions on the morpholino
ring blocked for metabolism by methyl groups, has a four-fold
lower plasma clearance compared to NU7026.
We have previously evaluated the pharmacokinetics and

metabolism of LY294002 and the morpholino position was also
found to be oxidised extensively for this compound (Nutley et al,
2001). Monohydroxylation occurs mainly on position 2 of the
morpholine group, which results in opening of the ring system.
Hydroxylation on morpholino rings attached to heterocycles has
been reported previously and N-oxidations have also been
described (Langner et al, 1993; Baker et al, 1999; Huskey et al,
2004; Zhang et al, 2004; Zhao et al, 2004). Our study suggests that
the modest bioavailability of NU7026 is not due to first pass
metabolism as the relative proportion of administered dose
present as parent or metabolites are similar after i.v., i.p. and
p.o. administration. Further studies are necessary, however, to
evaluate the enzymes responsible for these oxidations and for the
assessment of tissue concentrations. In any case, the Cmax observed
after p.o. administration of 50mg kg�1 (o2500 nM) suggest that
10 mM concentrations cannot be sustained for 4 h after 200mg kg�1

NU7026. An alternative would be to dose by constant infusion with

osmotic minipumps, but this is not possible due to insufficient
solubility of NU7026.
Based on the experimental results reported here, the pharma-

cokinetic results suggest that 24 h drug exposure will not be
achievable in vivo. Pharmacokinetic modelling has shown that a
schedule of 100mg kg�1 i.p. administered four times at 1 h
intervals should produce the required exposure to NU7026 for
radiosensitisation in vivo. It will then be interesting to compare the
results with other less-specific inhibitors such as LY294002 (Hu
et al, 2000; Edwards et al, 2002; Semba et al, 2002; Gupta et al,
2003; Shinohara et al, 2005). If this dose is not tolerated, then it will
be necessary to develop compounds that are either more potent or
less readily metabolised. These findings, showing the metabolic
hotspots in NU7026 provide a basis for further optimisation in this
drug discovery programme.
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