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The growth potential of a tumour can significantly depend on host features such as age, cell proliferation rates and caloric intake.
Although this is widely known, existing mathematical models for tumour growth do not account for it. We therefore developed a
new model for tumour growth, starting from a mathematical framework that describes the host’s physiology. The resulting tumour-in-
host model allowed us to study the implications of various specific interactions between the energetics of tumour and host. The
model accounts for the influence of both age and feeding regimen of the host organism on the behaviour of a tumour. Concerning
the effects of a tumour on its host, it explains why tumour-mediated body-weight loss is often more dramatic than expected from the
energy demands of the tumour. We also show how the model can be applied to study enhanced body-weight loss in presence of
cachectic factors. Our tumour-in-host model thus appears a proper tool to unite a wide range of phenomena in tumour–host
interactions.
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Mathematical models for tumour growth have been widely used in
different subdisciplines, such as cancer risk assessment (Dewanji
et al, 1991; Sherman and Portier, 2000), cancer biology (Laird,
1964; Ward and King, 1999), cancer treatment (Thomlison and
Gray, 1955; Adam and Bellomo, 1997), and oncological decision
making (Friberg and Mattson, 1997). Since the first models for
tumour growth were published (Mayneord, 1932; Winsor, 1932;
Von Bertalanffy, 1957), they have become more detailed and,
consequently, more complex (Groebe and Mueller-Klieser, 1991;
Ward and King, 1997). Most classic and modern approaches share
at least one feature, though: both describe the increase in size of an
independent ‘entity.’ The models are therefore adequate to analyse,
for instance, data on tumour spheroids growing in vitro. Their use
to describe data on tumours growing in vivomay be less warranted
because of interactions between tumour and host. The aim of this
article is to develop a mathematical model to explore such
interactions between the growth of a tumour and the physiology of
the host organism.
We based our model on well-recognised interactions between

tumour growth, energy homeostasis, utilisation of stored energy by
tumour and host and cancer cachexia. The formulation in terms of
a mathematical model has several benefits. First, it forces us to
specify quantitative formulations about the interactions, which
improves testability of the hypotheses involved. Second, because
the model asks for an overall view of a number of processes and
their inter-relationships, it can offer insights that complement
those arising from individual experimental studies. Finally, model
simulations allow to switch on or off particular hypothetical

mechanisms easily, so that we can evaluate their impact on and
relevance for the expected outcome.
The article is organised as follows. First, we introduce the

dynamic energy budget (DEB) theory (Kooijman, 2000, 2001),
which provides quantitative expressions for fundamental physio-
logical features and processes, such as food consumption, body
growth, metabolic rate, and ageing. We then extend this theory to
account for tumour growth. Second, with the aid of computer
simulations, we show that tumour growth can significantly depend
on host physiology and vice versa. Regarding the influence of the
host on tumour behaviour, we focus on the implications for the
tumour of differences in host energetics associated with host age
and host caloric intake. Thereafter, we study the decrease in body
weight associated with the increase in size of a tumour. Finally, we
discuss several implications of the results obtained. The Appendix
contains additional information on the mathematical formulation
of the model as well as on the fitting procedures and parameter
values.

MATERIALS AND METHODS

Introduction to the DEB theory

To model the interaction between tumour and host, we need a
general framework describing the physiology of the host organism.
Such a framework is provided by the DEB theory. The theory starts
with a set of rules to characterise an individual organism, based on
fundamental mechanisms that all organisms seem to have in
common. From these rules, the theory derives quantitative
expressions for sundry physiological processes. In this article,
we explain only those aspects of the theory indispensable to*Correspondence: IMM van Leeuwen; E-mail: ingeborg@bio.vu.nl
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understand our model for tumour growth. A more complete,
though still qualitative, introduction to the theory can be found in
Kooijman (2001), while Kooijman (2000) provides an exhaustive
formulation.
Figure 1 shows the basic outline of the DEB framework.

According to this framework, the body consists of two compo-
nents, namely structural biomass and reserve compounds. The
latter pool comprises compounds characterised by a high mobility.
The reserve dynamics follows from the supply and demand of the
available resources. Structural biomass can be conceived as
volume, hence it is denoted by V(t). Both body components have,
by assumption, a constant, but not necessarily identical, chemical
composition. As the relative amount of reserves and structure can
vary, the composition of the total body can vary. For instance,
during fasting the body loses predominantly reserves, so that the
overall composition of the body changes.

The j-rule

Maintenance costs play a key role in our model. Maintenance
comprises a range of different processes, among which are protein
turnover, heating, maintenance of membrane concentration
gradients, and muscle tension levels. The costs of such processes
should be distinguished from the costs of growth, development,
and reproduction, as was already concluded in Duclaux (1898).
Since then, the importance of maintenance processes has become
widely accepted (Pirt, 1965; Payne and Waterlow, 1971; Canolty
and Koong, 1976). The DEB theory assumes that maintenance
costs per unit structural volume per time unit, [M], are constant,
which implies that total maintenance costs amount to
M(t)¼ [M]V(t) per time unit. This assumption leads to a
relationship between body size and respiration that accounts for
both growth and maintenance. This prediction is well supported
by experimental data concerning the scaling of respiration with
body size (Kooijman, 2000).
The DEB theory assumes that somatic processes (growth and

maintenance) and reproductive processes (development and
reproduction) take place in parallel. This is supported by the
observation that some species start reproduction while they are
still growing; others start reproduction well after reaching adult
size. Yet in both species, growth levels off in the same way. This

implies that the onset of reproduction cannot be the cause of the
cessation of growth.
According to the so-called k-rule, an individual spends a fixed

fraction k of the available energy on somatic processes (growth
and maintenance), whereas it spends the remainder fraction on
reproductive processes (development, maintaining the degree of
differentiation, and reproduction). The part of the k-rule
concerning growth can be written as

energy available for growth ¼ kCðtÞ �maintenance costs ð1Þ

with C(t) being the utilisation rate at time t; the utilisation rate is
the rate at which energy is mobilised from the reserves and is made
available for physiological processes (see Figure 1). All the
quantities in equation (1) are expressed per time unit. Thus,
equation (1) is an energy rate balance, rather than an energy
balance. This applies to all similar equations in our article.
To stay alive, an animal has to give maintenance priority over

growth. Increase in size consequently ceases when all energy
available for maintenance and growth is spent on maintenance
only. Maintenance thus determines the ultimate size an organism
can reach. The costs of growth are the same for each unit increase
in size. Thus, costs of growth per time unit are proportional to the
increase in structural volume: G(t)¼ [G]dV/dt, with [G] being a
constant. With the energy available for growth (equation (1)), the
organism’s size thus changes according to

dV

dt
¼ kCðtÞ � ½M�VðtÞ

½G� : ð2Þ

The DEB model provides a quantitative expression for the
utilisation rate C(t) (see Appendix A). When food availability
remains constant and food intake is proportional to a body surface
area, equation (2) reduces to the well-known Von Bertalanffy
growth equation (Von Bertalanffy, 1957). This equation fits growth
curves of a wide variety of animal species that do not change in
shape during growth (Kooijman, 1988).

Generalised j-rule

In the introduction to the k-rule above, we treated the animal’s
structure as a single variable. Since we want to describe tumour
growth within the DEB framework, we have to expand the basic
formulation. Suppose we zoom in on a cell that changes into a
tumour cell. From an energetic point of view several things may
happen. First, because tumour tissue is generally less differentiated
than other tissues, tumour growth and maintenance costs per
tumour volume may be lower, allowing tumour cells to proliferate
faster than normal cells. However, because a tumour is a part of
the body that has run out of control, a second energetic aspect may
also change: a tumour cell may consume more than its share of the
available energy, at the expense of other tissues. In other words,
tumour cells may become gluttonous, taking what they want, and
leaving the left-over available to the body proper. Thus, in our
approach to tumour growth, mutations can lead to hyperplasia by
decreasing the costs of somatic processes (maintenance or growth)
or by increasing the energy supply per cell.
To model tumour growth dynamics, we need some additional

variables and parameters. In addition to body size V, we consider
tumour size Vu. Obviously, to survive and proliferate, the tumour
has to obtain nutrients from the host. We characterise the gluttony
of the tumour by a coefficient mu. If mu¼ 1, each tumour cells
demands the same amount of energy as an average normal cell; if
mu41, then a tumour cell takes more than an average body cell.
Below, we will argue that the gluttony coefficient mu plays an
important role in determining the aggressiveness of a tumour.
The growth rate of a tumour is not only determined by the

ability of the tumour to exploit the host’s resources, but also by the
tumour’s maintenance and growth investments. We assume that

Food Gut

Reserves

Ingestion Defecation

Assimilation

DevelopmentMaintenance

Growth Reproduction

Utilization

Faeces

Figure 1 Energy fluxes in an individual organism, according to the DEB
theory. Food is conceived as material that bears energy. Part of this energy
is taken up via blood and delivered to the reserves. Energy required to
carry out the various physiological processes is obtained from these
reserves.
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the tumour appropriates a fraction ku(t) of the energy that the host
has available for somatic processes. This assumption implies that
tumours have priority for the resources over the host, which is
supported by experimental evidence (Cameron et al, 1979). The k-
rule above (equation (1)) can now be extended to account for the
energetics of the developing tumour:

energy available for tumour growth ¼

kkuðtÞCðtÞ � tumour maintenance costs;

energy available for body growth ¼

kð1� kuðtÞÞCðtÞ � bodymaintenance costs;

ð3Þ

where C is the rate of energy mobilisation from the reserves. Like
in equation (1), all quantities are expressed per time unit.
Experimental observations support that the tumour’s energy
demand increases with tumour size. This means that ku is a
function of tumour size. We assume that

kuðtÞ ¼
muVuðtÞ

VðtÞ þ muVuðtÞ
; ð4Þ

so that ku, like k, takes values between 0 and 1. Our assumption
implies that at small tumour size, the fraction of the resources
appropriated by the tumour is approximately proportional to
tumour size. As the tumour becomes larger, the fraction still
increases, but at a diminishing pace. The energy-allocation rules
above (equations (3) and (4)), together with the expressions for the
tumour’s maintenance and growth costs, completely specify the
growth of a tumour. Appendix A outlines further details on the
model equations.

RESULTS

In this section, we analyse the implications of our approach with
the aid of computer simulations. For this purpose, we first need to
have a set of values for the physiological parameters. These values
differ between species, so we had to choose a particular species. As
our target species we chose the rat, because many data relevant to
our study pertain to rodents. Moreover, since the rat is a typical
model species in cancer research, this choice may facilitate testing
of our predictions.
As explained in Van Leeuwen et al (2002), for tumour-free

laboratory rodents after weaning it is warranted to assume
constant food consumption. In our approach, this experimental
observation replaces the DEB-based assumption that food uptake
increases with body size. To obtain the required host parameter
values, we fitted the resulting model to data on male rat body
growth from a study by Hubert et al (2000). This study includes
three groups of 60 male rats exposed to ad libitum feeding, 25%
caloric restriction, and 55% caloric restriction. Figure 2 shows the
growth curves corresponding to the estimated parameter values.
Information on the fitting procedure can be found in Appendix B.
Once values for the parameters characterising the organism are

known, we are able to predict the behaviour of the utilisation rate
as a function of age. In this article, we will show that the utilisation
rate per structural volume ([C]¼C/V), rather than the utilisation
rate itself, is important for tumour growth. As can be seen from
Figure 3, caloric intake significantly affects [C] at the beginning.
After some time, however, the body adapts to low food availability
and the difference in [C] with food availability disappears. This is
in agreement with the experimental observation that differences in
energy expenditure per lean body mass disappear with long-term
caloric restriction (Ramsey et al, 2000).

Tumour growth

In addition to the choice of the rat physiological parameters
values, we also need to characterise the tumour by choosing
appropriate parameter values. Because of the lack of adequate
tumour growth data, we choose these values with an eye on host
parameter values. Basically, three parameters characterise the
tumour: its coefficient of gluttony mu, its growth costs [Gu], and its
maintenance costs [Mu]. It is the values of these parameters that
determine the ability of a tumour to outgrow host tissues. Tumour
cells, for instance, may be more successful extracting nutrients
from the blood than normal cells (i.e., mu41). Moreover, because
tumour cells have no fine-tuned morphology, it seems likely that
tumour growth costs are less than host growth costs (i.e.,
[Gu]o[G]). The same logic applies to tumour maintenance costs
(i.e., [Mu]o[M]).
To obtain the expressions above (equations (3) and (4)),

we did not make a priori assumptions on the shape of the tumour
growth curve. Our simulations show that both saturating and
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Figure 2 Growth of Sprague–Dawley male rats. From top downwards:
food available ad libitum, 25% caloric restriction, and 55% caloric restriction.
Dots represent data from Hubert et al (2000). The animals were 5 weeks
old at study initiation. We fitted the three data sets simultaneously, varying
only food supply among the diet groups. For information on the fitting
procedure and the five estimated parameter values, see Appendix.
Tumorigenesis may occur, for instance, at age ti1¼ 15 or at age ti2¼ 45
weeks. The vertical lines indicate these moments.
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Figure 3 Model simulation of the energy-expenditure rate per structural
volume, [C]¼ C/V. From top downwards: food available ad libitum, 25%
caloric restriction, and 55% caloric restriction. Tumorigenesis may occur, for
instance, at age ti1¼ 15 or at age ti2¼ 45 weeks. The vertical lines indicate
these moments.
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nonsaturating growth patterns are possible (see Figure 4). The
relevant quantities that determine the growth pattern are the
maintenance costs of tumour cells compared to that of host cells
and the coefficient of gluttony. Hence, it turns out that a tumour
can only grow if [Mu] is smaller or equal to mu[M]. Moreover, only
if [Mu]¼ mu[M] holds, it has an S-shaped growth curve. In
contrast, if [Mu]4mu[M], the tumour dies off.

Influence of host on tumour

Effect of host age on tumour growth Cancer incidence rates
clearly vary with age. Yet, the influence of host age is not restricted
to the tumorigenesis phase. Several studies indicate that tumour
growth rates also depend on host age. For example, Peer et al
(1993) found that breast cancers grow slower in old than in young
human females. Pili et al (1994) inoculated Engleberth–Holm–
Swarm (EHS) carcinoma cells into mice of different ages. They
reported that EHS tumours develop faster in young than in old
mice (Pili et al, 1994). Moreover, rapid tumour growth resumed
upon transfer of tumour tissue from old animals into young
animals. Likewise, Donin et al (1997) found a decreased
growth potential of B16 melanomas in middle-aged vs young
mice. Besides reduced growth rates, a less aggressive behaviour of
tumours has been reported in old as compared to young hosts
(Holmes, 1989).
To study the effect of host age on tumour progression with

our modelling approach, we considered two ad libitum fed
male rats of ages 15 and 45 weeks, respectively (see Figure 2).
We simulated the implantation of a tumour cell clone
(Vui¼ 0.2 cm3; 10 million cells approximately) of the same type
of tumour in both animals. The resulting tumour growth patterns
are shown in Figure 5. The behaviour of the tumours differs
significantly. As we did not incorporate in our model any
phenomena related to the ageing process per se, the predicted
age-related differences in tumour growth can be attributed to
changes in the energetic state of the host during its lifespan.
Figure 3 shows that the host energy expenditure per structural
volume diminishes with age. This results in a lower energy
availability for the tumour in old vs young host, leading to slower
tumour growth in the older hosts.

Effect of caloric restriction on tumour growth Another aspect of
tumour–host interactions is the effect of host nutrition on tumour
growth. In the context of the DEB theory, physiological processes

such as energy expenditure, body growth, and ageing depend on
food intake (Van Leeuwen et al, 2002). As we developed our model
for tumour growth within this framework, our approach naturally
accounts for food consumption. The model is thus suited to study
quantitatively, for example, the influence of host caloric intake on
the behaviour of a tumour.
Figure 6 shows the growth of a tumour in hosts exposed

to the same levels of caloric restriction that underly the
different growth curves depicted in Figure 2. The solid lines
represent the growth of the tumour in three hosts that have been
exposed to the feeding regimen for only 10 weeks; the broken lines
correspond to tumorigenesis after 40 weeks exposure. There are
thus two variables in this simulation. First, age at tumour
transplantation, and second, duration of the exposure to caloric
restriction before tumour transplantation. The effect of age
was already discussed in Figure 5. Figure 6 adds to this the
impact of the different levels of caloric restriction. Based on
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Figure 4 The shape of the tumour growth curve depends on the
relative values of the tumour and host parameters. For any curve:
[Gu]o[G]. Solid line: mu41 and [Mu]¼ mu[M]; dotted line: mu¼ 1 and
[Mu]o[M]; broken line: mu41 and [Mu]¼ [M]. Tumorigenesis at age
ti1¼ 15 weeks in an ad libitum fed host (see Figure 2). For further
information on the parameter values, see Appendix B.
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Figure 5 Tumour growth is influenced by changes in energetics during
the host’s lifespan. Solid line: growth of a tumour early in the host’s life
(transplantation at age ti1¼ 15 weeks); broken line: growth of the same
tumour later in life (transplantation at age ti2¼ 45 weeks). Tumour
parameters values: mu41, [Mu]o[M], and [Gu]o[G]. Whereas Figure 4
depicts the change in size of three slowly growing tumours, this figure
corresponds to a more aggressive tumour. The interpretation of the
vertical lines will be clarified later on. For further information on the
parameter values, see Appendix B.
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Figure 6 Food consumption affects tumour growth. Solid lines: tumour
implantation after a short exposure to caloric restriction (ti1¼ 15 weeks);
dotted lines: implantation of the same tumours after long time exposure to
the same levels of caloric restriction (ti2¼ 45 weeks). Same tumours as in
Figure 5. For each set of three curves, from left to right, food available ad
libitum, 25% caloric restriction, and 55% caloric restriction.
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differences in the disparity of the three curves for each age of
transplantation, we conclude that short-term caloric restriction has
far greater influence on tumour development than long-term
caloric restriction.
As explained above, in our model the growth capacity

of a tumour depends on the host’s rate of energy expenditure
per structural volume, [C]. Figure 3 shows that food restriction
results in a diminished [C]. We therefore predict that a tumour
grows slower in calorically restricted animals than in ad libitum
fed ones. However, as can also be seen from Figure 3, the body
adapts to low food availability and the differences in [C] become
smaller after exposure to long-term caloric restriction. Conse-
quently, the effect of caloric restriction on tumour growth fades
away during long-term caloric restriction. For this reason,
the broken lines in Figure 6 are closer to each other than the
solid lines.

Influence of tumour on host

Effect of tumour growth on body weight We now pay attention to
the implications of tumour growth for host physiology. As the
tumour exploits the resources of the host organism, the latter
disposes of less energy to carry out normal physiological
processes. As maintenance always has priority over growth, the
energy spending-cut initially results in a decrease of the host
growth rate. If it decreases to zero and tumour size still increases,
the host has two ways to survive while satisfying the tumour’s
energy demand: (a) reduce its own maintenance investment and
(b) degrade structural biomass. The former entails that not all
required maintenance processes are carried out, which may lead to
serious physiological problems and predispose for disease. The
latter results in loss of, for instance, skeletal muscle, which may
ultimately lead to death.
Although the generalised k-rule (equations (3)) allows for body-

weight loss, there are two reasons why it would be inappropriate to
use these equations to describe tissue degradation. First, if these
equations were used, all energy originally invested in ‘building’ a
unit biomass would be regained, which is thermodynamically
impossible. Second, equations (3) imply that the host reutilises all
energy released from tissue degradation to pay its own main-
tenance costs. This contradicts accepted knowledge, indicating that
both host and tumour benefit from the released resources. We
therefore have to account explicitly for tumour-mediated body-
weight loss.
The generalised k-rule (equation (3)) can easily be extended to

account for the loss of body weight often observed in tumour-
bearing organisms. Above we argued that a tumour has priority

over the available resources. This implies that it also demands a
fraction ku of the energy obtained from the loss of structural
biomass. The host reutilises the remainder to pay its own
maintenance costs. When no energy is available for body growth,
equations (3) can be written as

energy available for tumour growth ¼

kuðkC þ SÞ � tumour maintenance costs;

0 ¼ ð1� kuÞðkC þ SÞ � bodymaintenance costs;

ð5Þ

where S represents the rate at which energy is regained from the
degradation of structural biomass. We assume that
S(t)¼�o[G]dV/dt, which means that the amount of energy that
becomes available per time unit is proportional to the tissue
degradation rate (notice that, because the host loses structural
volume, dV/dt is negative and, consequently, S is positive). The
parameter o is an efficiency coefficient. The thermodynamic upper
limit o¼ 1 means 100% efficiency, which, however, can never be
achieved. In the realistic case that oo1, part of the degraded
structural biomass is actually wasted. Figure 7 shows the predicted
body-weight loss associated with the growth of the tumours
depicted in Figure 5. According to our model, tumour-mediated
decrease in body weight involves a depletion in both structure and
reserve materials. This is in agreement with the observation that
most cancer patients suffer a progressive decrease in both adipose
tissue and skeletal muscle.
Cancer patients with the same tumour type can significantly vary

in the extent to which they suffer from body-weight loss. Such
variations also occur in the context of our model. For instance,
Figures 5 and 7 show the development of the same tumour in two
hosts that differ in age and, consequently, also in size and energetic
state. The time at which the loss of structural biomass begins, ts, is
indicated with a vertical line. Notice that total body weight (Figure 7,
right panel) begins to decrease before ts, which is due to an earlier
depletion of reserve materials. As can be seen from Figure 5, in the
young host, loss of structural biomass initiates when the tumour
reaches a size of 28.7 cm3. In contrast, in the older host, it starts
when the tumour has a size of only 8.4 cm3. The time delay between
tumour implantation and manifestation of structural-biomass loss
also varies with host age. Indeed, in the young it concerns a delay of
4.2 weeks, whereas in the older host it concerns a delay of 5.1 weeks.
We conclude that body-weight loss is determined by both host and
tumour, rather than by the tumour alone.
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Figure 7 Tumour growth affects host body weight. The results concern the same computer-simulation study as Figure 5. Left: tumour size as a fraction (in
%) of its volume 3 days after tumour implantation. Right: body weight as a fraction (in %) of the host’s body weight 3 days after tumour implantation. The
vertical lines indicate when tumour-mediated loss of structural biomass starts. The earlier decrease in total body weight (see right panel) is due to a depletion
of reserve materials. Tumour transplantation took place at age ti¼ 15 weeks (solid lines) and ti¼ 45 weeks (broken lines) in ad libitum fed hosts.
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Cachexia

The loss of body weight shown in Figure 7 is due to interactions
between the energetics of tumour and host. A tumour may enhance
body-weight loss by producing (or inducing the production of)
factors that interact with the host. This may lead to the syndrome
known as cancer cachexia, which is a common cause of morbidity
and mortality in cancer patients. Among the proposed cachectic
factors are several cytokines (Matthys and Billiau, 1997), a lipid-
mobilising factor (Tisdale, 2000), and a proteolysis-inducing factor
(Tisdale, 2001). The degradation of structural biomass induced by
such factors can be incorporated into the generalised k-rule as
follows:

energy for tumour growth ¼ kuðkC þ ScÞ

� tumour maintenance costs;

energy for body growth ¼ ð1� kuÞðkC þ ScÞ�

bodymaintenance costs� Sc
o
;

ð6Þ

where Sc represents the energy obtained from the cachexia-related
degradation of structural biomass. The coefficient o is again the
efficiency of energy regain. In the second equation, the term Sc/o
stands for the actual costs of the shrinking process for the host. For
simplicity, we assume that the cachectic degradation of host tissues
occurs at a rate proportional to tumour size: suVu, where su
indicates the cachectic potency of a tumour (i.e., unit structure
degraded per unit tumour volume per unit time). If su40, the
cachexia-mediated degradation of structural biomass results in an
energy release rate of Sc¼o[G]suVu. In contrast, if su¼ 0 the
tumour lacks any cachectic potency and the expressions above
reduce to equations (3). Owing to the energy demand of the
tumour and to the cachexia-mediated degradation of structural
biomass, the host’s energy balance will soon become negative. The
host then has to degrade additional structural biomass to continue
satisfying both the tumour’s energy demand and its own

maintenance requirements:

energy for tumour growth ¼

kuðkC þ Sc þ SÞ � tumour maintenance costs;

0 ¼ ð1� kuÞðkC þ Sc þ SÞ

� bodymaintenance costs� Sc
o
:

ð7Þ

Figure 8 shows the implications of cachexia for both host
and tumour. The tumour type represented here has higher growth
costs than the tumour type displayed in Figure 5. This explains the
lower initial tumour growth rate in Figure 8-I. Nevertheless, the
tumour is eventually more aggressive due to its capacity to cause
cachexia. Indeed, the host starts to lose structural biomass 3.2
weeks after tumour transplantation. Moreover, a critical 30%
body-weight loss is reached just 1 week later (see Figure 8-II).
Figure 8-II also shows that, although we did not incorporate
anorexia into the model, we predict a decrease in food consump-
tion related to cachexia. Indeed, food intake diminishes progres-
sively to match the lowered body weight. Figures 8-III and -IV
reveal that an increased energy expenditure per structural biomass
occurs despite the reduced food consumption. An elevated resting
energy expenditure has been frequently observed in relation to
cancer cachexia (Toomey et al, 1995; Emery, 1999; Bosaeus et al,
2002).
Above we argued that body-weight loss depends on the host

physiological parameters (e.g., Figure 7). The same dependence
holds for tumours with a cachectic potential. The time delay
between tumorigenesis and disease onset, for example, may
significantly vary among hosts. Consequently, the moment of
disease onset nor the extent of the disease can be deduced from
tumour size.

DISCUSSION

The main difference between our approach and previous model-
ling approaches to tumour growth is that a tumour is conceived as
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Figure 8 Implications of cachexia-mediated body-weight loss for tumour and host. (I) Tumour volume as a function of tumour age; (II) body weight as a
fraction (in %) of body weight 2 days after tumour transplantation; (III) predicted energy expenditure per structural biomass; and (IV) food consumption as a
fraction (in %) of the ingestion rate 2 days after tumour implantation. The vertical lines indicate the moment at which tumour-mediated loss of structural
biomass starts. Tumour transplantation took place at age ti¼ 15 weeks. Tumour parameters: [Mu]o[M], [Gu]o[G], mu41, and su40.
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a body part of the host rather than as an independent entity with
an intrinsic maximum size. Our approach has the advantage that it
can be used not only to describe tumour growth, but also to
explore the relevance of interactions between tumour and host. We
exemplified this by studying the influence of several host features
on tumour behaviour and vice versa.
Another difference between our approach and others is

that it does not assume a priori the existence of an asymptotic
maximum tumour size. In contrast, for the widely applied
Gompertz model (Winsor, 1932; Laird, 1964), maximum tumour
size constitutes a model parameter and the associated S-shaped
saturating growth pattern is an intrinsic property of the tumour.
But not all tumours show saturating growth. The absence of a
plateau in certain tumour growth data has been attributed to the
early death of the host (Friberg and Mattson, 1997). That is, the
host dies before tumour growth saturates. We doubt whether this
is a solid explanation for any fast-growing tumour that does not
deviate from an exponential growth pattern. But whether or not
our doubt is justified, there is good reason not to assume a priori
the existence of a maximum tumour size. Such an assumption
hinders the possibility to predict under what physiological
conditions a saturating tumour growth can be expected, and how
the maximum tumour size depends on host and tumour
characteristics.
We analysed the relation between shape of the tumour growth

curve and the parameters of the host. Existence of a maximum
tumour size is only expected for tumours whose maintenance costs
and capacity to extract nutrients from blood satisfy the condition
[Mu]¼ mu[M]. As this condition concerns tumour and host
parameters, the shape of the tumour growth curve is determined
by the energetic characteristics of both tumour and host.
Various factors known to affect tumour growth are not

accounted for by our model, for example, diffusion-limited
nutrient availability, immune response or the presence of growth
inhibitors. The main reason for this is that when multiple
determinants of tumour growth are incorporated at once, it is
very difficult to pinpoint the impact of any determinant in
particular. Our approach allowed us, for instance, to show that
tumour–host interactions in energy dynamics may already cause
tumour growth to saturate. This implies that diffusion-limited
nutrient availability may be sufficient (e.g., Afenya and Calderón,
2000), but not essential to explain an S-shaped growth pattern. If
we had included reaction-diffusion of nutrients from the outset, it
would have been well-nigh impossible to arrive at this conclusion.
To describe accurately the growth of particular tumours, however,
it may be important to take specific features into account. An
advantage of our model is that it can easily be extended to do so.
In Appendix C, we exemplify this by showing how our model can
be used to describe the growth of solid tumour with a necrotic
kernel.
There is general agreement about the main causes of age-

dependency of cancer incidence. However, this does not hold for
the mechanisms underlying age-dependent tumour progression.
Among the mechanisms proposed to explain the latter phenom-
enon are changes in angiogenic capacity (Pili et al, 1994), altered
apoptotic cell death (Itzhaki et al, 2000), and immune senescence
(Prehn, 1972; Tsuda et al, 1987). As results from various
experiments provide evidence for different hypotheses, we
preliminarily conclude that several aspects of the natural ageing
process may affect tumour progression. On the basis of our model
predictions, we hypothesise that the age-dependent energetic state
of the host also plays an important role in determining tumour
behaviour. Indeed, we argued that age-related differences in
tumour growth are due to an age-associated decrease in energy
expenditure per structural biomass.
We carried out a theoretical caloric restriction study to

investigate the dependence of food consumption on a tumour’s
growth capacity. Model simulations suggested a strong depen-

dence if tumorigenesis occurs after short-term caloric restriction.
In contrast, a weak dependence of tumour growth on caloric intake
is expected if tumorigenesis takes place after long-term exposure
to caloric restriction. The dependence of tumour growth on food
consumption can be understood on the basis of changes in the host
energy expenditure.
With regard to the influence of a tumour on host physiology,

we focused on tumour-mediated body-weight loss. Computer
simulations revealed that body-weight loss cannot be unequi-
vocally linked to the increase in tumour size. The main reason
is that the severity of body-weight loss is determined by
the energetics of both host and tumour, rather than by the
tumour alone. Moreover, part of the energy released is actually
wasted. These model outcomes may well explain the observation
by Plata-Salamán (2000) that body-weight loss is often more
dramatic than one would expect on the basis of the measured
tumour growth.
To illustrate the clinical utility of our model, we applied it to

understand the energetics behind cancer cachexia. From an
energetic point of view, cachexia involves several metabolic
alterations, among which are an increase in energy expenditure,
a decrease in both structural biomass and reserves, and a reduced
food consumption. As a result, the host is maintained in a negative
energy balance. In the context of our modelling approach,
diminished food consumption is a consequence rather than a
cause of body-weight loss in cachexia. Yet, in response to the
decreased food intake, an acceleration of body-weight loss occurs.
From the obtained model predictions, we conclude that the extent
of the disease as well as the time delay between tumorigenesis and
disease onset strongly depend on the physiological features of the
host.
A promising line of research would be to extend the model to

include clinical interventions intended to reverse body-weight loss
in tumour-bearing patients, such as food intake manipulations and
parenteral nutritional support. Food intake manipulations can be
incorporated, for instance, as an increase in the assimilation rate.
Popp et al (1983) said that ‘the goal of nutritional therapy in the
tumour-bearing host is support of the host carcass in the absence
of increased tumour growth.’ Different food intake manipulations
can be analysed with aid of our model, to figure out which
manipulation may achieve that goal.
Several authors discussed the possible benefits of a low-fat

dietary intervention in cancer patients (Rose et al, 1991; Mukherjee
et al, 2002). As both tumour and host may grow slower or even
shrink as a response to the decreased caloric intake, the main issue
is whether the tumour or the host suffers more from the effects of
caloric restriction. As our model accounts for food consumption, it
can be used to examine the implications of such a dietary
intervention.
Lazo (1985) argued that ‘the tumour cell population has

to be viewed within the cell community that constitutes the
organism.’ In line with this insight, we formulated our mathema-
tical model within a framework describing the host. We applied the
new model to explore several interactions between host and
tumour, and were able to capture a number of empirically
observed events. Moreover, for some of them we were able to
provide an explanation based on energetic features of both tumour
and host.
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Appendix A

Model equations

Tumour-free individual We assume that the assimilation effi-
ciency is independent of the food ingestion rate (Kooijman, 2000). If
an animal receives a fixed fraction R of ad libitum food
consumption, its assimilation rate is then given by: A¼ RAm, where
Am denotes the maximum (diet-composition specific) assimilation
rate and R is the so-called food-supply coefficient. We define the
surface-specific maximum assimilation rate as: {Am}¼AmV1N

�2/3,
with V1N being the ad libitum asymptotic maximum structural
volume. The assimilation rate can thus be written as: A¼ R{Am}V1N

2/3

According to the DEB theory, the utilisation rate is given by

where E denotes the amount of reserves and v¼ {Am}/[Em] is the
energy conductance, with [Em] being the maximum reserve
density. The change in the amount of reserves is then given by
the difference between assimilation and utilisation (see Figure 1),
that is: dE/dt¼A�C. Substitution of the expressions for C into this
equation leads to

de

dt
¼ v

V1=3

V
2=3
11

V2=3
� e

 !
ðA:2Þ

with e being the scaled energy density, e¼E/[Em]V. At the
beginning of the study, the host’s age is t0 weeks and its initial
reserve density is e(t0)¼ e0.

C ¼ E

V
vV

2
3 � dV

dt

� �
; ðA:1Þ
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In the context of the DEB model (Figure 1), the body has two
components. Total body weight is therefore a function of both
structure and reserves: W¼ dV(1þ xe)V, where dV is the density of
structural biomass and x is a dimensionless compound parameter
(Van Leeuwen et al, 2002). As explained in the body of the article,
the change in structural volume is given by equation (2), which can
be written as

dV

dt
¼ 1

g½Em�
CðtÞ �mVðtÞ; ðA:3Þ

where g¼ [G]/k[Em] is the energy-investment ratio and m¼ [M]/
[G] is the the maintenance-rate coefficient. Substitution of the
expression for C (equation (A.1)) gives

dV

dt
¼ veV2=3 � gmV

g þ e
: ðA:4Þ

From equations (A.2) and (A.4), it can be shown that V(t)
tends to an asymptotic maximum value, VRN, which
satisfies VRN¼ RV1N¼ R(v/Rm)3¼ R(k{Am}/[M])3. Consequently,
A¼ R1/3{Am}VRN

2/3 and the scaled reserve density can be expressed
as

de

dt
¼ v

V
1
3

R
1
3

V2=3
R1

V2=3
� e

 !
: ðA:5Þ

In sum, the change in size of a tumour-free organism is
characterised by equations (A.4) and (A.5), with initial conditions
V(t0)¼V0 and e(t0)¼ e0.

Tumour-bearing individual If tumorigenesis (or tumour implan-
tation) happens at time ti, let Vui denote the initial tumour size. At
ti, the host’s structural body volume is Vi¼V(ti) and its reserve
density e(ti)¼ ei. As the tumour appropriates reserves originally
destined to be spent on physiological processes such as body
growth, the host is no longer able to reach its maximum size. To
account for this, we generalised the expressions for the scaled
reserve density (equation (A.5)) and the assimilation rate:

de

dt
¼ v

VðtÞ1=3
R1=3

VR1ðtÞ2=3

VðtÞ2=3
� eðtÞ

 !
; ðA:6Þ

AðtÞ ¼ R1=3fAmgVR1ðtÞ2=3; ðA:7Þ

where VRNðtÞ is defined as the ‘expected’ ultimate structural
biomass predicted at time t. We assume that VRN is a function of
tumour volume:

VR1ðtÞ ¼ VðtÞ
VuðtÞ þ VðtÞV11:

For a tumour-free animal in the diet group R, the function VRN
is constant and equal to VRN.
For both tumour and host, we assume that growth costs are

proportional to the increase in structural volume, whereas the
maintenance costs are proportional to structural volume. Conse-
quently, the generalised k-rule (equations (3)) can be written as

dV

dt
¼ 1� kuðtÞ

g½Em�
CðtÞ �mVðtÞ; ðA:8Þ

dVu

dt
¼ kuðtÞ

gu½Em�
CðtÞ �muVuðtÞ; ðA:9Þ

where gu¼ [Gu]/k[Em] and mu¼ [Mu]/[Gu]. The expression for ku
is given in equation (4). In the absence of a tumour, equation (A.8)
reduces to equation (A.3). Substitution of the expression for the

utilisation rate (equation (A.1)) into the equations above leads to

dV

dt
¼ ð1� kuÞveV2=3 � gmV

g þ ð1� kuÞe
; ðA:10Þ

dVu

dt
¼ ðvV2=3 þmVÞgkue

ggu þ ð1� kuÞgue
�muVu: ðA:11Þ

These equations, together with equation (A.6) and the initial
conditions V(ti)¼Vi, Vu(ti)¼Vui, and e(ti)¼ ei, specify the change
in size of both host and tumour. If the condition mugu¼ mumg
holds, the tumour grows according to an S-shaped pattern.
Moreover, this condition marks the bifurcation between tumours
growing (muguomumg) or dying off (mugu4mumg).
As explained in the body of the article, equations (A.10) and

(A.11) are reliable thermodynamically as long as dV/dtX0. Let ts
denote the time (age) at which increase in structure ceases. We
define Vs¼V(ts), Vus¼Vu(ts), and es¼ e(ts). For tXts the following
equations, together with equation (A.6), describe the loss of
structural body mass and the increase in tumour size:

dV

dt
¼ ð1� kuÞveV2=3 � gmV

ðog þ eÞð1� kuÞ
; ðA:12Þ

dVu

dt
¼ gmkuV

guð1� kuÞ
�muVu; ðA:13Þ

with initial conditions V(ts)¼Vs, Vu(ts)¼Vus and e(ts)¼ es.
Equations (A.12) and (A.13) result from the substitution of the
expression for C (equation (A.1)) and S¼�o[G]dV/dt into
equations (5). Notice that if the condition mugu¼ mumg holds,
we have dVu/dt¼ 0.

Cachexia equations Substitution of the expression for C (equa-
tion (A.1)) and Sc¼o[G]suVu, into equations (6) gives:

dV

dt
¼ ð1� kuÞðveV2=3 þ suoVuÞ � gmV � gsuVu

g þ ð1þ kuÞe
; ðA:14Þ

dVu

dt
¼ ðvV2=3 þmVÞgkueþ ðog þ eÞkugsuVu

ggu þ ð1� kuÞgue
�muVu: ðA:15Þ

These equations, together with equation (A.6) and initial condi-
tions V(ti)¼Vi, Vu(ti)¼Vui, and e(ti)¼ ei, specify the change in
the body size and in tumour volume. If su¼ 0, equations (A.14)
and (A.15) reduce to equations (A.10) and (A.11), respectively. Let
ts denote the time (age) at which equation (A.14) satisfies (dV/
dt)ts¼ 0. For tXts, the following equations apply:

dV

dt
¼ ð1� kuÞðveV2=3 þ suoVuÞ � gmV � gsuVu

ðog þ eÞð1� kuÞ
; ðA:16Þ

dVu

dt
¼ gkuðmV þ suVuÞ

guð1� kuÞ
�muVu: ðA:17Þ

The initial conditions at ts are determined by equations (A.6),
(A.14) and (A.15). Equations (A.16) and (A.17) result from the
substitution of the expression for C (equation (A.1), S¼o[G]dV/dt
and Sc¼o[G]suVu into equations (7). If su¼ 0, equations (A.16)
and (A.17) reduce to equations (A.12) and (A.13), respectively.

Appendix B

Parameter values

Hubert et al (2000) consider three different feeding regimes, ad
libitum (R¼ 1), 25% caloric restriction (R¼ 0.75), and 55% caloric
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restriction (R¼ 0.45). The animals were 35 days (5 weeks) old at
study initiation. As the rats were split into three groups at the
beginning of the study, the values of W0¼W(t0) and e0¼ e(t0) can
be assumed to be the same for any diet group. Moreover, because
all animals received ad libitum feeding until the beginning of the
caloric-restriction study, the assumption e0¼ 1 holds. In addition,
we fixed dV on a value of 1 g cm�3. During the least-square fitting
procedure, we only varied the value of the food-supply coefficient
among the different diet groups. The estimated parameter values
are: ḡ¼ 7.1, �WW0 ¼ 142:84 g, x¼ 0.94, V̄1N¼ 436.93 cm3 and
v̄¼ 2.22 cm�1week. Consequently: m̄¼ v̄/ḡ (V̄1N)�1/3¼ 0.041
week�1. The body growth curves corresponding to the estimated
parameter values are shown in Figure 2.
For any displayed tumour: Vui¼ 0.2 cm3. All computer simula-

tions involved a ‘switch’ of equations at time ts, with ts the time
(age) at which loss of structural biomass begins, that is, (dV/
dt)ts¼ 0.
Figure 4 (shape of the tumour growth curve): For any tumour:

o¼ 0.75 and su¼ 0week�1.
Solid line: mu¼ 4, gu¼ 3.5, and mu¼ mumg/guE0.33week�1.
Broken line: mu¼ 2, gu¼ 2.1, and mu¼ 0.14 week�1.
Dotted line: mu¼ 1, gu¼ 2.1, and mu¼ 0.027 week�1.
Figure 5 (influence of host age on tumour growth): mu¼ 9,

gu¼ 5.1, mu¼ 10�3 week�1, o¼ 0.5, and su¼ 0week�1.
Figure 6 (effect of caloric restriction on tumour growth): mu¼ 3,

gu¼ g, mu¼m, o¼ 0.75, and su¼ 0week�1.
Figure 7 (tumour-mediated body-weight loss): mu¼ 9, gu¼ 5.1,

mu¼ 10�3 week�1, o¼ 0.5, and su¼ 0week�1 (same values as in
Figure 5).
Figure 8 (implications of cachexia-mediated body-weight loss

for tumour and host): mu¼ 9, gu¼ 6.1, mu¼ 0.01week�1, o¼ 0.5,
and su¼ 1week�1.

Appendix C

Model extension

An important advantage of our modelling approach is that it can
be easily extended to account for specific features of a particular
tumour. To exemplify this, we show how it can be used to describe
the growth of a tumour with a dead kernel. For simplicity, we
assume that the the whole tumour is spherical in shape. When the
tumour reaches a critical size, defined by a radius dm, the tumour

starts to develop a dead kernel. In mathematical terms, this implies
that an additional cause of tumour-cell death has to be added to
our model.
Let us denote as dVu/dt¼X(Vu) our expression for the change

in tumour volume (equations (A.11), (A.13), (A.15), or (A.17)).
The growth of the viable cell population in the tumour developing
a dead kernel is then as follows:

dVu

dt
¼ XðVuÞ � YðVuÞ; ðC:1Þ

where Y represents the death of tumour cells due to insufficient
nutrient availability within the tumour. We assume that the
volume of cells starved to death give rise to an equal volume of
dead biomass. As the necrotic core can only increase by death of
cells in the living layer (Mayneord, 1932), we then have that
Y¼ dVw/dt, with Vw the volume of dead biomass. Substitution of
this expression for Y in equation (C.1), leads to

dVu

dt
þ dV

dt
¼ XðVuÞ;

As the total volume of the tumour satisfies VT¼VuþVw, the
expression above is equivalent to dVT/dt¼X(Vu). As the whole
tumour is spherical in shape: VT ¼ 4

3pL
3
T , with LT being the radius

of the tumour. From derivating this expression, we obtain

dLT
dt

¼ XðVuÞ
4pL2T

: ðC:2Þ

To describe exhaustively the growth of the whole tumour, we now
have to fill in the expression for Vu in the equation above. If we
assume that the thickness of the living layer remains constant
during tumour growth, the radius of the dead kernel is given by
Lw¼ LT�dm, and

Vu ¼ 4p dmL2T � LTd2m þ d3m
3

� �
ðC:3Þ

because Vu¼VT�Vw and Vy ¼ 4
3pL

3
y. Equation (C.3) together with

equation (C.2) describes the change in the radius of a tumour with
a necrotic core. In the particular case that the living biomass grows
exponentially (i.e., X(Vu)¼ zuVu), these equations reduce to the
tumour growth equation proposed by Mayneord (1932).
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