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The purpose of our study was to evaluate the microsatellite instability (MSI) at selected loci with known involvement in the
oncogenesis of chronic B-cell lymphocytic leukaemia (B-CLL). DNA from B cells (tumour cells) and from T cells (normal controls) of
27 samples of 26 patients with previously untreated B-CLL was extracted. Microsatellite instability in six microsatellite markers was
tested using GeneScan Analysis Software. The rate of replication errors positive phenotype (RERþ ) was determined (MSI in more
than 30% of examined loci). RERþ was found in four out of 27 paients (14.8%). A larger proportion of patients with stage C B-CLL
exhibited RERþ than those with stage A or B (Po0.05). A higher prevalence of RERþ was demonstrated in a subgroup of patients
with additional malignancies (three out of eight patients) in comparison with patients with B-CLL alone (1/19) (P¼ 0.031). In
conclusion, our study demonstrated that MSI might have a more prominent role in pathogenesis of B-CLL than reported todate. This
may result from a selection of microsatellite markers adjacent to chromosomal loci, which are involved in B-cell malignancies, and
using GeneScan Analysis Software, which is most modern and precise method of microsatellite analysis.
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Chronic B-cell lymphocytic leukaemia (B-CLL) is the most
common leukaemia in the Western world. It is characterised by
the accumulation of long-lived, functionally inactive, mature
appearing neoplastic B lymphocytes. Although several studies
demonstrated a role of trisomy 12 and structural abnormalities of
chromosome 6, 11, 13 and 14 in the pathogenesis of B-CLL, the
molecular mechanisms involved in this relatively common disease
are still poorly understood (Montserrat et al, 1997; Fundia et al,
1998; Dohner et al, 2000). Recently, a possible role of DNA
mismatch repair defects and microsatellite instability (MSI) in the
pathogenesis of CLL has been debated (Gartenhaus et al, 1996;
Pabst et al, 1996; Volpe et al, 1996; Sanz-Vaque et al, 2001).
Microsatellites are short repeat sequences dispersed throughout

the genome. They are composed of mono-, di-, tri-, or
tetranucleotide repeats. Microsatellites are highly unstable, that
is, the number of repeat units tends to change due to slippage
errors during DNA replications. These errors are supposedly
corrected by DNA repair enzymes, like errors in any different part
of the genome. Cells with alteration in DNA mismatch repair
enzymes are not able to repair correctly errors during DNA
replication, demonstrating RERþ (replication errors positive
phenotype). Being highly unstable makes microsatellites the best
markers of RERþ . In other words, while length alterations of
microsatellite sequences are usually phenotypically silent, they

reflect a general defect in the DNA repair mechanism. Comparison
of length of microsatellites of malignant cells to that of normal cells
enables to find the mutations inside the microsatellites and to
determine a malfunction of DNA mismatch repair enzymes.
Inactivation of mismatch repair genes and progressive accumula-
tion of replication errors is one of the molecular pathways of
oncogenesis.
Microsatellite instability has been found in up to 90% of

tumours of the hereditary nonpolyposis colorectal cancer because
of germ-line mutations and further damage to the second allele
within the specific mismatch repair genes hMSH1, hMLH2 and
hPMS2 (Peltomaki and Vasen, 1997; Boland et al, 1998).
Microsatellite instability is also a distinctive feature in nearly
15–20% of sporadic colorectal tumours (Peltomaki and Vasen,
1997; Boland et al, 1998; Toft and Arends, 1998; Samowitz et al,
1999; Stone et al, 2000).
Recently, a possible role of abnormalities of DNA repair and

MSI in the pathogenesis of haematological malignancies, like
Hodgkin’s disease, non-Hodgkin’s lymphoma, B-cell CLL,
Richter’s syndrome, hairy cell leukaemia, etc., has been debated
(Gartenhaus et al, 1996; Pabst et al, 1996; Randerson et al, 1996;
Tasak et al, 1996; Volpe et al, 1996; Mark et al, 1998; Rimsza et al,
2000; Sanz-Vaque et al, 2001). Most previous studies examined
genomic instability in a wide variety of genomic loci, which were
arbitrarily selected and were known to be unstable in solid
tumours. The purpose of our study was to evaluate the instability
at microsatellite markers adjacent to chromosomal loci, which are
known to be involved in development of B-cell neoplasms,
including of B-CLL, or at loci that encode DNA mismatch repair
enzymes.

Revised 24 January 2005; accepted 28 February 2005; published online 5
April 2005

*Correspondence: Dr E Niv, Department of Medicine, Meir Hospital,
Sapir Medical Center, Kfar-Saba, Israel;
E-mail: niv_em@netvision.net.il

British Journal of Cancer (2005) 92, 1517 – 1523

& 2005 Cancer Research UK All rights reserved 0007 – 0920/05 $30.00

www.bjcancer.com

M
o
le
c
u
la
r
D
ia
g
n
o
st
ic
s



MATERIALS AND METHODS

Case selection

Consecutive patients, with previously untreated B-CLL were
recruited from the Department of Hematology of Meir hospital
between April 2000 and April 2001. The study group was
composed of all newly diagnosed B-CLL patients during 2000–
2001 and of previouly untreated patients with known B-CLL, who
came to the rutine follow-up visit during this year. B-cell
lymphocytic leukaemia was diagnosed according to the standard
criteria. Demographic, laboratory, as well as clinical data, were
collected. The medical records of all the participants were checked
for additional malignancies in the past. Patients who received
chemotherapy for other malignancies were excluded. Surgical
treatment was not considered as an exclusion criteria.
The study was approved by the local research ethics committee.

All patients provided an informed consent.

DNA collection and processing

Peripheral blood samples were collected from the patients with
CLL and mononuclear cells were isolated. B cells were separated
from T cells by negative selection of B cells using magnetic beads
coated with anti-CD3 antibodies and negative selection of T cells
using anti-CD19 (Dynal AS, Oslo, Norway). To verify the purity of
these two cell populations, flow cytometric analysis was used.
The isolated B cells were considered neoplastic. Patients’ own T

cells were chosen as the normal, negative controls, similar to
previous publications (Gartenhaus et al, 1996). DNA was extracted
from B and T cells (tumour and normal cells, respectively) using
Puregene kit (Gentra Systems, Minneapolis, USA), according to the
manufacturer’s instructions.

Microsatellite marker analysis

Primer sequences at six different loci were selected from Genome
Database (Table 1). P16, MLL and Leu1 are known to be involved
in haematological tumours: (1) P16 is a tumour suppressor gene,
which encodes an inhibitor of cyclin-dependent kinase 4 (CDK4).
Binding of the product of P16 to CDK4 prevents progression
through the cell cycle. Alterations of the P16 gene, like deletions,
hypermethylation and mutations were reported in 30% of
transformed variants of non-Hodgkin’s lymphoma (NHL). (2)
11q21–23 is involved in translocations that are very common in
AML and ALL. One of the genes described in 11q23 is MLL, which

is rearranged with a variety of partners in haematological
malignancies (Takeuchi et al, 1997, ; Webb et al, 1999). Deletions
in 11q23 were also observed in B-CLL (Dohner et al, 2000). (3)
Structural abnormalities in 13q14 are very frequent in B-CLL
(Fundia et al, 1998; Dohner et al, 2000). Rb1 is located in this
region and was found to be involved in tumorigenesis. Recently,
two novel candidate tumour suppressor genes Leu1 and Leu2 were
mapped to this region.
In addition, hMLH-1, hMSH-2 and APC were chosen. hMLH-1

and hMSH-2 encode DNA mismatch repair enzymes and are
involved in both haematological and solid malignancies. The APC
gene was selected mainly as a control. Despite possible involve-
ment of APC gene in tumorigenesis of MALT lymphoma and
gastric high-grade large B-cell lymphoma (Calvert et al, 1995;
Starostik et al, 2000), this gene has no known role in the
pathogenesis of this tumour.
The microsatellites within or closely located to the above loci

were chosen (sequences are presented in Table 1). One end of each
primer was synthesised and labelled by FAM (Mycrosynth,
Balgach, Switzerland) and the opposite was synthesised by
Sigma-Genosys (Cambridgeshire, UK). Microsatellite loci in
genomic DNA were amplified by polymerase chain reaction
(PCR) using Biometra Thermocycler (Whatman, Gottingen,
Germany) in 15 ml volume. The PCR mixture consisted of 1�
PCR buffer (10mM Tris-HCL, pH 8.3, 50mM KCL, 1.5mM MgCl2),
0.2mM of each dNTP (Roche, Mannheim, Germany), 6 pmol of
each primer and 1.5 units of Taq polymerase (Sigma, MO, USA).
Both tumour and normal DNA were subjected to 36 cycles of PCR
with automated temperature cycling programme as follows:
denaturation at 941C for 30 s, annealing at 551C for all primers
except P16 (57.51C) for 30 s and elongation at 721C for 30 s.
Amplification was concluded with extension at 721C for 30min to
avoid incorrect allele cells due to tendency of Taq DNA polymerase
to add A base to 30 end of DNA. This long extension promotes A
addition to all the PCR products.
Fluorescent PCR products were subjected to electrophoresis on

denaturing polyacrylamide gel and fractionated by Automated
Fluorescent DNA Sequencer (ABI 377, PE Biosystems). The data
were processed using GeneScan Analysis Software (Perkin Elmer,
Foster City, CA, USA).
We used the common acceptable definitions of MSI and loss of

heterozygosity (LOH) (Dietmaier et al, 1997). Microsatellite
instability was defined as a change of any length due to either
insertion or deletion of repeating units, in a microsatellite within
tumour cells (B cells) compared to normal cells (T cells). This was
seen as novel peak/s in B cells DNA differing in size and location

Table 1 Microsatellite markers

Locus/marker Location Repeat Nearby located gene Primer sequence

BAT26 2p22– (A)26 hMSH2, intron 5 F-FAM TGACTACTTTTGACTTCAGCC
R-AACCATTCAACATTTTTAACCC

D3S1611 3p24.2–p22 (CA)14 hMLH1, intron 12 F-FAM CCCCAAGGCTGCACTT
R-AGCTGAGACTACAGGCATTTG

D5S346 5q22–q23 (CA)26 APC, distance 30–70 kb F-FAM ACTCACTCTAGTGATAAATCG
R-AGCAGATAAGACAGTATTACTAGTT

D9S171 9p21 (CA)14 P16 F-FAM GCTAAGTGAACCTCATCTCTGTCT
R-GAGATCCTATTTTTCTTGGGGC

D11S614 11q23 (A)13(GAA)5 MLL Intron 6 F-FAM CGCTGGTAATCCCAACACTT
R-ACCTGGGACTACACGCAACT

AFMA301WB5 13q14.3 (CA)14 Leu1 F-FAM TCAACATCACCTGTATTCAGCC
R-CGGCCTCCAAACACTAATTT

MSI in B-CLL
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from T cells DNA (Figure 1). Unlike MSI, LOH was defined as loss
of one of the pre-existing alleles in tumour cells compared to
normal tissue (Figure 2). In this situation, one cannot easily
discern whether this represents true LOH or MSI in which the
shifted allele has comigrated with the remaining wild-type allele.
These cases were defined as LOH, although scoring results in this
fashion would appear to bias the data in favour of LOH group.
RER positivity was defined as the finding of MSI in more than

30% of examined loci, as it commonly accepted (Boland et al,
1998).

Statistical analysis

Standard descriptive statistics, including means, standard devia-
tions, ranges and frequency calculations were used to characterise
the study group. For comparisons, a w2 and Student’s t-tests with
two-sided type I error of 0.05 was used to assess statistical
significance. In addition, a test for comparison of two proportions
was used. P less than 0.05 with z more than 1.65 was considered as
statistically significant.

RESULTS

A total of 26 patients with previously untreated B-CLL participated
in the study. Of them, 16 patients were newly diagnosed B-CLL
patients and the rest were previously untreated B-CLL patients

who were at follow-up in the Department of Hematology of Meir
Hospital.
Patients’ characteristics are presented in Table 2. The study

group included 10 women and 16 men with a mean age of 69.7
years (range, 45–86 years) and a mean leucocyte count of 60 456/
ml. In all, 16 patients had stage A CLL, six had stage B and five stage
C (according to Binet’s classification). Samples 4 and 27 were
collected from the same patient after progression from stage B to
C. According to their medical records, eight patients had
additional malignancies in the past (Table 2), but none received
chemo or radiotherapy for these tumours. All eight patients were
at complete remision from these tumours at the time of the study.
Table 3 presents the results of microsatellite markers’ analysis of

the study group. Four patients (Gartenhaus et al, 1996; Tasak et al,
1996; Mark et al, 1998; Duval and Hamelin, 2002a, b) were found to
be RER positive (14.8%). The mean age and the mean leucocyte
count were not significantly different from the patients without
RER positivity (P¼ 0.1).
A higher prevalence of RER positivity was demonstrated in a

subgroup of patients with additional malignancies in the past (3/8
RER positive patients) compared to patients without history of
tumours (1/19 RER positive patients) (P¼ 0.031). No correlation
was found between the prevalence of RERþ and the type of
additional malignancy. Similarly, RER positivity was more
common at stage C (40%), compared to stages A or B (12.5 and
0% respectively) (Po0.05). There was no difference in the rate of
RER positivity between stages A and B.
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Figure 1 Representative allelic profile of microsatellite instability at hMLH1 locus. (A) T cells (normal cells). Horizontal – base pairs scale, vertical –
fluorescence scale. In the normal cells, the two major peaks are 258 and 262 base pairs long representing the two alleles of this microsatellite. (B) B cells
(malignant cells). Horizontal – base pairs scale, vertical – fluorescence scale. In the malignant cells, the one of the alleles of the microsatellite is 262 base pairs
long like in the normal cells, but the second one is 252 base pairs long (which is different from the allel of 258 base pairs).
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Figure 2 Representative allelic profile of loss of heterozygosity at Leu1 locus. (A) T cells (normal cells). Horizontal – base pairs scale, vertical –
fluorescence scale. In the normal cells, the two alleles of this microsatellite are 109 and 207 base pairs long. (B) B cells (malignant cells). Horizontal – base
pairs scale, vertical – fluorescence scale. In the malignant cells the alleles of 109 disappeared and only the alleles of 207 base pairs remained.

Table 2 Clinical characteristics

Patients’ samples Age (years) Sex Leucocytes count Binet stage Additional malignancies in the past

CLL 1 71 Female 22 450 B None
CLL 2 62 Male 16 730 B None
CLL 3 63 Female 18 680 A None
CLL 4 75 Male 139 900 B None
CLL 5 74 Female 19 000 A Basal cell carcinoma of skin
CLL 6 72 Female 27 300 A None
CLL 7 54 Female 63 800 A Basal cell carcinoma of skin
CLL 8 74 Male 30 000 A Basal cell carcinoma of skin
CLL 9 69 Female 31 300 A None
CLL 10 72 Male 23 270 A None
CLL 11 79 Male 73 300 B Squamous cell papilloma
CLL 12 73 Male 46 760 B Adenocarcinoma of prostate, Tubular adenoma of colon� 3
CLL 13 74 Male 81 810 C None
CLL 14 81 Male 46 180 C Adenocarcinoma of stomach
CLL 15 68 Male 80 180 C Basal cell carcinoma of skin� 6, Squamous cell carcinoma of skin
CLL 16 59 Male 34 000 A None
CLL 17 68 Female 24 130 A None
CLL 18 74 Female 19 000 A None
CLL 19 62 Female 24 000 A None
CLL 20 79 Male 24 500 A None
CLL 21 86 Male 37 000 B Adenocarcinoma of colon
CLL 22 68 Male 12 170 A None
CLL 23 70 Male 19 000 A None
CLL 24 53 Male 61 240 A None
CLL 25 45 Female 479 000 C None
CLL 26 82 Male 20 000 A None
CLL 27 76 Male 157 600 C None
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Table 3 highlights additional interesting observations. First, the
progression of instability from stage B (sample 4) to stage C
(sample 27). Second, the marked instability of samples 14 and 15.
These patients represented the MSI-H phenotype (instability at
more than 40% of the loci examined). These patients also had a
positive association with additional malignancies.
The frequency of MSI in each microsatellite locus was evaluated.

Microsatellite instability was found at Leu1 locus in three out of
27 (11.1%) of samples, at MLL in six out of 27 (22.2%), at APC
in three out of 27 (11.1%), at MSH2 in three out 27 (11.1%), at
P16 in three out 27 (11.1%), at MLH1 in four out 27 (14.8%).
In general, the rate of MSI at the examined loci was quite
similar. Microsatellite instability in MLL locus was a little higher
than in other loci, but it had no statistical significance (P¼ 0.47).
APC locus, which is considered to be unstable mostly in solid
tumours, had a similar rate of instability to other loci in the
current study.

DISCUSSION

The present study has some unique features since we tested a
relatively big group of previously untreated CLL for MSI in specific
loci, which are involved in the pathogenesis of B-cell malignancies
or encode for DNA mismatch repair enzymes. We also applied the
GeneScan Analysis Software, which is considered the most precise
method of microsatellite’s analysis. We found RER-positivity rate
of 14.8% in B-CLL. A significantly larger proportion of patients
with stage C exhibited RER positivity than those with stages A or B.
Also higher prevalence of RER positivity was demonstrated a
group of patients with additional malignancies in the past. The
frequency of MSI at different loci was similar.
Previous studies on MSI in B-CLL reported much lower

prevalence of RER positivity. For example, Sanz-Vaque et al
(2001) found MSI-low in 3/24 (13%) cases with B-CLL and no
RERþ at all. Gartenhaus et al (1996) identified a mutator
phenotype in 7% (2/29) of the cases studied. Volpe et al (1996)

also determined very low frequency of MSI among chronic
lymphoproliferative disorders. An analysis of these studies reveals
that the MSI was examined in wide variety of genomic loci, which
were arbitrarily selected. In addition, loci tested in these studies
are known to be unstable in solid but not in haematological
malignancies.
A study of special interest is the study of Novak et al (2002),

which performed an analysis of 400 microsatellite markers for
instability in 46 patients with B-CLL. They found 41 novel allels in
22 patients (range 1–22 markers per patient). These results suggest
very low frequency of MSI in B-CLL. However, the examined loci
were selected arbitrarily; the study group included previously
treated by chemotherapy along with untreated patients. In
addition, the analysis of MSI was performed by comparison of
mononuclear with polymorphonuclear cells, which were consid-
ered as tumour and normal cells respectively, presuming that most
of mononuclear cells are B cells. Gartenhaus et al (1996)
demonstrated that B and T cells are different genetically and that
comparison of PCR products of microsatellite loci allows to
diagnose MSI. For this reason, in our study a separation of these
two kinds of cells was performed.
Only one study examined MSI at chromosomal breakpoint

cluster regions specific to haematological malignancies (Pabst
et al, 1996). In contrast to our findings, they found a low frequency
of MSI: of 36 patients with B-CLL only one had RERþ (2.8%). The
higher rate of genomic instability and RER positivity in our study
probably reflects the careful selection of a homogenous group of
previously untreated CLL patients, meticulous selection of the
tested loci and the use of very sensitive and specific modern
method of Genescan Analysis for MSI detection.
The finding of higher frequency of instability in some

microsatellite loci than in other loci is not surprising. This was
already demonstrated on the model of hereditary nonpolyposis
colorectal cancer. A list of hundreds of microsatellites was tested
and a panel of five microsatellites was chosen as those with most
common instability (Boland et al, 1998). Thus, an individual panel
of microsatellites relevant to each malignancy should be composed

Table 3 Microsatellite analysis in the study group

Patients’ samples Leu1 MLL APC MSH2 P16 MLH1

CLL 1 Stable Stable Stable Stable MSI Stable
CLL 2 Stable Stable Stable Stable Stable Stable
CLL 3 Stable Stable Stable Stable Stable Stable
CLL 4 Stable Stable Stable Stable Stable Stable
CLL 5 MSI MSI LOH Stable MSI Stable
CLL 6 Stable Stable Stable Stable Stable Stable
CLL 7 Stable Stable Stable Stable Stable Stable
CLL 8 Stable Stable Stable Stable Stable Stable
CLL 9 Stable Stable Stable Stable Stable Stable
CLL 10 Stable Stable Stable Stable Stable Stable
CLL 11 LOH Stable Stable Stable Stable Stable
CLL 12 Stable MSI Stable Stable Stable Stable
CLL 13 Stable Stable Stable Stable Stable Stable
CLL 14 MSI MSI MSI MSI Stable MSI
CLL 15 MSI MSI MSI MSI Stable MSI
CLL 16 Stable Stable Stable Stable Stable LOH
CLL 17 Stable Stable Stable Stable Stable MSI
CLL 18 Stable Stable Stable Stable Stable Stable
CLL 19 LOH MSI Stable Stable Stable Stable
CLL 20 Stable Stable Stable Stable Stable Stable
CLL 21 Stable Stable Stable MSI Stable LOH
CLL 22 Stable Stable Stable Stable Stable LOH
CLL 23 Stable Stable Stable Stable Stable LOH
CLL 24 Stable MSI Stable Stable Stable MSI
CLL 25 Stable Stable Stable Stable MSI Stable
CLL 26 Stable Stable Stable Stable Stable Stable
CLL 27 Stable Stable MSI LOH Stable LOH

Bold is used for patients’ samples with RER+/MSI in more than 30% of examined loci.
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and proximity to genomic loci, which are involved in the
pathogenesis of specific tumours, should be considered.
Our assumption about higher rate of MSI in meticulously

selected genetic loci received a strong support recently by ‘Real
Common Target genes model’ (Duval et al, 2002; Duval and
Hamelin, 2002a, b; Woerner et al, 2003). According to this model,
sets of few specific genes with high rate of mutations in different
mismatch repair-deficient human cancers were identified. So far,
this model was constructed only for colorectal, gastric and
endometrial carcinomas. In order to develop such models for
other tumours, data about MSI in different genetic loci of different
tumours must be collected.
As mentioned above, the frequency of MSI in different selected

loci in our study was quite similar. This is explained by meticulous
selection of the tested loci with high probability of instability.
However, surprisingly, the frequency of MSI in microsatellite near
APC gene, which was selected mainly as a control, was high too.
This finding may be explained by limited existing data about MSI
in this gene. APC gene itself contains no microsatellite. In most
previous studies about MSI in B-CLL, APC gene was not selected at
all or different closely located microsatellites were tested.
Another important issue is an increase of instability upon the

progression of CLL as was demonstrated by much higher rate of
RER in stage C in comparison with stages A or B and an increase of
instability in a patient upon disease progression. This finding is
supported by a recently published study of Fulop et al (2003), who
reported a high rate of MSI upon Richter’s transformation of
patients with B-CLL. It suggests that a defect in the DNA mismatch
repair mechanism and progressive accumulation of replication
errors have an important role in tumour biology of B-CLL.

Unfortunately, the number of patients with advanced stage in our
study group was small, because only previously untreated patients
were included. In addition, the study period was relatively short
for B-CLL (1 year) and only one patient progressed to the higher
stage. Thus, large long-term prospective studies are needed to
evaluate the correlation between MSI status and clinical course of
B-CLL.
Additional prominent finding in the study is a high prevalence

of RER positivity in group of patients with additional malignancies
in the past. This cannot be explained by the effect of
chemotherapy, since our patients were untreated. This phenom-
enon was also demonstrated by Ericson et al (2003) on basis of
MSI analysis in individuals with multiple primary malignancies. In
this study, MSI was identified in 63/154 (41%) tumours with a
MSI-high pattern in 59 tumours. Immunohistochemical staining
for DNA mismatch repair enzymes (MLH1 and MSH2) in the
examined tumours demonstrated a very high frequency of
expression loss. Thus, the phenomenon of development multiple
tumours during lifetime may reflect a profound defect in DNA
mismatch repair mechanism.
In summary, our study demonstrated that MSI might have a

more prominent role in the pathogenesis of B-CLL than that has
been reported. This may result from a selection of microsatellite
markers adjacent to chromosomal loci, which are involved in
B-cell malignancies. These findings support the ‘Real Common
Target genes’ theory of high MSI in specific genes that are involved
in specific tumours. Additional important observations were the
trend for more instability with the progression of B-CLL and the
high rate of RER positivity in patients with additional tumours in
the past.
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