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Platinum-based chemotherapy is the main treatment element to achieve cure for patients with metastatic germ cell tumours. Drug
resistance in testicular germ cell tumours (TGCTs) is rare and the reasons are not fully understood. While recent investigations have
indicated decreased efficacy of chemotherapy in several tumour types under hypoxic conditions, this aspect has not been investigated
in TGCTs so far. Furthermore, for cisplatin – the most active drug in this disease – controversial effects of hypoxia on cytotoxic
efficacy have been reported. The relative efficacy of cytotoxic agents for the treatment of TGCT patients was studied in three
different cell lines derived from human embryonal carcinomas (EC) in an in vitro hypoxia model. NT2, 2102 EP, and NCCIT were
tested for their sensitivity towards cisplatin, etoposide, bleomycin, 4-OOH-ifosfamide, carboplatin, paclitaxel, gemcitabine, oxaliplatin,
irinotecan, and mitomycin C under normoxic and hypoxic conditions using the MTT assay. Inhibitory concentrations IC50 of the
tested agents under both conditions were compared. Selected results were confirmed by flow-cytometric assessment of the
apoptotic index. In all cells, doubling times were prolonged in hypoxia (NT2oNCCITo2102 EP). All drugs were less effective under
hypoxic conditions, including mitomycin C (eg, 1.6-fold increase of IC50 in hypoxia compared to normoxia for NT2) and cisplatin (eg,
NT2: two-fold increase). The relative effect of hypoxia on the IC50 depended mainly on the cell line, and to a lesser extent on the
drug. The results indicate that the reduced cell proliferation in hypoxia might be an important factor, but not the only determinant of
a reduced cytotoxicity. In view of the broad spectrum of drugs with different modes of action tested, the relative resistance cannot be
mediated by substance-specific resistance mechanisms like hypoxia-induced upregulation of P-glycoprotein or increased DNA-repair
capacity, since many unrelated drugs were affected to a comparable extent in their efficacy by hypoxia. This study also provides the
rationale to test the hypothesis whether improving tumour oxygenation by raising haemoglobin concentrations, for example, with
erythropoietin in patients with TGCTs receiving chemotherapy may improve the outcome.
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Testicular germ cell tumours (TGCTs) are highly sensitive to
cisplatin-based combination chemotherapy, and most patients
with this disease can be cured today. Nevertheless, 10–15% of
patients with metastatic disease will not achieve a disease-free
survival with currently available treatment strategies, and finally
die of their disease. The reasons for intrinsic or subsequently
developed treatment resistance in these patients have not yet been
fully explored (Mayer et al, 2003). A reduced intratumoral oxygen
tension (hypoxia) has been reported in a variety of malignant
tumours (Vaupel and Hoeckel, 1998; Semenza, 2000), and may
limit the effectiveness of cytotoxic drugs. A positive correlation
between the intracellular oxygen tension (pO2) and the efficacy of a
radiotherapy has been described as early as 1931 (Mottram, 1931).
These experimental data are endorsed by more recent clinical
findings in patients with cancer of the uterine cervix, and head and

neck tumours undergoing radiotherapy (Hoeckel et al, 1996;
Nordsmark et al, 1996). The intratumoral oxygen tension depends
at least partly on the haemoglobin level of the blood (Vaupel and
Hoeckel, 1998; Becker et al, 2000).
Under hypoxic conditions, proteins like the vascular endothelial

growth factor (VEGF) and the hypoxia-inducible factor 1 alpha
(HIF-1a are upregulated in cancer cells (Zhong et al, 1999; Kondo
et al, 2000; Cooke et al, 2001; López-Barneo et al, 2001). Induction
of antiapoptotic proteins like Bcl-2 or of the multidrug resistance
gene (MDR1) product P-glycoprotein is associated with HIF-1a
overexpression, and may lead to resistance against chemother-
apeutic agents (Goldstein, 1996; Zhong et al, 1999; Kinoshita et al,
2001; Comerford et al, 2002). The loss of apoptotic mechanisms
(deprivation of p53) and loss of DNA mismatch repair (MMR) in
hypoxia render cells both hypersensitive to acquire microsatellite
instability and to the development of drug resistance (Lin et al,
2000, 2001; Kondo et al, 2001).
Most cytotoxic agents show a positive relation between oxygen

tension and efficacy in cell culture. For mitomycin C, higher
efficacy in hypoxia has been reported (Kennedy et al, 1983; Luk
et al, 1990; Yamagata et al, 1992; Sanna and Rofstad, 1994). For
cisplatin, the most active drug for TGCTs, the results reported are
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contradictory, but seem to indicate an enhanced drug activity
under hypoxic conditions in various models (Liang, 1996; Skov
et al, 1998; Kovacs et al, 1999). Other cytotoxic drugs with
described clinical activity in refractory germ cell tumours, such as
paclitaxel, gemcitabine and oxaliplatin, have not yet been tested for
their activity under hypoxia in vitro. In addition, both the choice of
the specific chemotherapeutic agent as well as the tumour type
may influence the relative impact of hypoxia in the treatment
setting.
Erythropoietin (epoietin) offers the chance to effectively

ameliorate anaemia in cancer patients receiving chemotherapy
(Cella et al, 2003). Next to a proven benefit regarding quality of
life, epoietin might potentially affect the efficacy of the anticancer
treatment used by raising the pO2 in tumour tissues. In order to
provide the preclinical rationale for a clinical study with
chemotherapy and epoietin in patients suffering from GCTs, we
have investigated the in vitro efficiency of cytotoxic agents with
different modes of action such as alkylating agents (eg, ifosfa-
mide), platin derivatives, antibiotics (mitomycin C, bleomycin),
gemcitabine, topoisomerase I (irinotecan) and II (etoposide)
inhibitors, and the taxane derivative paclitaxel under normoxic
and hypoxic conditions in established TGCT cell lines. Further-
more, the model system chosen here is used to discuss the relative
efficacy of different cytotoxic agents in relation to the most
effective drug cisplatin.

MATERIALS AND METHODS

Anticancer drugs

The drugs used were: cisplatin (CDDP; Bristol-Myers Squibb,
München, Germany), oxaliplatin (Sanofi-Synthelabo GmbH, Ber-
lin, Germany), carboplatin (Bristol-Myers Squibb), gemcitabine
(Lilly Deutschland, Bad Homburg, Germany), etopophos (etopo-
side phosphate, VP-16; Bristol-Myers Squibb), bleomycin (Mack,
Illertissen, Germany), mitomycin C (medac, Wedel, Germany),
irinotecan (Aventis Pharma, Frankfurt/M., Germany), and 4-
hydroperoxyifosfamide (4-OOH-ifosfamide; Asta Medica, Frank-
furt/M., Germany). These agents were dissolved in distilled water.
The semisynthetic agent paclitaxel (Sigma, Deisenhofen, Germany)
from Taxus baccata was dissolved in DMSO (Sigma) and used
without exceeding a final concentration of DMSO 0.1% (v/v),
which by itself is not a toxic concentration for the cell lines
studied.

TGCT cell lines and culture conditions

Three established TGCT cell lines derived from human embryonal
carcinomas were tested for their sensitivity towards different
chemotherapeutic agents. The TGCT cell line NTera-2 (NT2/D1, a
cell line known to be able to differentiate into neurons); ATCC
CRL-1973 used in this study was maintained in DMEM with
4.5 g l�1 glucose and stable glutamine (Invitrogen, Karlsruhe,
Germany), the 2102 EP cell line (Wang et al, 1981) and NCCIT
(ATCC CRL-2073) were cultured in DMEM/F-12 with 2mM L-
glutamine (Biochrom). All cell lines were grown with the addition
of 10% fetal calf serum (FCS; Biochrom, Berlin, Germany) and 1%
penicillin/streptomycin (Biochrom) at 371C in a humid atmo-
sphere containing 5% CO2 as monolayers in 75 cm2 cell culture
flasks.

Cell proliferation in normoxia vs hypoxia

For the assessment of doubling times, the cells were cultured in
normoxic (20% O2) and hypoxic (continuous flow of 0.1 lmin�1 of
a mixture of 94% N2, 5% CO2, and 1% O2) conditions. Briefly,
individual cells were spread out in six-well plates and viable cells
were counted in their logarithmic growth phase after 48 and 70 h to

calculate the population-doubling times under both conditions by
trypane blue (0.4%; Sigma) exclusion.
For determination of cell cycle progression, NT2 and NCCIT

cells were grown in 25 cm2 culture flasks in normoxia and hypoxia
for 48 h. Further processing was performed according to the
method of Nicoletti et al (1991). In brief, the supernatant and
adherent cells were harvested, washed, and suspended in 0.5ml
hypotonic lysis buffer (0.1% sodium citrate, 0.1% Triton X-100)
containing 25ml of a 1mgml�1 propidium iodide (PI) stock
solution (50 mgml�1 final concentration). Analysis of the cell cycle
phase was performed by flow cytometry on a FACScalibur (Becton
Dickinson, Heidelberg, Germany), using the CellQuest analysis
software.

Determination of pH value of the medium for untreated
cells

NT2 and NCCIT cells were cultured with 10ml complete medium
in 25 cm2 cell culture flasks under normoxic and hypoxic
conditions. After 72 h, the pH of the cell medium was measured
using the pH meter model pH330 (WTW, Weilheim, Germany)
and compared with 371C annealed normoxic and hypoxic medium
without cells.

In vitro drug-sensitivity assay

The MTT assay was performed as previously described (Sieuwerts
et al, 1995). In brief, the cell lines NT2, 2102 EP, and NCCIT were
rinsed with phosphate-buffered saline (PBS, Biochrom), trypsi-
nised and resuspended in 1ml of the appropriate culture medium,
to count the cells in a haemacytometer chamber. In all,
4� 103 cells/well were seeded in 96-well plates to ensure their
logarithmic growth. Cells were allowed to adhere over night, serial
dilutions of the chemotherapeutic agents were added to octuplicate
wells at concentrations from 1nM to 0.1mM. The cells were
exposed to the drugs for additional 72 h under normoxic and
hypoxic conditions. Additionally, NT2 and NCCIT cells were
treated with mitomycin C for 72 h under hypoxic conditions using
culture medium adjusted to pH 6.5.
After this, the drug-containing medium was removed and 0.2ml

MTT solution (final concentration: 0.5mg/mL MTT; Sigma) was
added in ther\ medium. The plates were incubated for 2 h and then
the medium was removed, 0.1ml DMSO was added, the plates
agitated for 15min and the optical density read using a photometer
(MRX Revelation, Dynex Technologies, VWR International,
Bruchsal, Germany) at 570 nm.
All experiments were replicated separately twice or more if the

values of increase in IC50 in hypoxia compared to normoxia were
greater than 20%, to ensure reproducibility. The results are
expressed as drug concentrations that inhibit cell growth by 50%
(inhibitory concentration; IC50). The IC50 of the tested agents
under both conditions were estimated graphically from the dose–
response curves and compared. The relative increase in IC50 in
normoxia vs hypoxia was assessed.

Induction and quantification of apoptotic cells

In all, 1� 105 cells/well for normoxia and 2� 105–4� 105 cells/well
for hypoxia were seeded in six-well plates. After overnight
preincubation, serial dilutions of cisplatin and paclitaxel were
added to the medium in chosen concentrations for NT2 and 2102
EP cells. Annexin-V labelling of the cells was performed as
recommended by the manufacturer (Roche Diagnostics; Man-
nheim, Germany). In brief, after 72 h floating, adherent cells were
harvested using trypsine-EDTA solution after PBS washing. The
cell suspension was spun down and the cell pellet was resuspended
in 0.1ml of a marker solution (2ml Annexin-V-Fluos (50�
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concentrated; Roche) in HEPES buffer (10mM HEPES, 140mM

NaCl, 5mM CaCl2; pH 7.4) containing 2 ml of a 50 mgml�1 PI stock
solution). The suspension was incubated for 15min in the dark;
afterwards, 0.2ml HEPES buffer were added and kept on ice until
further processing. Analysis of cell size and fluorescence intensity
was performed flow cytometrically on the FACScalibur. After
exclusion of necrotic debris, apoptotic and nonapoptotic (viable)
cells were assessed.

RESULTS

Drug sensitivity in normoxic conditions and relative effect
of hypoxia

The drug sensitivity was assessed by the MTT assay under
normoxic (20% O2) and hypoxic (1% O2) conditions for 72 h. The
results are summarised in Table 1.
Under normoxic conditions, the sensitivity towards cisplatin of

the different cell lines varied by factor 4 at the IC50 values.
Carboplatin showed the least cytotoxicity on an equimolar basis of
all drugs tested in normoxia. In contrast, for oxaliplatin, the IC50-
values varied only by a factor 2 in the three EC-derived cell lines.
Apart from cisplatin, paclitaxel showed the highest activity in the
three cell lines. No correlation was found between the sensitivity to
paclitaxel and that to cisplatin under normoxic conditions.
Under hypoxic conditions, all drugs tested were less effective

(Table 1), including mitomycin C (eg, increase of IC50 in normoxia
compared to hypoxia for NT2: 1.7-fold increase, Figure 1A, and
2102 EP: 25-fold increase) and cisplatin (eg, NT2: two-fold
increase, and 2102 EP: five-fold increase, Figure 1B). For
mitomycin C, experimental modification of the extracellular pH
to 6.5 did not result in an enhanced activity in NT2 and NCCIT
cells during hypoxia (data not shown).
The relative effect of hypoxia on the IC50 depended strongly on

the cell line. NT2 cells showed a minor effect in chemosensitivity in
hypoxia vs normoxia (eg, etopophos: 1.1-fold increase), 2102 EP
cells exhibited overall a stronger effect of hypoxia (eg, etopophos:
4100-fold increase). Additionally, the effect depended only to a
restricted extent on the drug, but more clearly on the cell line used
(eg, NT2/paclitaxel: 1.2-fold increase with an IC50 in normoxia:
3.1 nM, and hypoxia: 3.7 nM; Figure 2A, and NCCIT/paclitaxel:

4100-fold increase with an IC50 in normoxia: 4.3 nM, and hypoxia:
87 mM; Figure 2B).

Cell proliferation in normoxia vs hypoxia

In normoxia, doubling times of the three cell lines were 23, 25, and
35 h for NCCIT, NT2, and 2102 EP, respectively. Under hypoxic
conditions, NT2 cells showed a slower cell growth requiring 36 h
for cell doubling. 2102 EP and NCCIT stopped growing under
hypoxic conditions. In 2102 EP, the cell number dropped by
approximately 51% and in NCCIT by 4%. The reduced growth rate
was correlated with chemosensitivity of the TGCT cell lines under
hypoxic conditions in vitro (see Table 1). However, it did not
strictly correlate with the relative resistance to all drugs. For
example, 2102 EP cells treated with gemcitabine (Figure 3B)
displayed an average increase of IC50 in hypoxia 4100-fold
compared to normoxia and five-fold for cisplatin (see Figure 1B).
Compared to 2102 EP cells, NCCIT cells showed an improved
survival in hypoxia, but they also indicated an average increase of
IC50 in hypoxia compared to normoxia for gemcitabine 4100-
fold, and eight-fold for cisplatin. In contrast, NT2 treated with
gemcitabine displayed a similar cell expansion under normoxic
and hypoxic conditions (Figure 3A), with an average increase of
1.2-fold.
Flow-cytometric analysis of the cell cycle progression revealed

that hypoxic conditions induced a G1 arrest for NT2 and NCCIT
cells (Figure 4B and D) after 48 h, while under normoxic
conditions no cell cycle phase synchronisation occurred (Figure
4A and C). Additionally, Figure 4B shows apoptosis (leakage
of fragmented DNA from apoptotic nuclei; fraction M3) induced
by hypoxia in NT2 cells compared to the cell line NCCIT
(Figure 4D).
After 72 h in normoxia, the pH of the medium dropped from pH

7.8 to 6.7 for NT2 and from pH 7.6 to 6.4 for NCCIT. In hypoxia,
the pH of the medium dropped only from pH 7.7 to 7.6 for NT2
and from pH 7.5 to 7.3 for NCCIT in the same time span.

Induction of apoptosis

To evaluate the achieved differences of drug susceptibility of the
TGCT cells in normoxia and hypoxia, the results from the

Table 1 Mean values of IC50 in normoxia and hypoxia (7standard deviation) of cytotoxic drugs after 72 h in culture of embryonal carcinoma (EC)-
derived cell lines (NT2, 2102 EP, and NCCIT)

NT2 2102 EP NCCIT

Average Average Average

Agent

Normoxia
IC50

(7s.d.)

Hypoxia
IC50

(7s.d.)

Relative
increase
in IC50

(H :N)
(7s.d.)

Normoxia
IC50

(7s.d.)

Hypoxia
IC50

(7s.d.)

Relative
increase
in IC50

(H :N)
(7s.d.)

Normoxia
IC50

(7s.d.)

Hypoxia
IC50

(7s.d.)

Relative
increase
in IC50

(H :N)
(7s.d.)

Cisplatin 0.42 (70.12) 0.83 (70.25) 2 (70) 0.8 (70.04) 4.1 (70.42) 5 (70.28) 1.7 (70.59) 12 (73.2) 8 (71.2)
Oxaliplatin 1.4 (70.23) 3.8 (70.15) 2.9 (70.55) 1.3 (70.09) 47 (70.28) 35 (72.6) 2.6 (71.39) 62 (725) 26 (77.7)
Carboplatin 2.95 (70.48) 14 (74.04) 4.7 (70.55) 6 (72.55) 4100 (7n.d.) 412 (743.5) 12 (71.84) 4100 (7n.d.) 48 (741.1)
Gemcitabine 0.055 (70.044) 0.09 (70.08) 1.6 (70.08) 0.53 (70.08) 4100 (7n.d.) 4100 (7n.d.) 0.9 (70.09) 4100 (7n.d.) 4100 (7n.d.)
Etopophos 0.16 (70.1) 0.18 (70.1) 1.1 (70.07) 0.2 (70.15) 4100 (7n.d.) 4100 (7n.d.) 0.36 (70.06) 4100 (7n.d.) 4100 (7n.d.)
Bleomycin 0.11 (70.014) 2.1 (70.39) 19 (71.1) 0.16 (70) 475 (7435)4100 (7n.d.) 1.1 (70.07) 4100 (7n.d.) 495 (747)
Mitomycin C 0.04 (70.014) 0.06 (70.01 1.6 (70.21) 0.4 (70) 9 (70.92) 23 (72.3) 0.59 (70.06) 7 (70.21) 12 (71.5)
Irinotecan 0.43 (70.082) 0.74 (70.08) 1.7 (70.38) 1.3 (70.08) 4100 (7n.d.) 479 (742.1) 1.8 (70.49) 44 (79) 25 (71.6)
Ifosfamide 2.85 (71.2) 3.6 (71.3) 1.3 (70.11) 5.2 (71.1) 80 (723) 15 (71.1) 7 (71.1) 34 (76) 4.7 (70.04)
Paclitaxel 0.0035 (76.08 E-4)0.004 (77.4 E-4)1.1 (70.07)0.0038 (71.53 E-4) 483 (7429)4100 (7n.d.) 0.0043 (77.1 E-5) 88 (70.71)4100 (7n.d.)

Additionally, the relative increase (7s.d.) of IC50 in hypoxia compared to normoxia (H :N) is listed. Values in mM. N – normoxia. H – hypoxia. s.d. – standard deviation. n.d. –
not defined.
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colorimetric MTT assay were verified by flow cytometry. Viable
cells (exclusion of PI and Annexin) and cells killed by cisplatin and
paclitaxel (exclusion of PI, binding of Annexin) after a 72 h drug
exposure of NT2 and 2102 EP were analysed by quantitating PI/
Annexin-V labelling. The flow-cytometric results confirmed that
cisplatin and paclitaxel are more effective in normoxia. For
cisplatin, the relative resistance increased two-fold as measured by
MTT, and 3.6-fold as assessed by FACS in NT2 cells in hypoxia
compared to normoxia.

DISCUSSION

In this in vitro study, three different TGCT cell lines were used to
investigate the efficacy of several cytotoxic agents. The cell lines
differed in their relative sensitivity to cisplatin by factor of 4. For
oxaliplatin, the activity was almost similar in NT2 (cisplatin-
sensitive) and 2102 EP (cisplatin-resistant) cells, and increased
only by a factor 2 in NCCIT (cisplatin-resistant) cells. These in
vitro data corroborate our previous clinical data describing a
palliative oxaliplatin-based treatment option in patients with
cisplatin-refractory germ cell cancer (Kollmannsberger et al,
2002). Carboplatin showed cross-resistance to cisplatin and a
markedly lower activity on an equimolar level. Among the various

agents used in this study, paclitaxel was very active in all cells, with
no relative increase in IC50 values in cells where cisplatin was
clearly less active. In line with this finding, Motzer et al (1995)
described a marked efficacy of this drug in a teratocarcinoma cell
line, particularly in cisplatin-resistant cells.
The main objective of this in vitro study was to investigate the

relative efficacy of several chemotherapeutic agents used in the
treatment for metastatic TGCTs during normoxic and hypoxic
conditions. The oxygen content used in hypoxia models ranges
from o0.1 to 1%. Culturing of the different GCT-derived cell lines
in an atmosphere containing 1% oxygen induced a growth arrest
and, in case of NT2 and 2102 EP cells, also cell deaths. Therefore,
lowering the oxygen content further would have precluded a
meaningful analysis due to lack of viable cells. To our knowledge,
there are no data on the physiologic oxygen content in primary
TGCTs or in metastases. Frequently encountered widespread
necrotic areas suggest an insufficient blood supply and conse-
quently hypoxia at least in some areas of these tumours.
Hypoxia has been shown to induce resistance against various

agents and radiation (Brown and Giaccia, 1998; Hoeckel and
Vaupel, 2001; Koukourakis et al, 2001; Vaupel et al, 2001).
Conflicting data have been described for cisplatin, the most active
drug in the treatment of TGCTs (Liang, 1996; Skov et al, 1998;
Kovacs et al, 1999). The impact of hypoxia on the efficacy of the
chemotherapeutic agents cisplatin, etoposide, bleomycin, ifosfa-
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mide, and carboplatin, all used in standard chemotherapy
regimens for TGCTs, and of paclitaxel, gemcitabine, and
oxaliplatin, drugs now used in patients with cisplatin-refractory
disease (Bokemeyer et al, 1996; Motzer et al, 2000; Einhorn, 2002;
Kollmannsberger et al, 2002; Shelley et al, 2002) was studied in
three different cell lines. All drugs were less effective under
hypoxic conditions. In contrast to data obtained from other
tumour entities (Kennedy et al, 1983; Luk et al, 1990; Yamagata
et al, 1992; Sanna and Rofstad, 1994; Liang, 1996; Skov et al, 1998;
Kovacs et al, 1999), this also held true for the use of cisplatin and
mitomycin C in GCTs.
Particularly for mitomycin C, this finding is unexpected.

Mitomycin C has been postulated to be an alkylating agent
requiring reduction for activity, and anaerobic conditions enhance
the cytotoxicity (Iyer and Szybalski, 1964). Rockwell (1986)
showed that the cytotoxic effects of mitomycin C increased at
acidic pH culture conditions in vitro. At a low pH (6.0–7.0),
mitomycin C can be spontaneously reduced to an alkylating
species without enzymatic activation, while, in the physiologic pH
range (7.0–7.4), the cytotoxic effect of mitomycin C does not vary
with the pH (Rockwell, 1986). In our system, the pH of the medium
of untreated cells under hypoxia was in the physiologic range and
did not change after 72 h, probably due to the slower growth of
NT2 cells or the growth arrest of NCCIT cells in hypoxia.

Compared to that, the pH of the medium of untreated normoxic
cells decreased to acidic pH values between 6.0 and 7.0. However,
mitomycin C was also less effective in hypoxia at an experimentally
acidified pH (6.5). Furthermore, this study demonstrates that
mitomycin C already exhibited a significant cytotoxic effect in
TGCT cells during hypoxia with 1% pO2 in vitro. In contrast to
these results, Kennedy et al (1980) and Teicher et al (1981)
achieved a selective toxicity of mitomycin C in mouse mammary
tumour cells using considerable lower (o0.1%) oxygen tensions
prior to the addition of the drug. As mitomycin C acts in a cell
cycle-dependent manner, the pronounced effect of hypoxia on
proliferation and the observed G1/S arrest might prevail the
bioreductive activation in our model.
These findings may also serve as a rationale for clinical studies

on tumour oxygenation and response to chemotherapy in GCT
patients. A previous retrospective analysis of haemoglobin values
at the end of treatment and prognosis in GCT patients undergoing
sequential dose intensive chemotherapy has indicated that patients
with a haemoglobin level o10.5 g dl�1 postchemotherapy may
have a significantly inferior outcome (Bokemeyer et al, 2002).
Tumour oxygenation depends, among other factors, on the
haemoglobin content of the blood. Hence, correction of tumour-
associated anaemia – for example, with recombinant erythropoie-
tin – may improve the pO2 in tumour tissue. The use of
erythropoietin in anaemic cancer patients has been studied to
reduce the need for transfusions and to improve the quality of life
(QOL). In patients with head and neck tumours receiving
erythropoietin, an improved outcome of treatment has also been
suggested. Based on the results presented, the hypothesis should be
tested as to whether raising the haemoglobin level in patients with
GCTs undergoing chemotherapy might improve the treatment
outcome.
The presented data also allow for some conclusions regarding

the mechanisms involved in the relative drug resistance induced by
hypoxia. The impact of hypoxia on chemosensitivity depended
strongly on the cell line. The least effect was evident in NT2, the
only cells that kept proliferating under hypoxic conditions. The
two remaining cell lines showed a far more pronounced relative
drug resistance in hypoxia. These findings allow for two different
interpretations: NT2 could be less sensitive for the effect of
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EP cells. Note the reduced cell growth rate in hypoxia, which did not
correlate with drug resistance. OD – optical density. nm – nanometers.

Figure 4 Histogram plots of the cell cycle analysis of NT2 (A) and
NCCIT cells (C) in normoxia and NT2 (B) and NCCIT (D) in hypoxia
after 48 h by flow-cytometric staining with PI. M1 – G1 phase. M2 – G2
phase. M3 – apoptotic cells.
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hypoxia in general, that is, hypoxia-induced effects are less
pronounced. Alternatively, despite similar changes in hypoxia-
induced gene expression overall, only the effect on cell prolifera-
tion differs between the cells. The latter interpretation would point
to the effect on proliferation as the main factor determining the
relative effect of hypoxia on drug sensitivity. However, there was
no strict correlation between cell proliferation and cytotoxic effect
indicating relevant influences of factors other than proliferation.
The hypoxia induced relative resistance to cytotoxic agents

depended only partly on the specific substance. Despite the
different modes of action – for example, for gemcitabine
introduction of single-strand DNA breaks, and for etoposide and
irinotecan topoisomerase inhibition – the relative increase in
resistance to these drugs during hypoxia was similar. So far, the
potential relevant resistance mechanisms for some of the drugs
with similar behaviour under hypoxic and normoxic conditions
have been considered to be nonoverlapping. Of the substances
tested, only etoposide is transported out of the cells by P-
glycoprotein (P-gp). Paclitaxel – a stabiliser of b-microtubulin
polymerisation disrupting the formation of the normal mitotic
spindles and thereby blocking mitosis (Horwitz, 1992) – is
independent of P-gp (Lautier et al, 1996). Therefore, a HIF-1a-
mediated induction of P-gp under hypoxic conditions – as recently
proposed by Wartenberg et al (2003) – can be ruled out as a
dominating resistance mechanism in hypoxia in our setting.
Bleomycin causes DNA breaks through direct binding to DNA.
This process depends on oxygen and produces reactive oxidative
species (ROS), which may also play a role in the toxicity of

bleomycin (Sikic, 1986). P53 does not seem to play an essential role
in drug resistance under hypoxic conditions in the models chosen
here, as NCCIT cells express mutant p53, and NT2 and 2102 EP
express wild-type p53 (Burger et al, 1997). The broad spectrum of
substances with unrelated modes of action and potential means of
resistance suggests that rather universally active mechanisms or
coactivation of several pathways confer resistance under hypoxic
condition. Kinoshita et al (2001) reported that cancer cells might
obtain resistance to apoptosis once they have survived hypoxia.
The underlying mechanism remains elusive so far. Other
investigators have also suggested that tumour cells acquire
antiapoptotic features and will be selected by hypoxia (Kim et al,
1997).
In summary, this extensive in vitro study using several cytotoxic

drugs in three TGC tumour cell lines shows the importance of
normoxic conditions regarding treatment sensitivity in this
tumour model for all chemotherapy agents investigated.
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