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HMG CoA reductase inhibitors (statins) to treat Epstein–Barr
virus-driven lymphoma
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While statins have been highly effective for lowering serum cholesterol and reducing the incidence of coronary events, they have
multiple other effects. Certain statins block the interaction of adhesion molecules that are important for cell–cell interactions
including those between EBV-transformed B cells. These same statins inhibit NF-kB activation in the cells and induce apoptosis
of transformed B cells. Studies in severe combined immunodeficiency mice show that simvastatin delays the development of
EBV-lymphomas in these animals. These statins might be considered for the treatment of EBV-lymphomas in selected patients.
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BIOLOGY OF EPSTEIN–BARR VIRUS

Epstein–Barr virus (EBV) infects over 90% of the world’s
population. Most infections occur in young children and are
asymptomatic or result in nonspecific symptoms. Infection of
adolescents and young adults can result in infectious mononu-
cleosis. Epstein–Barr virus is associated with a number of
malignancies including Burkitt lymphoma, nasopharyngeal carci-
noma, Hodgkin’s disease, T-cell lymphomas, and lymphoproli-
ferative disease in stem cell and organ transplant recipients
(Cohen, 2000).
Epstein–Barr virus infects resting B lymphocytes and trans-

forms them so that they proliferate indefinitely (Kieff, 2001). Of the
nearly 100 viral proteins encoded by the genome, nine are
expressed during transformation in vitro. These nine latency-
associated proteins are the EBV nuclear antigens (EBNA-1, -2, -3A,
-3B, -3C, and -LP) and the EBV latent membrane proteins (LMP-1,
LMP2-A, LMP-2B). Epstein–Barr virus-transformed B cells grow
in tight clumps in vitro.
Epstein–Barr virus gene expression differs among malignancies

associated with the virus. Epstein–Barr virus-positive Burkitt
lymphoma tissue shows expression of EBNA-1, but not the other
latency-associated proteins (Rowe et al, 1987). Hodgkin’s disease
tissues show expression of EBNA-1, LMP-1, and LMP-2 (Deacon
et al, 1993) while nasopharyngeal carcinoma (Fahraeus et al, 1988)
and T-cell lymphomas (Anagnostopoulos et al, 1992) express
EBNA-1, LMP-2 and have variable expression of LMP-1. Epstein–
Barr virus lymphomas in immunocompromised persons generally
show expression of each of the nine latency associated proteins.
Epstein–Barr virus proteins expressed during latency may serve as
targets for novel chemotherapeutic agents. While the treatment for
some EBV-associated malignancies has improved in recent years,

newer approaches to therapy are needed. Here, we describe the
possible use of certain statins in the treatment of EBV-driven
lymphomas.

THE ROLE OF EBV LMP-1 IN ONCOGENESIS

LMP-1 is the latency-associated protein that has been most directly
linked to oncogenesis by EBV. Expression of LMP-1 in B cells of
transgenic animals results in B-cell lymphomas (Kulwichit et al,
1998). LMP-1 upregulates the expression of a large number of
proteins on the surface of virus-infected B cells, including
intercellular adhesion molecules (ICAM)-1, leucocyte function
antigen 1 (LFA-1), and LFA-3 (Figure 1A) (Peng and Lundgren,
1992). Expression of LMP-1 in lymphoma cells induces clumping
of the cells (Wang et al, 1990).
LMP-1 acts as a functional homologue of a constitutively active

form of CD40. LMP-1 oligomerises on the surface of virus-infected
cells and binds to the tumour necrosis factor receptor-associated
factors (TRAFs) 1,2,3 and 5, TRADD, RIP, and Janus-activated
kinase (JAK) 3 (Devergne et al, 1996) (Figure 2A). The interaction
of LMP-1 with these proteins results in activation of NF-kB, c-jun
N-terminal kinase, signal transducers and activators of transcrip-
tion (STATs), the p38 MAP kinase pathway, and stress-activated
kinases. This results in constitutive B-cell proliferation and
inhibition of apoptosis. LMP-1 also interacts with p85 to activate
the phosphatidylinositol 3-kinase/Akt pathway and increase cell
survival (Dawson et al, 2003). LMP-1 upregulates several other
antiapoptotic proteins including A20, Mcl-1, bcl-2, and bfl-1.
Epstein–Barr virus-associated B-cell lymphomas in humans

show activation of NF-kB, and LMP-1 colocalises with TRAF-1 and
TRAF-3 (Liebowitz, 1998). In addition, TRAFs 1, 2, and 3 and
NF-kB are expressed in post-transplantation lymphoproliferative
disorders (Ramalingam et al, 2003). Furthermore, these lesions
show expression of adhesion molecules upregulated by LMP-1
including LFA-1 (Hamilton-Dutoit et al, 1993). Thus, LMP-1 is
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critical for B-cell proliferation and development of lymphomas in
vivo.
Treatment of EBV-transformed B cells with NF-kB inhibitors

(e.g. IkBa mutant, Bay11-7082) has been shown to induce

apoptosis of the cells (Cahir-McFarland et al, 2000, 2004). We
have found that treatment of EBV-transformed cells with
simvastatin also inhibits NF-kB and induces apoptosis of EBV-
transformed B cells (Katano et al, 2004).

STATINS: HMG CoA REDUCTASE INHIBITORS

Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase. Six of these compounds, atorvastatin, fluvastatin,
lovastatin, pravastatin, rosuvastatin, and simvastatin, are approved
by the FDA for use in humans. Each of these compounds is used
to treat elevated serum cholesterol. HMG-CoA reductase catalyses
the conversion of HMG-CoA to mevalonate, which ultimately leads
to synthesis of cholesterol. Therefore, statins reduce the level of
mevalonate with a subsequent reduction in cholesterol.
Statins have a number of other activities related to their

inhibition of HMG-CoA reductase (reviewed in Raggatt and
Partridge, 2002). Mevalonate is a precursor for isoprenoids,
including geranyl pyrophosphate and farnesyl pyrophosphate.
Statins reduce the levels of these compounds. Post-translational
modification of proteins by farnesylation or geranylgeranylation
results in their association with cell membranes and activation
(reviewed in Bellosta et al, 2000). These modified proteins include
members of the nuclear laminin family, ras, inositol triphosphate
5-phosphatase, which are farnesylated, and Rho, Rac, cdc42, Rab,
Rap, and G-proteins, which are geranylgeranylated. These changes
have pleotrophic effects including inhibition of smooth muscle
proliferation (Corsini et al, 1993), inhibition of MHC class II
complexes on antigen-presenting cells (Kwak et al, 2000), increase
in bone morphogenetic protein (Mundy et al, 1999), suppression
of T- and B-cell responses (Kurakata et al, 1996), reduced NK cell
activity (Hillyard et al, 2004), reduced synthesis of chemokines
(Waehre et al, 2003), and growth arrest of certain transformed cells
(Graaf et al, 2004). These effects can be reversed with the addition
of mevalonate.
Certain statins have activities that are unrelated to their

inhibition of HMG-CoA reductase. Kallen et al (1999) showed
that lovastatin binds to the I-domain of LFA-1 and blocks its
interaction with ICAM-1. LFA-1 (aLb2 integrin) is an adhesion
molecule that promotes diapedesis of leucocytes across the
endothelium and is a costimulatory molecule on activated T cells.
The I-domain of LFA-1 is separate from the site of its binding to its
ligand ICAM-1. Weitz-Schmidt et al (2001) subsequently showed
that simvastatin, mevastatin as well as lovastatin (but not
pravastatin) can bind to LFA-1 and block its binding to ICAM-1.
This interaction is independent of HMG-CoA and is not reversed
by mevalonate. Simvastatin and lovastatin concentrations of
B10 mM are required to block these interactions; this is in contrast
to the nanomolar concentrations required to inhibit HMG-CoA. A
synthetic statin (LFA703) which lacks HMGCoA reductase
inhibitory activity, but which has increased LFA-1 binding activity,
blocks LFA-1-induced costimulation of T cells and suppresses the
inflammatory response to thioglycollate in a mouse model of
peritonitis.
Statins have been shown to affect replication of HIV. HIV

virions have ICAM-1 on their surface, which can bind to LFA-1 on
target cells and enhance virus attachment (Fortin et al, 1997).
Lovastatin inhibits replication of HIV by inhibiting the interaction
of ICAM-1 on virions with LFA-1 on the surface of target cells
(Giguere and Tremblay, 2004). Lovastatin inhibits HIV-induced
Rho GTPase activation, which is important for HIV infection of
cells (del Real et al, 2004). Entry into and exit from HIV-infected
cells is blocked by lovastatin and this effect can be reversed by
treatment with mevalonate. Treatment of HIV-infected severe
combined immunodeficiency (SCID)-hu mice or humans with
lovastatin results in a reduction in HIV RNA loads and increased
CD4þ T-cell counts.

B cell B cell

B cellB cellB cell

B cell

LFA-I LFA-I

LFA-I

LFA-I

LFA-I LFA-I

LFA-I

LFA-I

ICAM-I

ICAM-I

ICAM-I

ICAM-I ICAM-I

ICAM-I

ICAM-I

ICAM-I

Simvastatin Simvastatin

SimvastatinSimvastatin

A

B

Figure 1 Simvastatin inhibits the interaction of LFA-1 with ICAM-1 on B
cells. Epstein–Barr virus-transformed B cells express LFA-1 and ICAM-1
adhesion molecules on their surface (A). Simvastatin binds to the I-domain
of LFA-1, inducing a conformational change that inhibits the ability of LFA-1
to bind to ICAM-1 (B).
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Figure 2 Simvastatin inhibits NF-kB activation by LMP-1. Oligomerisa-
tion of LMP-1 in lipid rafts on the surface of EBV-transformed B cells
recruits TRAFs to the cytoplasmic tail of LMP-1, which results in NF-kB
activation and inhibition of apoptosis (A). Simvastatin displaces LMP-1 from
lipid rafts resulting in absence of NF-kB activation and apoptosis of the cells
(B).
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SIMVASTATIN INDUCES APOPTOSIS OF EBV-
TRANSFORMED B CELLS

Treatment of EBV-transformed B cells with X2 mM of simvastatin,
atorvastatin, or lovastatin resulted in dissociation of cell clumps
and death beginning 5 days after treatment with the drug (Katano
et al, 2004). Cell death induced by simvastatin was due to
apoptosis as demonstrated by detection of fragmented DNA.
While simvastatin induced cell death in EBV-positive Burkitt

lymphoma cells (such as Akata, Mutu-1, Mutu-3, and P3HR-1
cells), EBV-negative B cells, and EBV-negative T cells, the
concentration of simvastatin required to kill these cells (X4 mM)
was higher than for cells transformed with EBV in vitro.
Simvastatin and lovastatin block the interaction of LFA-1 with

ICAM-1, while pravastatin does not. In contrast to apoptosis of
EBV-transformed B cells induced by simvastatin, treatment of
these cells with up to 16 mM of pravastatin did not dissociate cell
clumps or induce cell death (Katano et al, 2004). In addition,
antibody to LFA-1, which can activate lymphocytes (Perez et al,
2003), prevented cell death induced by simvastatin.

Simvastatin displaces LMP-1 from lipid rafts and inhibits
NF-jB

LMP-1 is present in lipid rafts on the cell membrane (Higuchi et al,
2001). Lipid rafts are microdomains in the membrane that are rich
in cholesterol and sphingolipids and are resistant to detergent
extraction. They are important for signal transduction in B cells
by CD40 or by immunoglobulin on the surface of the cells. The
carboxy terminal domain of LMP-1 is activated when targeted to
lipid rafts where it induces signalling and activation of NF-kB-
mediated transcription (Kaykas et al, 2001). A mutation in one of
the transmembrane domains of EBV LMP-1 results in lack of LMP-
1 localisation to rafts, failure to bind TRAF 3, and loss of activation
of NF-kB (Yasui et al, 2004). Treatment of EBV-transformed B cells
with 2 mM simvastatin for 3 days reduced the amount of LMP-1
present in lipid rafts by 85% (Katano et al, 2004). While this effect
might have been attributable to the depletion of cholesterol by the
statin, it occurred at a relatively low level of simvastatin and
treatment of cells with 8 mM pravastatin did not result in a reduced
amount of LMP-1 in rafts. Treatment of EBV-transformed B cells
with 2 mM simvastatin for 3 days inhibited NF-kB activation. Cells
treated with 8 mM pravastatin did show reduced activation of
NF-kB.
Since LMP-1 also activates the phosphatidylinositol 3-kinase/

Akt pathway (Dawson et al, 2003), displacement of LMP-1 from
lipid rafts may reduce activation of this pathway and inhibit
survival of EBV-transformed B cells.
While LMP-2 has also been shown to be present in lipid rafts

(Dykstra et al, 2001) and simvastatin might have an effect on LMP-
2, the observation that LMP-2 is dispensable for B-cell transforma-
tion by EBV (Speck et al, 1999), suggests that the effect of
simvastatin in killing transformed B cells is unlikely to be
mediated through LMP2.

Simvastatin-induced apoptosis: inhibition of NF-jB vs
inhibition of adhesion molecule interactions

The effects of simvastatin on EBV-transformed B cells cells could
be due the ability of the drug to block adhesion molecule
interactions on the surface of B cells, or to displace LMP-1 from
rafts and inhibit NF-kB (Figures 1B and 2B). Examination of
multiple EBV-positive and EBV-negative cell lines showed that
induction of cell death by simvastatin correlated best with
expression of LMP-1 and activated NF-kB in the cells prior to
treatment with drug (Katano et al, 2004). Cells expressing the
highest levels of LMP-1 and NF-kB (EBV-transformed B cells) were
most susceptible to simvastatin-induced cell death; one cell line

(Mutu-3 Burkitt lymphoma cells) expressing lower, but detectable
levels of LMP-1 and NF-kB showed an intermediate sensitivity to
death by simvastatin. However, other EBV-positive cells (Akata,
P3HR-1, and Mutu-1 Burkitt lymphoma cells) that expressed low
levels of NF-kB and no detectable LMP-1 were much less sensitive
to simvastatin. One of these latter cell lines (P3HR-1) expressed
levels of LFA-1 and ICAM-1 that were similar to those in EBV-
transformed B cells. Taken together, these finding suggest that
inhibition of NF-kB by simvastatin may be more important than
its ability to block the interaction of LFA-1 with ICAM-1.

Studies of simvastatin in an animal model of EBV
lymphoma

Intraperitoneal injection of EBV-transformed B cells into SCID
mice results in development of EBV-positive lymphomas that
resemble the tumours seen in immunosuppressed persons (Rowe
et al, 1991). These tumours show a pattern of gene expression
similar to that in patients with EBV lymphoproliferative disease
with EBNAs, LMP-1, and adhesion molecules detected in the
tumours.
Oral treatment of SCID mice with simvastatin beginning 3 days

prior to injection with EBV-transformed B cells resulted in a
statistically significant improvement in survival rate compared to
animals not given the drug (Figure 3) (Katano et al, 2004). While
there was a trend for longer survival for mice treated with
simvastatin beginning 7 days after injection with EBV-transformed
B cells, the difference with untreated mice was not statistically
significant. Some tumours from mice that were treated with
simvastatin showed downregulation of LFA-1 on their surface,
compared with the EBV-transformed B cells that had been used to
inject the animals.
The dose of simvastatin used to treat these mice

(250mg kg�1 day�1) is estimated to result in serum levels that
would be 4 to 8 times that of humans receiving the maximum dose
of simvastatin (80mg day�1) used to lower serum cholesterol.
However, similar high serum levels have been achieved in humans
treated with large doses of statins in cancer therapy trials (see
below).
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Figure 3 Simvastatin increases survival of SCID mice inoculated with
EBV-transformed B cells. Mice treated with simvastatin before inoculation
with EBV-transformed B cells have improved survival (Po0.04) compared
with untreated mice. Mice treated with simvastatin after inoculation with
virus-transformed B cells show a trend (not statistically significant) toward
improved survival. Reproduced with permission from Katano et al (2004).
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STATINS FOR TREATMENT OF OTHER TUMOURS

Statins have been shown to induce apoptosis in several proliferat-
ing tumour cell lines, including certain leukaemia, lymphoma,
astrocytoma, pancreatic carcinoma, and neuroblastoma cell lines
(reviewed in Wong et al, 2002). This effect is due to inhibition of
HMG-CoA reductase since it can be inhibited by mevalonate.
Lovastatin reduced viability of EBV-positive or EBV-negative
Burkitt lymphoma cells by 475% due to inhibition of geranylger-
anylation (van de Donk et al, 2003). Statins have been used in
animal models and have reduced the tumour burden associated
with melanoma, hepatoma, neuroblastoma, pancreatic cancer, and
lung cancer (reviewed in Wong et al, 2002). In other animal
models, statins have been used as adjunctive therapy in combina-
tion with cytotoxic agents in mouse models including carmustine
for melanoma and with doxorubicin for lung cancer.

Clinical studies of statins

A number of studies have tested the role of oral statin therapy in
patients with tumours (reviewed in Wong et al, 2002). Lovastatin
given in doses ranging from 2 to 45mg kg�1 day�1 for 1 out of
every 4 weeks was used to treat a variety of tumours including
astrocytoma, glioblastoma, and prostate, breast, ovarian, and lung
cancer (Thibault et al, 1996). Doses of 25mg kg�1 day�1 for 7 days
were well tolerated. Serum levels of the drug ranged from 0.1 to
3.9mM. One patient with an astrocytoma had a minor response to
therapy. Since mice metabolise statins more rapidly than humans,
a dose of 25mg kg�1 day�1 is comparable to B250mg kg�1 day�1

in mice.
While large doses of statins have been used in patients with

cancer, might standard doses of statins prevent development of
haematologic malignancies? Large trials of simvastatin for the
prevention of coronary events have evaluated the incidence of
cancer in study recipients. No significant decrease in the overall
incidence of cancer or of haematologic malignancies was noted in
the MRC/BHF Heart Protection Study involving 20 536 patients
randomised to 40mg of simvastatin per day or placebo for a
median of 5 years (Heart Protection Study Group, 2002). Similarly,
there was no significant decrease in the incidence or mortality for
cancer, or for lymphatic or haematopoeitic malignancies in the
Scandinavian Simvastatin Survival Study in which 4444 patients
were randomised to simvastatin (20–40mg per day) vs placebo for
a median of 5.4 years (Strandberg et al, 2004). Thus, simvastatin at
the standard doses to prevent coronary events did not have a
significant effect on the risk of haematologic cancers.

TREATMENT OF EBV-DRIVEN LYMPHOMA

EBV lymphomas occur in immunocompromised patients such as
organ or stem cell transplant recipients, patients with HIV, or
patients with congenital immunodeficiencies. These tumours
generally express each of the EBV latency proteins and the
tumours are driven by these viral proteins. Central nervous system
lymphomas account for 20% of lymphomas in AIDS patients and
express EBV LMP-1 and other latency proteins (MacMahon et al,
1991). Immunoblastic lymphomas account for about 60% of cases
of lymphoma in patients with AIDS and usually express EBV LMP-
1 and other latency proteins (Hamilton-Dutoit et al, 1993). These
tumours generally occur in AIDS patients late in the course of
disease when CD4þ T cell numbers are low.
Tumours in immunocompromised patients can occur in lymph

nodes, but frequently present at extranodal sites such as the
gastrointestinal tract, central nervous system, liver, lung, bone
marrow, or transplanted organ (Cohen, 2000). The tumours can be
polyclonal or monoclonal and usually lack chromosomal translo-

cations. Patients who lack immunity to EBV at the time of
transplant and develop primary EBV infection after transplant are
more likely to develop EBV-driven lymphomas. Transplant
recipients who receive HLA-mismatched or T-cell-depleted bone
marrow or infusions of antilymphocyte antibodies for rejection are
also at increased risk for development of lymphomas. Epstein–
Barr virus viral DNA is often elevated in peripheral blood
mononuclear cells of these patients prior to, and at the onset
of lymphoma, indicative of the EBV-driven B-cell prolifera-
tion. Patients with these tumours have impaired T-cell immu-
nity to EBV resulting in failure to regulate EBV-driven B-cell
proliferation.
Treatment for these lymphomas includes reduction in immuno-

suppression when possible. Resection of localised lesions, espe-
cially in the gastrointestinal tract has been effective in some
patients. Monoclonal anti-CD20 antibody (rituximab) results in
remissions in about 50% of patients. Interferon-a has been
effective in some patients, but may increase the risk of rejection
of the transplanted organ. Lymphomas in stem cell transplant
recipients are usually of donor origin; infusions of donor T cells
(which are HLA-matched) have been effective in many cases of
EBV lymphoma in these patients. Lymphomas in organ transplant
recipients are usually recipient in origin; infusions of autologous
or HLA-matched T cells have been effective. Radiation therapy,
especially for central nervous system lesions, and cytotoxic
chemotherapy are used for refractory cases. The latter two
therapies are frequently used for lymphomas in AIDS patients
whose immune systems are less responsive to immunologic-based
therapies.
Statins may have a role as adjunctive therapy in some patients

with EBV-driven lymphomas. These might include stem cell
transplant recipients in whom donor T cells are not available,
organ transplant recipients whose lymphomas are not responsive
to reduction of immunosuppressive therapy and in whom HLA-
matched T cells are not available. In these settings, statins might be
used in combination with other therapies (e.g. rituximab or
interferon-a) which by themselves result in remissions in about
50% of patients. Statins might be tried in AIDS patients with EBV-
driven lymphomas, especially those with very low CD4T cell
counts who tend to respond less well to chemotherapy. Statins
might also be considered for patients with EBV-positive Hodgkin’s
disease who are refractory to chemotherapy and radiation therapy.
Tumours from these patients usually express LMP-1 as well as
adhesion molecules (Sandvej et al, 1993), and statins might reduce
the viability of the tumour cells. While nasopharyngeal carcinoma
and T-cell lymphomas frequently express LMP-1, the tumours
show more variable expression of the protein and therefore might
be less susceptible to statins. Finally, Burkitt lymphomas do not
express LMP-1 and therefore would be unlikely to respond to
statins at doses that are effective for cells transformed with EBV
in vitro.

CONCLUSIONS

Identification of signalling pathways for EBV-mediated transfor-
mation has helped to identify new targets and potential treatments
for these tumours. Certain statins have been shown to inhibit the
interactions of adhesion molecules and block NF-kB activation in
EBV-transformed cells, resulting in apoptosis. Simvastatin delays
the development of EBV-lymphomas in SCID mice inoculated with
EBV-transformed B cells. The dose of statin needed to induce
apoptosis is much higher than that required for lowering serum
cholesterol, but such doses have been tolerated by patients in
clinical trials. Statins may have a role in the treatment of EBV-
driven lymphomas, most likely as part of combination therapy for
these lymphomas.
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