www.bjcancer.com

The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells

M Mandal¹, S Kim¹, MN Younes¹, SA Jasser¹, AK El-Naggar², GB Mills³ and JN Myers^{*,1}

¹Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Department of MD Anderson Center, Houston, TX, USA; ⁴Department of MD Ander

The phosphatidylinositol 3' kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome on/Ake, tenway, which is a critical regulator of cell proliferation and survival, is mutated or activated in a wide variety of cancers. Akt a, ears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens, and hypothesises that KP372-1, an Akt inhibitor, would block signalling through the PI3K pathway and inhibit cell proliferation while inducing opptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells, leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks of the signalling, further preclinical evaluation of this compound for treatment of thyroid cancer is warranted. *British Journal of Cancer* (2005) **92**, 1899–1905. doi:10.1038/sj.bjc.6602595

Published online 3 May 2005 © 2005 Cancer Research UK

Keywords: molecular therapy; growth factors; anaplastic thyroid ocer; K

The incidence of thyroid cancer in the United States is connected to be approximately 23 600 in 2004 (Jemal *et al*, 26 94). Wroid carcinomas can be classified into papillary thyroid carcinoma (Jemal *et al*, 2004). The papillary and follicular thyroid carcinomas (Jemal *et al*, 2004). The papillary and follicular thyroid carcinomas constitute the majority of thyroid carcinomas. If are grouped together as well-differentiated thyroid continuous. This group of thyroid carcinomas can often be cured with the cal resection and with radioactive iodide therapy. However, there are no effective alternative therapies for patients with notastatic well-differentiated thyroid cancer who do not solve and to radioactive iodine therapy, suggesting an urgent and for development of novel therapies.

The pathogenesis of a roid cancer is characterised by the alterations of multiple signal of pathways and by abnormalities in a variety of uncur-suppressor genes and cell-cycle proteins (Fagin, 2002). The crivation of the Akt protein kinase B (Akt/PKB) signalling a thway arpears to play an important role in the development and progression of thyroid tumours. Interestingly, Akt has been added to be activated by a genetic loss of expression

of phosphatase and tensin homologue deleted on chromosome ten (PTEN), a tumour-suppressor gene, in Cowden's syndrome, an autosomal dominant multi-organ hamartoma syndrome characterised by benign and malignant thyroid tumours and breast and colon cancers (Dahia et al, 1997; Liaw et al, 1997). Akt activation, probably through a variety of mechanisms including aberrant stimulation of upstream cancers, occurs in most sporadic thyroid cancers (Ringel et al, 2001). In benign thyroid cell models, Akt signalling is important for cell growth in response to insulin, insulin-like growth factor-1, and serum (Kimura et al, 1999, 2001; Coulonval et al, 2000; Saito et al, 2001) and is activated by several oncogenes involved in thyroid cancer, including activated p21ras and chimeric rearrangements involving the ret gene (RET/PTC oncogenes) (Borrello et al, 1994; Rodriguez-Viciana et al, 1994). Despite the central role for Akt activation in thyroid tumorigenesis, little is known about the biological effect of inhibition of the Akt kinase in the progression of thyroid carcinoma.

Based on the putative central role of the Akt kinase in thyroid oncogenesis, we hypothesised that KP372-1, a specific Akt kinase inhibitor (molecular weight, 224.20; QLT Inc., Vancouver, BC, Canada), would inhibit the proliferation and induce apoptosis of thyroid cancer cells *in vitro*. KP372-1 was identified in a screen of kinase-inhibiting compounds tested on more than 100 different cellular kinases, and was selected for its high specificity for the Akt kinase (unpublished data from QLT). In this study, we demonstrated the key role of the phosphatidylinositol-3 kinase (PI3K)/ Akt pathway in thyroid cancer and explored the effect of KP372-1 using thyroid cancer cells as model systems. We assessed the effects of KP372-1 on the inhibition of the PI3K/Akt pathway biochemically and on cell proliferation and apoptosis.

^{*}Correspondence: Dr JN Myers, Department of Head and Neck Surgery, Unit 441, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;

E-mail: jmyers@mdanderson.org

This work was supported by The University of Texas MD Anderson Cancer Center Multi-Disciplinary Research Program in Thyroid Cancer and by The Golfers Against Cancer

Received 10 November 2004; revised 17 February 2005; accepted 24 March 2005; published online 3 May 2005

MATERIALS AND METHODS

Cell lines

A papillary thyroid carcinoma cell line, NPA187, a follicular thyroid cancer cell line, WRO, and anaplastic thyroid cancer cell lines KAT4, C643, K18, HTH74, ARO, and DRO were used. NPA187 and WRO were obtained from Dr Yan Oh, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, and KAT4, C643, K18, HTH74, and DRO were obtained from Dr Sai-Ching Jim Yeung, Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA. All the cell lines were grown in RPMI medium supplemented with 10% foetal bovine serum, L-glutamine, penicillin, sodium pyruvate, nonessential amino acids, and vitamin solution (Life Technologies, Inc., Grand Island, NY, USA). Adherent monolayer cultures were maintained on plastic and incubated at 37°C in 5% carbon dioxide and 95% air. The cultures were free of Mycoplasma species. The cultures were maintained no longer than 12 weeks after recovery from frozen stocks.

Compounds

KP372-1 (Figure 1) was synthesised by QLT Inc., Vancouver, BC, Canada. KP372-1 is a mixture of two isomers present in approximately equal amounts. A stock solution of KP372-1 for enzyme or cellular assays was prepared in dimethyl sulphoxide (DMSO) and then diluted in the medium. The final concentration of DMSO in the incubation mixture did not exceed $0.1\% \text{ vv}^{-1}$.

Tissue samples and Western blotting

Fresh frozen human thyroid tissue specimens were obtained from the thyroid tissue bank (The University of Texas MD Anderson Cancer Center) with the approval of the Institutional Review Joard at the MD Anderson Cancer Center. Thyroid specimer from patients who had undergone surgery were carefully here vester by an experienced pathologist (AKE) and were snap from in liquin itrogen and stored at -80° C. Thawed tissue sales were homogenised in Triton X-100 lysis buffer (20 m/t HEPL 50 mM

Figure I Molecular structure of KP372-1.

NaCl, 1% Triton X-100, 0.1% deoxycholate, 2 mM EDTA, 2 mM sodium vanadate, and protease inhibitor cocktail), and equal amounts of protein were analysed by Western blotting. The following antibodies were used for Western blotting: rabbit anti-pAkt (S473), rabbit anti-pAkt (T308), and rabbit anti-Akt (Cell Signaling, Beverly, MA, USA), rabbit anti-p85 and rabbit anti- β -actin (Sigma, St Louis, MO, USA). β -Actin was used as a loading control.

Cell proliferation

For MTT assays involving treatment with KP372 whe cells were diluted to 1000 cells per 100 μ l of complete medium, from which 100 μ l was added to each well of a 96-well plate (Falce becton-Dickinson, Franklin Lakes, NJ, USA). On a following day, 100 μ l of medium supplemented with two time the coired concentration of KP372-1 was added to the appropriate wells. A cells were then kept at 37°C in 5% CO₂ for 72 h. At his point 16 μ l of a 5 mg ml⁻¹ stock solution of MTT (Sigma' discoved in water was added to each well, and the plates were courned to the 37°C incubator for 2 h. The supernatant was aspirate pout of each well, and 200 μ l of DMSO was added to each well. The plates were then shaken for 5 min and the optical double of the supernatant was aspectrophotomete

To measure the c ll proliferation, we plated the NPA187 and WRO cells at 1×10^4 cells well⁻¹ in six-well plates. The cells we then treated with KP372-1 at a concentration of 30 and 10 nM for PA187 and WRO cell lines, respectively, and were counted by a haemocytometer on days 1, 2, and 3.

thymid ne incorporation

DN: synthesis in the control and KP372-1-treated cells was sees sed by the incorporation of ³H-thymidine into newly paicated DNA. NPA187 and WRO cells were plated at a concentration of 5000 cells well⁻¹ in 96-well plates. After 24 h, the cells were treated with different concentrations of KP372-1 for 48 h and treated with 5- μ Ci ml⁻¹ ³H-thymidine during the last 2 h (NEN Life Science Products, Inc., Boston, MA). Cells were washed with PBS and then extracted with 0.1 N KOH and counted by liquid scintillation.

DNA fragmentation assay

For the DNA fragmentation assay, low-molecular-weight DNA was prepared (Mandal et al, 1996). Briefly, NPA187 and WRO cells $(3 \times 10^{6} \text{ per plate})$ were seeded in 100 mm plates and treated with KP372-1 (30 nm for NPA187 and 60 nm for WRO) for 1, 2, or 3 days. Both floating and attached cells were scraped and collected in medium, washed three times with PBS, and resuspended in 1 ml of lysis buffer (20 mM Tris-HCl (pH 8), 10 mM EDTA (pH 8), and 0.5% Triton X-100). After incubation on ice for 30 min, the lysates were spun at 12000 rpm in a microcentrifuge for 10 min. Lowmolecular-weight DNA in the supernatant was extracted with equal volumes of phenol and chloroform for 1h at 4°C. Ammonium acetate (2 M) was added to the aqueous phase, and the DNA was precipitated with two volumes of ethanol at $-20^{\circ}C$ overnight. The DNA was treated with RNAse A (1 mg ml⁻¹) at 37°C for 1 h, and total DNA was analysed using 1.5% agarose gel and visualised with ethidium bromide staining.

Western blot analysis of thyroid carcinoma cell lines after treatment with KP372-1

In order to show the induction of apoptosis-related proteins by KP372-1, NPA187 and WRO cells (3×10^{6} per plate) were seeded in 100 mm plates and treated with KP372-1 (30 nm for NPA and 60 nm for WRO) for 1, 2, or 3 days. Both floating and attached cells were

scraped and collected in medium, washed three times with PBS, and the cells were lysed in Nonidet P-40 lysis buffer (50 mM Tris-HCl (pH 8.0), 137 mM NaCl, 10% glycerol, 1% Nonidet P-40, 50 mM NaF, 10 mM β -glycerol phosphate) containing 1 mM sodium vanadate, 1 mM phenylmethylsulphonyl fluoride, 10 μ g ml⁻¹ apoptinin, and lysis buffer (20 mM Tris-HCl (pH 8), 10 mM EDTA (pH 8), and 0.5% Triton X-100). After incubation on ice for 30 min, the lysates were spun at 12 000 rpm in a microcentrifuge for 10 min. Equal amounts of protein were then analysed by Western blotting using the following antibodies: mouse anti-poly(ADP-ribose)polymerase (PARP) antibody (Trevigen, Gaithersburg, MD, USA), rabbit anti-caspase-3 antibody (Cell Signaling), and rabbit anti- β actin antibody (Sigma). β -Actin was used as a loading control.

In order to show the effect of KP372-1 on various signal transduction pathways in thyroid carcinoma cell lines, we performed Western blot analysis on NPA187 and WRO cells after treating the cells with KP372-1. The cells were plated as described above. After treating the cells with KP372-1 (30 nM for NPA187 and 60 nM for WRO) for 4 h, both floating and attached cells were scraped and collected in medium, washed three times with PBS, and lysed with a lysis buffer as described above. After incubation on ice for 30 min, the lysates were spun at 12 000 rpm in a microcentrifuge for 10 min. Equal amounts of protein were then analysed by Western blotting using the following antibodies: rabbit anti-pAkt (S473), rabbit anti-Akt, rabbit anti-p-mitogen-activated protein kinase (MAPK), rabbit anti-pmTOR, rabbit anti-pS6R, and rabbit anti-S6R (Cell Signaling).

Akt enzyme assay to detect in vitro kinase activity

Cells were lysed using the lysis buffer provided in the Akt enzyme assay kit (Cell Signaling). The cells were scraped and placed in an Eppendorf centrifuge tube incubated on ice for 15 min and spun in a centrifuge at 4°C for 15 min at full speed. The lysates were then transferred to a new tube and stored at -80° C until assayed

Immunoprecipitation was carried out as follows: $5^{\circ0} \mu g$ protein was added to $5 \mu l$ of anti-Akt antibody (Cell Sign Jing) and rotated at 4°C overnight. Protein A sepharose beads (5 ° 1) were then added and rotated for 3 h at 4°C. The protein A separose beads were then washed three times with lysis buffer and mere times with the 1 × kinase buffer provided in the kit. Then the beads were aspirated, and 40 μl of kinase buffer was supplemented with 200 μ M ATP and a mixture (1 μg per 40 μl) = $^{\circ0}$ sion protein (provided in the kit). The tubes were the incubated at 30°C for 30 min, after which 20 μl of 3 × sample by the consisting of 187.5 mM Tris-HCl (pH 6.8), 6% = v^{-1}) sodium dodecyl sulphate (SDS), 30% glycerol, 150 mM OTT, and 0.05% (w v^{-1}) bromophenol blue was added to each the time abes were then boiled for 5 min at 95°C, and glycogen with tase kinase-3 (GSK-3) phophorylation was in our using phospho antibodies (Cell Signaling).

RESULTS

Akt to ho phorylated in many thyroid cancer cell lines

In an attempt to delineate the role of Akt signalling in thyroid cancer cells, we first profiled the expression of pAkt, total Akt, and the p85 subunit of PI3K in a panel of thyroid cancer cell lines. As seen in Figure 2, most thyroid cancer cell lines expressed readily detectable levels of pAkt-Ser473, pAkt-Thr308, total Akt, and subunits of the PI3K p85. PTEN was present in all the cell lines. The low levels of pAkt in some cell lines was likely due to the relative levels of pAkt rather than complete absence of this molecule. Three cell lines were selected for further characterisation: NPA187, which expressed relatively high levels of pAkt and low levels

of total Akt, and WRO, which expressed lower levels of pAkt with high levels of total Akt. The presence of similar amounts of PTEN (most mutant PTEN molecules are unstable) in these cell lines suggests that the difference in pAKT levels was likely not due to defective PTEN function.

Akt expression in human thyroid cancer tissues

After profiling the expression of Akt and pAkt in thyroid cancer cell lines, we focused our attention on the role of Akt in welldifferentiated thyroid carcinoma in subsequent exp riments. To determine whether our *in vitro* findings with cell lines. Taked he biology of human thyroid cancer *in vivo*, we evalued the expression of Akt and pAkt in fresh papillary thyroid amour specimens using Western blotting. The status on kt actination was examined using a phosphorylation-specific antibe regainst pAkt-Ser473 and antibody against total A t in thyroic tumours and adjacent normal-appearing tissues. A shown in Figure 3, six of eight tumours had higher level of perceberylated Akt-Ser473 than did normal tissues despite a cilar levels of total Akt. Akt phosphorylation was high a in the activity of tumours than in the neighbouring normal tissue suggesting a potential role for Akt phosphorylation in the carcino mesis of thyroid cancer. The high levels of Akt phosphor, ation in neighbouring tissue samples from some patients moreflet a 'field effect' due to genetic aberrations or, alternatively, the production and action of paracrine growth factors by the tumou.

KP372-1 inh bits proliferation and induces the apoptosis of t ______i cancer cells *in vitro*

The eh et of KP372-1 on the growth of NPA187 and WRO cells was coluated using an MTT assay, cell counting, and ³H-thymidine inc. poration. The proliferation of these cell lines was inhibited by 1P372-1 with an IC₅₀ (concentration at which 50% inhibition occurs) of 30 and 60 nM for NPA187 and WRO, respectively (Figure 4). The proliferation of the cell lines was also inhibited by KP372-1, as evidenced by cell counting (Figure 5A and B) and the ³H-thymidine incorporation assay (Figure 5C and D). As shown in Figure 2, different levels of pAkt and total Akt were seen in the three cell lines. As shown in Figure 4, the NPA187 cell line, which had high basal pAkt levels, was more sensitive to KP372-1 than was WRO, which had low pAkt levels, suggesting that high pAkt could indicate cell dependence on this pathway and thus higher sensitivity to the inhibition of Akt.

This decreased MTT incorporation can be due to a decreased rate of cell cycle transit or increased cell death. To assess the latter possibility, we treated the NPA187 and WRO cells with KP372-1 for different lengths of time and determined the extent of apoptosis by DNA fragmentation (Figure 6A) and the accumulation of a sub- G_0/G_1 cell population by flow cytometry (data not shown). The effect of KP372-1 on the status of PARP and caspase-3 was also examined (Figure 6B). The induction of activated caspase-3 and cleavage of PARP by KP372-1 treatment were observed in both cell lines, although with different kinetics and different magnitudes. Consistent with the MTT data, NPA187 demonstrated greater degrees of PARP cleavage and DNA degradation at 72 hours than WRO.

To determine the duration of exposure to KP372-1 required to commit cells to apoptosis, NPA187 and WRO cells were incubated with 30 and 60 nM of KP372-1, respectively, for 6 h in serum-free medium. The cells were then washed with PBS and grown in medium containing 10% FBS without the inhibitor for another 24 or 48 h. The cells were then assayed for the percentage of apoptotic cell death. Apoptosis was not induced under these conditions (data not shown). Thus, we concluded that KP372-1 must be present continuously in order to induce apoptosis at least at these doses and for these cell lines.

Figure 2 Expression of phosphorylated (p) Akt-Ser473, pAkt-Thrice, p8s, plautits of PI3K, and PTEN in thyroid cancer cell lines. Cell lysates from exponentially growing cells were analysed by immunoblotting with antibodies a anst the indicated proteins. Results shown are representative of three independent experiments.

Fig. 3 Appressions in human thyroid cancer. Expression of pAkt (Ser473) and total Akt in thyroid tumours (T) and adjacent normal tissues (N) were a sted with immunoblotting.

KP372-1 inhibits Akt kinase activity, phosphorylation of Akt, and downstream targets of Akt in thyroid cancer cells

We next determined the effect of KP372-1 on the phosphorylation of AKT (Ser473) and on downstream targets of Akt, including p-mTOR and p-S6 ribosomal protein (Ser240/244), and MAPK. We treated NPA187 and WRO cells with KP372-1 at their respective IC_{50} for 4 h and analysed the cell lysates with the specific

antibodies indicated in Figure 7A. In the case of NPA187 and WRO, phosphorylation of Akt and S6 ribosomal protein was downregulated by treatment with KP372-1. However, the phosphorylation of mTOR and MAPK was not changed by treatment with KP372-1. Akt kinase activity was also downregulated by KP372-1 in multiple thyroid cancer cell lines, as tested by an *in vitro* kinase assay using GSK- β as substrate (Figure 7B).

Akt inhibitor KP372-1 induces cancer cell apoptosis M Mandal et al

Figure 4 Effects of KP372-1 on the proliferation of thyroid carcinoma cell lines *in vitro*. Thyroid carcinoma cell lines NPA187 and WRO were plated in a 96-well plate and treated with different concentrations of KP372-1 for 48 h. Cell growth was measured by MTT assay. Results shown are representative of three experiments.

Our results indicate that KP372-1 blocks Akt kinase activity, thereby decreasing phosphorylation of the S6 ribosomal protein. The mechanism resulting in the decrease in Akt phosphorylation is under exploration, but may represent an allosteric change in the molecule, decreasing access to upstream kinases or increasing access to downstream phosphatases.

DISCUSSION

Our study shows that thyroid cancer cells expressed detectable levels of Akt Ser473, Akt-Thr308, total Akt, PTEN, and the o85 subunits of the PI3K and Akt kinase activity. Most of the tunk showed a higher level of Akt-Ser473 phosphorylation tha matching normal tissues, suggesting an association tween a high level of Akt phosphorylation and thyroid carcine gene This association was further supported by evidence that prockade Akt signalling with the selective inhibitor KP372-1 induced apoptosis and inhibited cell proliferation in human thyr d cancer cell lines in culture. Furthermore, KP372-1 was found to inhibit the Akt in addition to the phosphorylation and kinase activities phosphorylation of downstream substrat s. ver, the mechanism responsible for decreased Abt phosph orylation is not clear. It conformation so that the rear o-acid residues are not available for phosphoryl non. A milar effect has been seen with other inhibitors such those for MEK1 and JNK where they decrease phosphory, tion their target in cells with an activated pathway.

In our study we found that the papillary thyroid cancer cell line NPA187 was not sens ive to the effects of KP372-1 compared with the Wicula cell line WRO. However, Ringel *et al* (2001) found that the cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line NPA187 was more sensitive than WRO to the effective cell line sensitivities to two different agents that target ine same pathway may be due to the fact that these agents show affinity for kinases other than the intended primary target kinase. It is also known that KP372-1 inhibits kinases other than Akt, such as CDK1, CK2, CSK, DNAPK, ERK1, GSK3b, LCK, MEK1, PIM, PKA, PKC, and S6K, albeit at relatively high concentrations (unpublished work from QLT). We have also found that the NPA187 cell line showed higher levels of Akt phosphorylation than WRO. This observation suggests that NPA187 may be more dependent than WRO on the activation of Akt for survival and proliferation.

Figure 5 Effects of KP372-1 on the proliferation of thyroid carcinoma cell lines *in vitro*. (**A**, **B**) Thyroid carcinoma cell lines NPA187 and WRO were plated in six-well plates and treated with 30 and 60 nm KP372-1 for NPA187 and WRO cell lines, respectively, for 1, 2, or 3 days. Cell proliferation was then measured by cell counting using a haemacytometer. (**C**, **D**) Thyroid carcinoma cell lines NPA187 and WRO were plated in a 96-well plate and treated with various concentrations (0–120 nM) of KP372-1 for 48 h. Cell proliferation was then measured by ³H-thymidine incorporation. Results shown are representative of three experiments.

1903

Figure 6 KP372-1 induces apoptosis in thyroid cancer cells in vitre (A) Cells were treated with KP372-1 as indicated for various periods. Diffragmentation was measured by ethidium bromide staining a model the DNA was resolved on an agarose gel. (B) Cells were treated with in 72-1 for different time periods, and cell extracts were immunoblotted with the indicated antibodies. Results shown are representative of three experiments with similar results.

Inhibition of Akt might be of great . It to patients with aggressive thyroid cancers, and support for the concept of targeting Akt comes from man observations. First, more than 54% of human cancers has account that is detectable in situ (Bellacosa *et al*, 1991). Akt a vation was identified in 10 of 10 follicular cancers, $2 \circ of 26$ p. allary cancers, and two of 10 follicular variants of 1 illary cancers, but in only four of 66 normal tissue samples a. two of 10 typical benign follicular adenomas (asko et al, 2004). Second, pAkt expression was found to be greates regio s of capsular invasion and was localised to the number of the regional cancers and to the cytoplasm in papillary can ers, c cept for invasive regions of papillary cancers, where it loca. n compartments (Vasko et al, 2004). Thus, smallmolecu. Akt inhibitors could have wide applicability as anticancer drugs. Thard, inhibition of the PI3K/Akt pathway by biochemical or genetic means increases the efficacy of chemotherapy, radiotherapy, or both, in vitro and in vivo (Hu et al, 2000; Brognard et al, 2001; Bondar et al, 2002). Finally, several standard chemotherapeutic and chemopreventive agents inhibit the PI3K/ Akt pathway when administered in vitro, and, in some cases, inhibition of Akt is directly responsible for these agents' cytotoxicity (West et al, 2002).

Despite the acknowledged need for Akt inhibitors, none is widely available and none that inhibits the kinase activity of Akt is

pMAP m70R pS6R Total S6R В KAT4+KP372-1 **ARO+KP372-**HTH74+KP ARO KAT4 **AKT-kinase** CON KP-372-1 Relative units 6.0 Figure 7 KP372-1 inhibits Akt phosphorylation and some of the

NPA187+KP372-14 h

NPA187

WRO+KP372-14 h

.

pAkt S473

WRO

A

Figure 7 KP372-1 inhibits Akt phosphorylation and some of the downstream signalling molecules as well as Akt kinase activity. (**A**) NPA187 and WRO cells were treated with the IC₅₀ concentrations of KP372-1 (30–60 nM, respectively) for 4 h in RPMI medium without serum. Equal amounts of protein were resolved by SDS–polyacrylamide gel electrophoresis and immunoblotted with different antibodies as indicated. (**B**) KP372-1 inhibits Akt kinase activity. Different thyroid cancer cells were treated with KP372-1 for 2 h, cell lysates were prepared, and Akt was immunoprecipitated and analysed for Akt-Ser473 and Akt kinase activity using an *in vitro* kinase assay with GSK- β as a substrate. Results shown are representative of three experiments.

in clinical evaluation. The current studies indicate that KP372-1 acts to inhibit Akt and has activity in cells with high levels of pAkt. This is similar to other inhibitors of the PI3K/Akt pathway, such as Wortmannin and LY294002. Wortmannin and LY294002 may have limited clinical utility because they lack specificity and have potential adverse side effects, poor pharmacological properties, low stability, and poor solubility (West *et al*, 2002). Wortmannin inhibits myosin light-chain kinase; phospholipases C, D, and A₂; and DNA-dependent protein kinase (West *et al*, 2002). LY294002 also inhibits the aryl hydrocarbon receptor, a ligand-activated

transcription factor (Guo *et al*, 2000). *In vivo* use of LY294002 in mice has been associated with many adverse effects, including death (Hu *et al*, 2002). Similarly, Wortmannin has demonstrated hepatic and haematopoietic toxicity. Therefore, although Wortmannin and LY294002 inhibit the PI3K/Akt pathway, their drawbacks raise doubts about their suitability as leading candidates for additional development.

The major advantage of KP372-1 over Wortmannin and LY294002 as PI3K inhibitors is its greater efficacy and the marked induction of apoptosis in cancer cell lines. This may be due to its targeting a central downstream molecule and also due to the potential for a number of processes to bypass effects at the level of PI3K. However, the final determination will be in terms of therapeutic index, which will need to be evaluated in mice and eventually humans. Indeed, a potential downside of Akt inhibitors is toxicity because of the importance of Akt signalling in many normal cellular processes such as insulin signalling, and the lack of selectivity of the current Akt inhibitors including KP372-1 to different Akt isoforms. Identifying kinase inhibitors that target the ATP-binding site of a kinase can be fraught with specificity problems because all kinases and many other molecules possess ATP-binding sites. This was perhaps best observed with STI-571 (Gleevec, imatinib mesylate, Novartis Pharma, Basel, Switzerland), a competitive inhibitor of the ATP-binding site of many kinases

REFERENCES

- Bellacosa A, Testa JR, Staal SP, Tsichlis PN (1991) A retroviral oncogene, Akt, encoding a serine – threonine kinase containing an SH2-like region. *Science* 254: 274–277
- Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ (2002) Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells *in vitro* and *in vivo*. *Mol Carcer Ther* 1: 989-997
- Borrello MG, Pelicci G, Arighi E, De Filippis L, Greco A, Bongarzo, Rizzetti M, Pelicci PG, Pierotti MA (1994) The oncogenic ver ions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adapted proteins. *Oncogene* 9: 1661-1668
- Brognard J, Clark AS, Ni Y, Dennis PA (2001) Akt/protein kinas "is constitutively active in non-small cell lung cance cells and promotes cellular survival and resistance to chemotherapy and radiation. *Cancer Res* 61: 3986-3997
- Coulonval K, Vandeput F, Stein RC, Kozma SC, Lamy r, Lont JE (2000) Phosphatidylinositol 3-kinase, protein kina and ribosomal S6 kinases in the stimulation of thyroid epithelial cell production by cAMP and growth factors in the presence of in the Biochem J **348**(Part 2): 351–358
- Dahia PL, Marsh DJ, Zheng Z, Zed nius Komn noth P, Frisk T, Wallin G, Parsons R, Longy M, Larsson Er (1997) Somatic deletions and mutations in the Cowden disea gene, PTEN, in sporadic thyroid tumors. *Cancer Res* 57: 110-4713
 Fagin JA (2002) Minir view randed from the start distinct oncogenic
- Fagin JA (2002) Minir view randed from the start distinct oncogenic initiating events may det ine tumor fate in the thyroid. *Mol Endocrinol* **16:** *303–911*
- Guo M, Joiaki A, Reiners Jr JJ (2000) Suppression of 2, 3, 7, 8tetrachlorodibe. p-dio in (TCDD)-mediated aryl hydrocarbon receptor training nation. p. CYP1A1 induction by the phosphatidylinositol 3-kir se in libitor --(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY2, 92, em Pharmacol 60: 635-642
- Heinrich . Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. *Blood* **96**: 925–932
- Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB (2002) Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in *in vitro* and *in vivo* ovarian cancer models. *Cancer Res* 62: 1087–1092
- Hu L, Zaloudek C, Mills GB, Gray J, Jaffe RB (2000) *In vivo* and *in vitro* ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). *Clin Cancer Res* **6:** 880-886
- Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. *CA Cancer J Clin* **54**: 8–29

(Klejman *et al*, 2002). The wide clinical application of STI-571 is partially due to its ability to inhibit many kinases, including bcr– abl, platelet-derived growth factor receptors, and c-Kit (Heinrich *et al*, 2000; McGary *et al*, 2002; von Bubnoff *et al*, 2002). The relatively nonspecific activity of STI-571 results in activity against Kit and the PDGFR in gastrointestinal stromal tumours (GIST) and against the PDGFR in hypereosinophilic syndrome. It is somewhat surprising and fortuitous that the relative broad activity of STI-571 was not associated with toxicity.

In conclusion, thyroid cancer cell lines and well-differentiated human tumour specimens showed high levels of Akt phosphorylation on Ser473 and high Akt activity levels, which a pot ted the findings of several other studies (Dahia *et al*, 1997; Liaw *al*, 19-7; Ringel *et al*, 2001), indicating that the Akt signalling pathy plays a role in thyroid cancer progression. A addition specific inhibition of Akt kinase activity by KP372 1 respect in decreased cell proliferation and induction of apor tosis of thy. If a cancer cells *in vitro*. Although anaplastic thyroid cell lines were included in some of our experiments, our data len support to the use of Akt kinase inhibitor in well-difference ted thyroid carcinoma rather than in anaplastic or poorly difference to the valuation of this and other compounds arge on the PI3K/Akt pathway in welldifferentiated thyroid cancer is a granted.

Kimura T, Dun ont JL, Fusco A, Golstein J (1999) Insulin and TSH promote growth in size of PC Cl3 rat thyroid cells, possibly via a pathway different

- DNA synthesis: comparison with FRTL-5 cells. Eur J Endocrinol 140: -103
- nura , Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP 1017 Regulation of thyroid cell proliferation by TSH and other factors: a ritical evaluation of *in vitro* models. *Endocr Rev* 22: 631–656
- I ejman A, Rushen L, Morrione A, Slupianek A, Skorski T (2002) Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571. Oncogene 21: 5868-5876
- Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. *Nat Genet* 16: 64-67
- Mandal M, Maggirwar SB, Sharma N, Kaufmann SH, Sun SC, Kumar R (1996) Bcl-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly(ADP-ribose) polymerase and restores the NF-kappaB signaling pathway. J Biol Chem 271: 30354-30359
- McGary EC, Weber K, Mills L, Doucet M, Lewis V, Lev DC, Fidler IJ, Bar-Eli M (2002) Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. *Clin Cancer Res* 8: 3584-3591
- Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M (2001) Overexpression and overactivation of Akt in thyroid carcinoma. *Cancer Res* **61**: 6105–6111
- Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, Downward J (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. *Nature* **370**: 527-532
- Saito J, Kohn AD, Roth RA, Noguchi Y, Tatsumo I, Hirai A, Suzuki K, Kohn LD, Saji M, Ringel MD (2001) Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. *Thyroid* 11: 339–351
- Vasko V, Saji M, Hardy E, Kruhlak M, Larin A, Savchenko V, Miyakawa M, Isozaki O, Murakami H, Tsushima T, Burman KD, De Micco C, Ringel MD (2004) Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 41: 161-170
- von Bubnoff N, Schneller F, Peschel C, Duyster J (2002) BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosomepositive leukaemia to STI571: a prospective study. *Lancet* **359**: 487-491
- West KA, Castillo SS, Dennis PA (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5: 234-248