
Minireview

Do septins have a role in cancer?
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Septins are an evolutionarily conserved family of genes that encode a P loop-based GTP-binding domain flanked by a polybasic
domain and (usually) a coiled-coil region. They have roles in cytokinesis, vesicle trafficking, polarity determination, and can form
membrane diffusion barriers, as well as in microtubule and actin dynamics. Septins can form hetero-oligomeric complexes and
possibly function as dynamic protein scaffolds. Recently, it has been shown that there are at least 13 human septin genes that exhibit
extensive alternate splicing. There are complex patterns of human septin gene expression and recently it has been found that
alterations in septin expression are seen in human diseases including neoplasia. This review summarises the essential properties of
septins and outlines the accumulating evidence for their involvement in human neoplasia. Septins may belong to the class of cancer
critical genes where alteration in expression profile (including alterations in the spectrum of transcripts expressed) may underpin their
role in neoplasia as opposed to specific mutational events.
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In 1973, a group of cytokinesis mutants were identified in budding
yeast by Hartwell. The protein products of these genes (ScCdc3,
ScCdc10, ScCdc11 and ScCdc12) localise to filamentous structures
in the bud neck in Saccharomyces cerevisiae and were named
septins by the laboratory of John Pringle. Much progress has been
made in defining the range of functions of yeast septins and in the
past 5 years their role in disease states, including cancer, has
become apparent (Hall and Russell, 2004). Septins appear to
function in yeast as spatial landmarks, elements of the polarity
determination apparatus and diffusion barriers (reviewed in
Irazoqui and Lew, 2004; Finger, 2005). They all have a central P
loop-based GTP-binding domain and there is evidence that septins
form hetero- and homo-oligomeric structures and can form
filaments, although their significance remains uncertain (Hall
and Russell, 2004). However, post translational modifications such
as phosphorylation (Dobbelaere et al, 2003) and protein–protein
interactions (Casamayor and Snyder, 2003) are crucial to septin
function. They have been suggested to form scaffold-like structures
upon which other proteins bind, thus allowing proper spatial and
temporal control of processes such as polarity determination and
cytokinesis. The septins are evolutionarily conserved although,
interestingly, septin-like sequences have not been identified in
plants to date, and cannot be found in Dictyostelium. Furthermore,
it is curious that the number of septin genes differs in phylogeny,
with seven in yeast, five in Drosophila and only two in
Caenorhabditis elegans (Hall and Russell, 2004). Considerable
expansion of the number of septin genes is seen in vertebrates and
13 are now known in man (Hall et al, 2005). These septin genes are
distributed widely in the human genome as might be expected
from an evolutionarily ancient gene family, but there remains
considerable sequence conservation as well as an extraordinary
conservation of certain aspects of genomic architecture and gene
control.

The nomenclature of mammalian septins has proven proble-
matic but a uniform nomenclature has simplified a Babel-like
array of terms (see Table 1 in Hall and Russell (2004) for the
diverse septin aliases). The 13 known human septins have
remarkable similarity, all having in their longest forms (see
Figure 1) a central GTP-binding domain flanked by a polybasic
region and a so-called septin unique domain (Versele and Thorner,
2005). The function of the GTP-binding domain remains
controversial. Although there are similarities with the small rho-
like GTPases, it is not clear that the GTP- or GDP-bound state of
septin has true signalling properties. It may be that like other GTP-
binding proteins, such as tubulin, the GTP (or GDP) status confers
structural properties and may influence oligomerisation. The
polybasic domain of SEPT4 has been shown to bind phosphoino-
sitol phosphates, and a reciprocal relationship between GTP and
PIP2 binding has been reported (Casamayor and Snyder, 2003). It
may be that targeting of septins to membrane domains is relevant
to some of their functions including the potential to act as a
diffusion barrier in both yeast and mammalian cells (reviewed in
Finger, 2005). Most, but not all, septins have C-terminal coiled-coil
domains that fall into two groups by amino-acid sequence SEPT6,
8, 10, 11 and SEPT1, 2, 4, 5, 7 and 13 (Hall et al, 2005). In contrast,
SEPT3, 9 and 12 have a shorter C terminus without a coiled coil.
This recapitulates the budding yeast septins where ScCdc10 has no
coiled coil whereas the others do. Three of the human septins
(SEPT4, 8 and 9) have long N-terminal extensions, which have
regions rich in proline residues.
The complexity of this gene family is increased by the existence

of alternate splicing in most human septins, which dramatically
increases the number of potential isoforms expressed. In the most
extreme case so far defined, SEPT9, six 50 splice variants can
combine a common core domain with three 30 splice variants to
give at least 18 transcripts (McIlhatton et al, 2001) encoding 15
polypeptides. The discrepancy between the number of transcripts
and isoforms is explained by the existence of two different 50

transcripts that encode the same polypeptide. Many of the known
isoforms encode truncated versions of a particular septin, whichReceived 1 July 2005; revised 1 August 2005; accepted 1 August 2005
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may act as (regulatory) dominant negative forms whose levels
might modulate complex formation. In addition, the extraordinary
observation of multiple splice variants encoding the same
polypeptide has also been reported for SEPT8 and SEPT6. The
genomic, transcriptional and isoform complexity, coupled with the
sheer number of humans septins, has hindered progress in our
understanding of this family of genes but some progress has
recently been made.
Comprehensive expression profiling of all members of the

human septin family indicates that some septins are expressed in
all tissues (eg SEPT9), while others have restricted profiles, with,
for example, SEPT3 only being found in the brain (Hall et al, 2005).
Alterations in septin expression are seen in cancer and in other
disease states. However, despite the size of the data sets studied,
the complexity of splicing indicates that this global analysis can
only be viewed as a first approximation to the definition of septin
expression in man. In particular, the current data are inadequate
for the delineation of the potential array of septin hetero-oligomers
that might exist. Proteomic and biochemical analyses of specific
septins suggest that some specific complexes can form (Versele
and Thorner, 2005) and that, for example, SEPT2, 6 and 7 can form
a stoichiometric association. In addition, specific coregulation can
occur and experimental knock down of one component of this
complex by siRNA leads to loss of expression of the other pro-
teins in this complex. Furthermore, in mice lacking SEPT5, there
is compensatory alteration in other septins (reviewed in Hall
and Russell, 2004). Such data indicate that understanding the

nature of septin complexes and their regulation are a central issue
in the field.
A further crucial issue is the definition of the functional

properties of human septins and an understanding of their
biochemical attributes. While originally identified as a conse-
quence of cytokinesis defects, it is clear that even in yeast, septins
seem to have multiple functions (Hall and Russell, 2004). It would
not be surprising if the increased number and complex distribu-
tion of mammalian septins is associated with an increased range of
cellular functions. Data from multiple sources indicate that human
septins can interact with other septins, as well as with components
of the cytoskeleton such as actin and tubulin. In addition,
interactions with S100A4, BORG3 and components of the
exocytosis pathway have been reported (reviewed in Hall and
Russell, 2004) and one truncated SEPT4 isoform has been
associated with the induction of apoptosis via an interaction with
XIAP (see below). Finally, recent data suggest a link with the small
rho GTPases since the N terminus of SEPT9 binds a rhoGEF
(Nagata and Inagaki, 2005).

SEPTINS AND CANCER

Septins: the MLL connection

The first clues to the role of septins in neoplasia came from the
observation that balanced translocations involving septin loci and
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Figure 1 The human septins. The longest known versions of the 13 human septins described to date including their chromosomal location. Four human
septins can form fusion proteins with the N-terminal moiety of MLL (arrowed). All have a polybasic domain (PB), although some are less basic (PB with
lighter shade), a GTP-binding domain (GBD) and a septin unique domain (SUD). Some have a coiled-coil domain at the C terminus (CC). The longest forms
of SEPT4, 8 and 9 have long N-terminal extensions with regions rich in prolines (PRD).
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the MLL locus on chromosome 11 were seen in leukaemia giving
rise to chimeric fusion proteins where the N terminus of MLL was
fused, in frame, to almost the entire open reading frame of SEPT9
(Osaka et al, 1999). Subsequently, it has been found that three
other septins (SEPT5, SEPT6 and SEPT11) can form very similar
fusion proteins with MLL again with the N-terminal moiety of MLL
fused to almost the entire open reading frame of the partner septin
(Taki et al, 1999; Ono et al, 2002; Kojima et al, 2004). MLL is a
remarkably promiscuous gene, forming in-frame chimeras with
more than 50 other genes. Current data suggest that these fusion
partners fall into two distinct groups: those with a potent
transactivation domain and those that possess potential oligomer-
isation motifs. The septins do not possess an activation domain
but are believed to oligomerise, possibly via their coiled-coil
domains. However, SEPT9 does not contain a C-terminal coiled
coil and one must thus posit a role for an alternative domain in
forming oligomers. Some recent data support the idea that
oligomerisation by the septin moiety of MLL fusions is important
(Ono et al, 2005) and also points to a possible role for the GTP-
binding domain in the formation of dimers.

Linking SEPT9 and cancer

SEPT9 was linked to neoplasia by two other observations. Sorensen
et al (2000) identified the murine SEPT9 locus as a common
integration site for the SL-3 retrovirus in T-cell lymphomas. Thus,
insertional mutagenesis at this locus suggests that SEPT9 can
contribute to neoplasia. Independently, the human SEPT9 locus at
17q25.3 was identified as a common site for allelic imbalance in
sporadic ovarian (Russell et al, 2000) and breast cancer (Kalikin
et al, 2000). While mutations have not been observed in the known
open reading frames of SEPT9, there is now abundant evidence
pointing to altered expression of SEPT9 in ovarian (Burrows et al,
2003) and breast (Montagna et al, 2003) tumours. Indeed SEPT9
overexpression has been observed in diverse tumour types (Scott
et al, 2005a). Of note is the observation that neoplasia is associated
not just with altered expression of SEPT9 but also by alterations in
the expression of specific SEPT9 transcripts with the SEPT9_v4
transcript being predominant in normal tissues but being replaced
by SEPT9_v4* in tumours (Burrows et al, 2003; Scott et al, 2005b).
These transcripts encode the same polypeptide but differ in their 50

UTR sequences. The SEPT9_v4* transcript appears to be translated
more efficiently than the SEPT9_v4 transcript (Russell and
McDade, unpublished), and thus this change in transcript profile
has a profound effect on the level of this SEPT9_v4 protein
isoform.

Other septins and cancer

Several lines of evidence have suggested that SEPT4 may be
involved in neoplasia. Tanaka et al (2002) identified two alternate
splice variants of SEPT4 (and named it Bradeion) by screening an
expression library. While expression of these transcripts is
generally restricted to the brain, in tumours ectopic expression
is observed. Furthermore, ribozyme-mediated downregulation of
these transcripts could inhibit growth and tumorigenesis of
colorectal cancer in vivo and in vitro and might be a useful
diagnostic target (Tanaka et al, 2002). Independently, Larisch et al
(2000) observed that what is now known as a SEPT4 transcript
(and was previously named ARTS) could promote TGF beta-
mediated apoptosis. It has been reported that the SEPT4 isoform
encoded by this transcript binds to and can modulate the function
of XIAP and thus promote apoptosis (Gottfried et al, 2004).
Subsequent studies have suggested that the expression of this
transcript (which is distinct from those reported by Tanaka et al)
might function as a tumour suppressor since expression is lost in
most cases of childhood ALL (Elhasid et al, 2004). As if the
terminological morass of SEPT4 (which has been named H5,

bradeion, Pnutl2, ARTS, MAART, hCDCrel-2 and Septin-M) were
not enough, the situation has become more complex with the
report of SEPT4 knockout mice, which have not yet been reported
to be tumour prone (Ihara et al, 2005). The apparent absence of a
tumour phenotype may reflect the nature of the gene-targeting
events (in effect deleting the entire locus) rather than excluding a
role for SEPT4 in neoplasia. Indeed, it again underscores the need
for transcript-specific analysis of septins, as is the case for SEPT9.
Other septins have been linked to neoplasia and the first human

septin to be systematically studied, SEPT2 (previously known as
Nedd5), was shown to be required for cytokinesis and to bind actin
and associate with focal adhesions. Recent data suggest that SEPT2
can have a role in chromosome congression and segregation and
that altered expression of SEPT2 might promote abnormalities of
these crucial processes, leading to disordered chromosomal
dynamics, and underlie the development of aneuploidy (Spiliotis
et al, 2005). Whether these data are relevant to human tumours is
as yet uncertain but certainly deserves further study. Our current
catalogue of septin expression changes seen in neoplasia (and
other disease states) remains far from complete and the complex
splicing events seen in the septins makes progress difficult.
Nevertheless, the available data suggest that at least some septins
can be implicated in human (and murine) neoplasia. The crucial
question is how?

How do septins contribute to neoplasia?

The role of septins in cytokinesis would lead to the notion that
these proteins are involved in neoplasia by perturbing cell division
in some way. While this idea deserves attention and is supported
by the recent observations of Spiliotis et al (2005), other possible
explanations for the role of septins in neoplasia might be
considered. The observation that septins can be involved in
membrane dynamics is of interest given the increasingly
recognised role of enhanced membrane dynamics in cancer (Polo
et al, 2004). Another tantalising observation is the suggestion that
one isoform of SEPT4 (previously called ARTS) can promote
apoptosis (discussed above). Loss of function of this isoform might
then reduce apoptosis and promote increase in cell number.
Another observation of relevance to a potential role in neoplasia is
the association of septins with both the actin and tubulin
cytoskeleton (Surka et al, 2002; Nagata et al, 2003). Recently,
Chacko et al (2005) have shown that the increased expression of
the SEPT9_v4 protein has potent effects on the phenotype of
epithelial cells. This isoform induces marked morphological
changes in cultured cells with the generation of dramatic actin
reorganisation and the formation of actin-based projections. In
addition, SEPT9_v4 expression promotes cell motility in both two-
and three-dimensional assays, and expression of GV mutants of
SEPT9_v4 (analogous to gain of function mutants in GTP binding
such as G12V in ras) promotes motility and perturbs the
directionality of movement. These latter data are complemented
by Golgi reorientation assays that suggest that SEPT9_v4 can alter
cell polarity. This is perhaps not surprising given the role of
septins in determining polarity in yeast (Irazoqui and Lew, 2004)
and Finger et al (2003) have shown that a nematode septin can
profoundly influence directional movement of developing neu-
rons. How SEPT9_v4 induces these phenotypes remains uncertain
but it is of note that the normal association of other SEPT9
isoforms with filamentous structures is perturbed by SEPT9_v4
and the GV mutant thereof (Chacko et al, 2005). SEPT9_v4 is a
truncated form of the predominant long versions of SEPT9 and the
phenotypic effects of overexpression are consistent with a model of
it acting as a dominant negative species. The association of septins
with microtubules is also of interest and it may be that septins can
modulate aspects of microtubule function. Some of the observa-
tions of Chacko et al (2005) point to this since (for example)
polarity determination requires microtubule coordination as well
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as effects on the actin cytoskeleton. The possibility that SEPT9
(and possibly other septins) can alter microtubule dynamics has
been proposed, and this may be of relevance to drug resistance to
microtubule-acting drugs.
A final aspect of septin function that may be relevant to

neoplasia is their formation of complex hetero-oligomeric
structures (Versele and Thorner, 2005) and their association with
the rho signalling pathway (Nagata and Inagaki, 2005). In yeast, it
has been suggested that septins act as scaffolds for the recruitment
and regulation of proteins involved in several processes. It may be
that in man the complex array of septins and septin isoforms
provides an array of cell type and context-specific spatial cues that
similarly organise the spatial arrangement of other proteins,
potentially in a highly regulatable manner. Perhaps the stoichio-
metry of particular septins and their isoforms can control such
processes. Consequently, the alteration in the level of septins
in cells may have profound effects. The observation that septin
levels change in neoplasia and that the overexpression of
one isoform (SEPT9_v4) can have profound effects fits this class
of model.

CONCLUSION

The past 25 years have seen an explosion in our understanding of
the molecular events underpinning neoplasia and more than 200
genes that are mutated in human cancers have been described
(Futreal et al, 2004). However, genes whose protein products
appear, at least in some tumour types, to contribute to the
neoplastic phenotype continue to be identified. While it is the case
that mutations are crucial to the role of many oncogenes and
tumour suppressor genes in neoplasia, it is becoming increasingly
apparent that the neoplastic phenotype can be a consequence of
alterations in gene expression, with haploinsufficiency being an
increasingly common theme (Mao et al, 2004), coupled with
environmental factors, often having a multifaceted spatial (Orimo

et al, 2005) and temporal interplay (Cook et al, 2005).
Furthermore, the surprising revelation of how relatively few genes
we have in the human genome and the extent of alternate splicing
that exists, highlights the possibility that the range of genes whose
products will have a role in neoplasia will continue to grow as we
develop a more detailed understanding of the molecular events
that regulate cells. Moreover, in some situations, the distinction
between oncogenes and tumour suppressor genes may become
blurred with the diverse products of one gene having different and
potentially opposing functions.
The septin family of genes exemplify some of these issues and

indicate how complicated the next 25 years of cancer research
might be. Without question, the septin family deserves more
attention and recent data suggest intriguing connections with
fields as diverse as polarity control, membrane dynamics and
exocytosis, the cell cycle and motility and cell shape. The
consideration of septin biology and its role in neoplasia will
require new perspectives and approaches to the issues of protein
levels and stoichiometry, the nature and distribution of protein
complexes and will ultimately require a much higher resolution
analysis and with new reagents and approaches. It is also
conceivable that the manipulation of septin complexes in cells
may provide new insights to therapeutic options. Finally, the study
of septins in neoplasia and other diseases may illuminate the
broader issues of septin function in mammalian cells.
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