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Two isoforms of cyclooxygenase (COX) participate in growth control; COX-1 is constitutively expressed in most cells, and COX-2 is
an inducible enzyme in response to cellular stimuli. An induction of COX-2 found in neoplastic tissues results in increased cell growth,
inhibition of apoptosis, activation of angiogenesis, and decreased immune responsiveness. Although both COX-1 and COX-2
inhibitors are suppressors of cell proliferation and appear to be chemopreventive agents for tumorigenesis, the molecular
mechanisms mediating antiproliferative effect of COX inhibitors are still not well defined. This study contrasts and compares the
effects of aspirin and celecoxib, inhibitors of COX-1 and COX-2, in rat hepatoma HTC-IR cells. The following were assessed: cell
proliferation and apoptosis, ornithine decarboxylase (ODC) activity, and pattern expression of three immediate-early genes, c-myc,
Egr-1, and c-fos. We have shown that the treatment of hepatocytes in vitro with the selective COX-2 inhibitor, celecoxib, was
associated with induction of apoptosis and complete inhibition of cellular proliferation. Aspirin exhibited a small antiproliferative effect
that was not associated with apoptosis. Treatment with celecoxib produced dose- and time-dependent decrease in ODC activity. In
addition, at higher drug concentration the decrease in ODC activity was greater in proliferating than in resting cells. Much lesser
inhibitory effect on ODC activity was observed in aspirin-treated cells. The two COX inhibitors did not change c-myc expression,
significantly decreased the expression of Egr-1, and differentially altered expression of c-fos; aspirin did not change, but celecoxib
dramatically decreased the levels of c-fos-mRNA. Our study revealed that celecoxib and aspirin share the ability to inhibit ODC
activity and alter the pattern of immediate-early gene expression. It seems that some of the observed effects are likely to be related
to COX-independent pathways. The precise mechanisms of action of COX inhibitors should be defined before using these drugs for
cancer chemopreventive therapy.
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Mammalian cells express two related but unique isoforms of
cyclooxygenase (COX), COX-1 and COX-2, the rate-limiting
enzymes in prostaglandin (PG) biosynthesis; they participate in
both normal and neoplastic growth responses (Bennett et al, 1977;
Maxwell et al, 1990; Kokoglu et al, 1998; Denkert et al, 2001).
While COX-1 is a constitutively expressed enzyme that is generally
involved in cell function of most tissues, COX-2 is an inducible
enzyme in response to cellular stimuli, including mitogens, tumour
promoters, cytokines, and other inflammatory mediators (Eber-
hart and DuBois, 1995; Smith et al, 1996; Beejay and Wolfe, 1999;
Whittle et al, 2000). Although the molecular mechanisms causing
the overexpression of COX-2 in various cancer cells are not
understood, it is known that increased level of COX-2 results in
enhanced PG production.

Both COX-1 and COX-2 inhibitors are suppressors of cell
proliferation and appear to be chemopreventive agents for
tumorigenesis (Thun et al, 1991; Scheinemachers and Everson,
1994; Kawamori et al, 1998; Taketo, 1998a, b; Elder et al, 2000; Joki
et al, 2000; Lui et al, 2000). It is clear that inhibitors of COX-2, but
not COX-1, strongly suppress cell growth by inducing apoptosis
(Erickson et al, 1999; Ding et al, 2000; Elder et al, 2000; Lui et al,
2000; Uefuji et al, 2000; Williams et al, 2000; Grosch et al, 2001),
which may result from blocking the cell cycle, enhancing c-myc
expression, and diminishing bcl-2 expression (Elder et al, 2000). In
addition, among genes differentially expressed in cells treated with
the specific inhibitor of COX-2, several other genes involved in the
regulation of cell adhesion, cell cycle progression, apoptosis, and
differentiation were found (Zhang and DuBois, 2001). While these
results provided evidence that antineoplastic effects of nonster-
oidal anti-inflammatory drugs (NSAIDs) may result from altered
expression of genes that regulate various biological processes, the
molecular mechanisms mediating antiproliferative effect of COX
inhibitors are still not well defined.
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Induction of cell proliferation is associated with transcriptional
stimulation of growth-related genes that are required for G1/S
transition (Kavin et al, 1997). One of them is ornithine
decarboxylase (odc) gene encoding a key regulatory enzyme in
the biosynthesis of polyamines that are essential for cell
proliferation (Pegg, 1986). ODC and polyamines can also act as
facilitating factors in triggering apoptosis (Tiberio et al, 2001).
Thus, inhibition of ODC might be an important event among
antiproliferative and proapoptotic effects of COX inhibitors.
In this study, we have examined cell proliferation, apoptosis,

and ODC activity in rat hepatoma HTC-IR cells that were treated
with NSAIDs, aspirin and celecoxib. In addition, an expression of
immediate-early genes, c-myc, Egr-1, and c-fos, was assayed. We
have shown that NSAIDs inhibit activity of ODC and, for the first
time, differentially alter expression of c-fos.

MATERIALS AND METHODS

Cells

Rat hepatoma cells, HTC-IR, were grown in plastic cell culture
flasks in DME media supplemented with 10% FBS, 2mM glutamine,
penicillin (100Uml�1), streptomycin (0.01%), and humidified with
6/94% CO2/air gas mixture. Cells were routinely subcultured using
trypsin solution. Aspirin and celecoxib were dissolved in DMSO as
1000� stock solutions and then diluted in DMEM for the
experiments. The final DMSO concentration was maintained at
0.1%.
Celecoxib was kindly provided by Pharmacia Corporation (St

Louis, MO, USA).

Cell proliferation assays

The effect of aspirin and celecoxib on HTC-IR cell growth was
determined by MTT cell proliferation assay, incorporation of [3H]
thymidine into DNA, and cell counting.
Exponentially growing cells were harvested, seeded at a density

5� 103 per well in 96-well plates and then grown in DMEM
containing 10% FBS. After 24 h, fresh medium without or with
aspirin or celecoxib was added. Cell growth was monitored at 24,
48, and 72 h by the cell proliferation assay, MTT CellTiter 96
(Promega). Three independent experiments were performed and
all assays were repeated in octuplicate. Results were expressed as
the percentage of control cells (means7s.d.).
5� 103 cells per well were seeded in 96-well plates and grown for

24 h in DMEM containing 10% FBS. Then, cells were supplemented
with fresh medium containing aspirin or celecoxib or DMSO and
72 h later 0.1 mCi of [3H]thymidine was added to each well for an
additional 4 h. Finally, cells were harvested, DNA was collected on
GFC filters, and the radioactivity was determined by scintillation
counting. Three independent experiments were performed and all
assays were repeated in octuplicate.
Cells were seeded at a density 105 cells per T25 flask. After 24 h,

medium was removed, DMEM without or with aspirin or celecoxib
was added and cells were incubated for 72 h. Then, floating and
adherent cells were harvested and combined cell populations were
counted using a haemocytometer. In addition, cell viability was
evaluated by trypan blue exclusion cell staining. Results were
expressed as the percentage of control cells (means7s.d.) of three
independent experiments, each performed in duplicate.

Measurement of apoptosis

Cells were grown in eight-chamber culture slides until 50% of
confluency was obtained, and then were supplemented with fresh
medium containing aspirin or celecoxib or DMSO. At different
time points, the adherent cells were stained on chamberslides with
fluorescein-conjugated annexin V and propidium iodide using

Annexin-V-FLUOS Staining Kit (Roche) as per the manufacturer’s
instructions and the fluorescence of individual cells was assayed by
fluorescence microscopy. The percentage of annexin V- and
propidium iodide-stained cells within a minimum of 400 cells was
determined.

Assay of ornithine decarboxylase activity

ODC activity was assayed by determination of [14C]CO2 formation
as previously described (Ostrowski et al, 2000). Briefly, HTC-IR
cell pellets were homogenised in buffer containing 50mM HEPES–
NaOH (pH¼ 7.5), 2.5mM DTT, 0.25mM pyridoxal 5-phosphate,
and 0.1mM EDTA. The reaction mixture consisted of 20 ml of
homogenate’s supernatant, 0.25mM pyridoxal 5-phosphate, 2.5mM

DTT, 50mM HEPES–NaOH (pH¼ 7.5), 0.1mM EDTA with 0.2 mCi
of L-[14C]ornithine hydrochloride (Amersham International) in a
total volume of 40 ml. The reaction tube was sealed with plastic
pipette tip containing a 0.5� 4.0 cm2 of Whatman No. 1 filter
paper soaked with 40ml of b-phenylethylamine. Tubes were
incubated at 371C for 60min and the reaction was then stopped
by adding 200 ml of 2 M citric acid. After further 60min of
incubation, the filter paper was removed, placed in 10ml of
scintillation liquid, and counted in a scintillation counter. Results
were expressed as nmol of 14CO2 released per hour per mg of
protein. All assays were performed in triplicate.

RT–PCR

Cells were grown in T25 flasks until 60% of confluency was
obtained. Then cells were made quiescent by 24 h serum
deprivation, and aspirin (5mgml�1) or celecoxib (5 mgml�1), or
DMSO were added for an additional 24 h. Finally, cells were treated
with 15% FBS for 0, 15, 30, 60, 180, and 360min. Total RNA was
prepared from cell pellets by acid-guanidium thiocyanate/phenol–
chloroform extraction using TRIzol reagent. Five micrograms of
total RNA was reverse transcribed using SuperScript II RT
(GIBCO-BRL) and oligo-dT in 20 ml volume as per the manufac-
turer’s protocol. RT reactions were diluted 1 : 10 with water, and
PCR was carried out using 2 ml of cDNAs and primers for
c-fos, Egr-1, c-myc, and odc. [a-32P]dCTP (NEN) was used to
label the PCR products. PCR products were resolved on native 5%
polyacrylamide gels, then the gels were dried and the PCR
products were quantified using a phosphorimager. Densitometric
analysis was performed using OptiQuantTM Image Analysis
Software (Packard). Levels of band intensities after background
subtraction were expressed in Digital Light Units (DLU).

Statistical analysis

Results are presented as means7s.d. Significant difference
between mean values was assessed by means of analysis of
variance (ANOVA). P-values for differences from control results
were calculated using Bonferroni method. Means were considered
to be different if Po0.05.

RESULTS

Inhibition of cell proliferation by celecoxib and aspirin
in rat hepatocytes in vitro

MTT test reflects the combined effects of cell proliferation and
survival, and the colour development results from the reduction of
tetrazolium salts to formazans by living cells. HTC-IR cells were
treated with increasing concentration of aspirin or celecoxib and
MTT metabolisation was determined after 1, 2, and 3 days of the
treatment. Celecoxib inhibited MTT metabolisation in a dose-
dependent manner. The suppressive effect was observed even with
the lowest COX-2 inhibitor concentration (2.5 mgml�1) at 24 h of
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the treatment, and almost complete inhibition of MTT metabolisa-
tion was seen in 48 h-treated cells with the higher concentration of
celecoxib (50 mgml�1) (Figure 1A). In contrast, no inhibition in
MTT test was observed with low doses of aspirin (2.5 and
5 mgml�1), and only some inhibitory effect was observed after 48
and 72 h of the aspirin treatment with the higher drug concentra-
tions (25 and 50mgml�1) (Figure 1B).
The results of MTT test were further confirmed by two other

proliferation tests. Incorporation of [3H]thymidine into DNA of
cultured HTR-IR cells was strongly inhibited by the treatment with
celecoxib and only moderately diminished by higher concentra-
tions of aspirin (Figure 2). Also, direct cell counting revealed that
aspirin did not affect cell proliferation at low (2.5–5 mgml�1)
concentrations (Figure 3). However, minor but significant decline
in the cell yield was evident at higher (25–50 mgml�1) concentra-
tions. Over a 3-day incubated period, none of the aspirin
concentration used in the study affected cell viability (as detected
by trypan blue exclusion) and there was no increase in the number
of nonadherent cells relative to control cells.

In contrast, celecoxib showed dose-dependent inhibitory effect
on the cell yield (Figure 3). Three-day treatment with celecoxib at
low (2.5–5 mgml�1) concentrations resulted in less than 40% of
cell viability and more than 50% of floating cells; after treatment
with higher celecoxib concentrations (25–50 mgml�1), most of the
cells were floating and dead (not shown). Since the proportion of
floating to adherent cells was found to be a measure of apoptosis
(Eberhart and DuBois, 1995), the HTC-IR cell growth inhibition by
celecoxib was likely to take place through the induction of
apoptosis.

Induction of apoptosis by celecoxib

To confirm that dominant antiproliferative effect of celecoxib is
the induction of apoptosis, the quantitative analysis of apoptotic
HTC-IR cells that were treated with aspirin or celecoxib was
performed using fluorescence microscopy. In the early stages of
apoptosis, phosphatidylserine (PS) translocates from the inner side
of the plasma membrane to the external surface of the cell.
Annexin V that binds to PS with a high affinity is suited to detect
early apoptotic cells. Apoptotic cells in cultures undergo secondary
necrosis (Vermes et al, 1997) and the nuclei of late apoptotic and
necrotic cells can be labelled with propidium iodide. Thus, the
discrimination between early apoptotic and necrotic cells was
possible with the use of combined cell staining with annexin V and
propidium iodide.
The adherent HTC-IR cells grown under standard conditions

showed about 5% of total cells that were stained with annexin V,
and less than 4% that were stained with propidium iodide. In
repeated and quantified experiments, treatment with aspirin did
not change the level of either early apoptosis or necrosis (not
shown), while treatment with celecoxib caused a statistically
significant, concentration- and time-dependent increase of apop-
tosis and necrosis (Figure 4).

COX inhibitors suppress ODC activity

ODC activity was determined by monitoring formation of [14C]CO2

from [14C]ornithine. Fetal calf serum is an essential agent for cell
growth in culture, supplying the cells with required proliferation
signals and growth factors. Since ODC is thought to play an
important role in the mitogenic responses, we determined activity
of this enzyme in serum-deprived growth-arrested cells and in
proliferating cells in vitro. As shown in Figure 5, ODC activity was,
unexpectedly, significantly higher in cells fasting for 24 h than in
proliferating cells.
Treatment with celecoxib produced dose- and time-dependent

decrease of ODC activity (Figure 6). After treatment with low
celecoxib concentration (5mgml�1), the kinetics of enzyme
inhibition was the same regardless of resting or proliferating cells
were used for experiments (Figure 6A). However, at higher
celecoxib concentration (50mgml�1) the decrease in ODC activity
was significantly higher in proliferating than in resting cells
(Figure 6B). Compared to celecoxib, a much smaller degree of ODC
inhibition was observed in aspirin-treated cells; until sixth hour of
incubation aspirin did not inhibit ODC activity, and the significant
decrease in the enzyme activity was found only at the last time
point measured, 24 h (Figure 7A, B).

COX inhibitors do not affect expression of mRNA ODC

Under serum-deprived conditions, cultured cells become growth-
arrested, but following serum supplementation they re-enter the
cell cycle. HTC-IR cells were growth-arrested by 48-h serum
starvation, and then were treated with 15% fetal calf serum. At
given time points after treatment, cells were harvested, total RNA
was isolated, and odc expression was assayed by semiquantitative
RT–PCR. As shown in Figure 8, serum treatment of starved
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Figure 1 The effects of celecoxib and aspirin on proliferation of rat
hepatoma HTC-IR cells determined by cell viability. Cells which were
grown in 96-well plates in DMEM containing 10% FBS were treated with
increasing concentrations (2.5, 5, 25, and 50mgml�1) of celecoxib (A) or
aspirin (B), and cell viability was monitored by MTT test 24, 48, and 72 h
later. Three independent experiments were performed and all assays were
repeated in octuplicate. Results are expressed as the percentage of control
cell viability and represent means7s.d. a, b, c indicate significant decrease
(a, Po0.05; b, Po0.01; c, Po0.001) in cell viability in aspirin- and celecoxib-
treated cells compared to cells treated with DMSO.
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HTC-IR cells progressively induced the expression of odc that
achieved maximum at 6 h, the last time point measured. At this
time point, odc was induced 3.5-fold. Pretreatment for 24 h with
aspirin or celecoxib at a concentration of 5 mgml�1 affected neither
basal nor serum-stimulated levels of mRNA ODC. Therefore, the
alterations in ODC activity, described above, caused by COX
inhibitors occurred through post-transcriptional events.

COX inhibitors differentially alter gene expression

The mitogenic stimulation of various cells is accompanied by rapid
induction of immediate-early genes (Herschman, 1991). We

examined the effects of celecoxib and aspirin on the serum-
induced gene transcription of three early genes: Egr-1, c-fos, and
c-myc.
Semiquantitative RT–PCR analysis showed that serum treat-

ment of starved HTC-IR cells induced the expression c-myc, Egr-1,
and c-fos (Figure 9). Aspirin and celecoxib did not significantly
change basal and serum-stimulated c-myc expression (Figure 9A).
Both aspirin and celecoxib changed the Egr-1 (early growth
regulated gene) expression pattern (Figure 9B). In fasting cells, and
in those serum-stimulated for 15min, the Egr-1 mRNA levels of
control and drug-treated cells were similar. However, in serum-
stimulated cells for 30min, the Egr-1 expression was significantly
lower in drug-treated cells as compared to control cells.
In contrast to the gene expression pattern of Egr-1, expression of

c-fos was drastically reduced by celecoxib at each time point
measured, while the treatment with aspirin did not alter the levels
of c-fos mRNA in unstimulated cells as well as in those stimulated
by serum for 15 and 30min (Figure 9C). To test whether the effect
of celecoxib on c-fos expression might be COX-2-dependent or
-independent, we examined the expression of this gene in HTC-IR
cells that were treated with nimesulide, another COX-2 inhibitor.
As shown in Figure 10, nimesulide did not significantly alter both
basal and serum-stimulated c-fos expression levels.
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Figure 2 The effects of celecoxib and aspirin on proliferation of rat
hepatoma HTC-IR cells determined by [3H]thymidine incorporation. Cells
were grown in 96-well plates in DMEM containing 10% FBS. After 24 h,
cells were exposed to varying concentrations (2.5, 5, 25, and 50 mgml�1) of
celecoxib or aspirin, and 72 h later 0.1mCi of [3H]thymidine was added to
each well for additional 4 h. The radioactivity of collected cellular DNA was
determined by scintillation counting. Three independent experiments were
performed and the results represent means7s.d. of radioactivity counts
expressed in d.p.m. a, b, c indicate significant decrease (a, Po0.05; b,
Po0.01; c, Po0.001) in [3H]thymidine incorporation in aspirin- and
celecoxib-treated cells compared to cells treated with DMSO.
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Figure 3 Growth inhibition of HTC-IR cells by celecoxib or aspirin
treatment. Cells were grown for 72 h with or without COX inhibitors, and
combined populations of floating and adherent cells were counted using a
haemocytometer. Results are expressed as the percentage of control cell
yield (means7s.d.) of three independent experiments, each performed in
duplicate. b, c indicate significant decrease (b, Po0.01; c, Po0.001) in cell
yield in aspirin- and celecoxib-treated cells compared to cells treated with
DMSO.
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treated cells compared to cells treated with DMSO.
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DISCUSSION

This study contrasts and compares the effects of COX-1 and COX-2
inhibitors on mitogenesis, apoptosis, ODC activity, and pattern
expression of selected growth-related genes in rat hepatocyte cell
line, HTC-IR (expressing COX-2 mRNA as detected by RT–PCR –
not shown).
COX-2 plays the dominant role among mechanisms regulating

cell survival, cell proliferation, and oncogenesis. Its induction that
was observed in human carcinomas of various organs including
colon, breast, prostate, lung, oesophagus, pancreas, head, neck,
and brain resulted in increased cell growth, inhibition of apoptosis,
activation of angiogenesis, and decreased immune responsiveness
(Subbaramaiah et al, 1996; Zimmermann et al, 1999).
The final product of COX-2 is PGH2 that acts as the immediate

precursor for other PGs and thromboxanes involved in controlling
cell proliferation (Herschman, 1994). The major product of COX-2
is PGE2, which induces expression of Bcl2, inhibitor of apoptosis
(Sheng et al, 1998). Antiproliferative effect of NSAIDs was thought
to be caused predominantly by COX-2 inhibition. However, the
decreased production of PGE2 induced by COX-2 inhibitors did
not correlate with the inhibition of cell proliferation (Erickson et al,
1999), and exogenous PGE2 did not prevent the antiproliferative or
proapoptotic effects of COX inhibitors (Hanif et al, 1996; Elder

P<0.05
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represent means7s.d. of three separate experiments. a, b, c indicate
significant decrease (a, Po0.05; b, Po0.01; c, Po0.001) in enzyme activity
in aspirin-treated cells compared to cells treated with DMSO. Po0.05
indicates significant differences in ODC activity between fasting and
proliferating cells.
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Figure 7 The effect of aspirin on ODC activity. Proliferating or resting
HTC-IR cells were treated with aspirin at concentration 5 mgml�1 (A) or
50mgml�1 (B). The cells were harvested at different time points and ODC
activity was determined. The results are expressed as percentage of ODC
activity in control cells treated with vehicle (0.1% DMSO) and represent
means7s.d. of three separate experiments. a indicates significant decrease
(a, Po0.05) in enzyme activity in aspirin-treated cells compared to cells
treated with DMSO.
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et al, 2000) suggesting that these processes may be unrelated. COX-
2 inhibitors can reduce cell proliferation and survival also in cells
that do not express COX-2 (Smith et al, 2000; Williams et al, 2000;
Grosch et al, 2001) and cells transfected with an expression vector
carrying cDNA of either COX-1 or COX-2 possessed a similar
stimulation of growth rates (Williams et al, 2000). Therefore, both
COX-2-dependent and -independent mechanisms may contribute
to antiproliferative and proapoptotic effects of NSAIDs.
Celecoxib is a specific inhibitor of COX-2, inhibiting this

enzyme at concentration of 10 mM. In contrast, aspirin acts as
nonspecific COX inhibitor; at 10 mM it inhibits COX-1 while at a
concentration higher than 100 mM inhibits also COX-2 (Dermott
et al, 1999). In our experiments, aspirin at the inhibitory
concentrations for COX-1 (2.5 and 5 mgml�1) did not exhibit any
effect on HTR-IR cell proliferation. In contrast, celecoxib even at
low concentrations (2.5 and 5 mgml�1) drastically inhibited
proliferation of these cells. The extent of growth inhibition by
celecoxib is related, at least in part, by proapoptotic effect induced
by COX-2 inhibitors. As reported recently by others (Kusunoki
et al, 2002; Yamazaki et al, 2002), the proapoptotic effect of
celecoxib seems to be unrelated to the inhibition of COX-2.
ODC is the first and rate-limiting enzyme in the polyamine

pathway and, therefore, it is a key regulatory enzyme in growth
processes (Pegg, 1986). The enzyme function is to convert
ornithine to putrescine, and changes in ODC activity reflect the
rate of macromolecular synthesis. Cancer cells display upregula-
tion of ODC, and sustained high level of ODC activity is implicated
as an essential component of tumour development. Indeed,
increased expression of ODC mRNA and high activity of ODC
were observed in rat (Huber et al, 1989; Ostrowski et al, 2000) and
human hepatocellular carcinoma (Tamori et al, 1994). ODC
activity correlated also with growth rate in a panel of hepatoma
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Figure 8 The effects of celecoxib and aspirin on the relative mRNA
levels for ODC during serum stimulation. Untreated serum-starved HTC-IR
cells and those treated for 24 h with 5 mgml�1 celecoxib or 5mgml�1

aspirin were exposed to 15% FBS for 0, 15, 30, 60, 180, and 360min. After
harvesting the cells, total RNA was isolated and used in RT. PCR was
carried out using [a32P]dCTP (0.5 mCi reaction�1) and odc primers (sense:
50-GAGCGCTGTGACCTGCCTGA-30 ; antisense: 50-GGCAGGGTGC-
TGGCATCCTG-30). PCR products were resolved by native PAGE and
were quantified using a phosphorimager. Results are expressed as
percentage mRNA level from serum-starved, untreated cells and represent
means7s.d. of two separate experiments.
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Figure 9 The effects of celecoxib and aspirin on the relative mRNA
levels for c-myc (A), Egr-1 (B), and c-fos (C) during serum stimulation.
Untreated serum-starved HTC-IR cells and those treated for 24 h with
5mgml�1 celecoxib or 5 mgml�1 aspirin were exposed to 15% FBS for 0,
15 and 30min. After harvesting the cells, total RNA was isolated and used
in RT. PCR was carried out using [a32P]dCTP (0.5 mCi reaction�1) and
primers for c-myc (sense: 50-ACGAAAAGGCCCCCAAGGTAGTT-30 ;
antisense: 50-AAGGAAAAAGAAAGAAGATGGG-30), Egr-1 (sense:
50-GGGGGCCCACCTACACTCC-30 ; antisense: 50-CCACCAGCGCC-
TTCTCGTTATTCA-30), and c-fos (sense: 50-TGCAGCTCCCACCAGT-
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PCR products were resolved by native PAGE and were quantified using a
phosphorimager. Results are expressed as percentage mRNA level from
serum-starved, untreated cells and represent means7s.d. of six separate
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cell lines (Williams-Ashman et al, 1972). However, we have found
that ODC activity in growth-arrested HTC-IR cells was signifi-
cantly higher than in exponentially growing cells. These results,
although unexpected, could indicate that under 24-h serum-
deprived conditions, most of HTC-IR cells were rather in G1

than in G0 phase of the cell cycle. It is known that ODC
induction and putrescine accumulation occur in G1 and G2 phases
of the cell cycle, whereas spermine and spermidine accumulate in
S phase along with RNA and DNA synthesis (Heby and Persson,
1990).
Treatment with celecoxib produced dramatic decrease in ODC

activity. Much lesser inhibitory effect on ODC activity was
observed in aspirin-treated cells. Since COX inhibitors did not
diminish the transcription of odc, the inhibition of ODC activity
resulted from post-transcriptional enzyme modification. At high
concentration, celecoxib decreased activity of ODC in proliferating
cells stronger than in growth-arrested cells suggesting that this
inhibitory effect of celecoxib may depend on the phase of cell
cycle. In contrast, the inhibitory effect of aspirin did not
correspond to proliferative state of the cell. In regard to these
findings, inhibition of ODC activity by COX inhibitors may be a
consequence of at least dual events: COX-2 inhibitory-dependent
cell death and some unknown COX-independent mechanism(s). In
fact, as reported recently (Turchanowa et al, 2001), treatment of
colon cancer cells with indomethacin (a nonselective COX-1 and
COX-2 inhibitor) induced an irreversible cascade of events leading
to oxidative stress, activation of spermidine/spermine-acetyltrans-
ferase (SSAT), polyamine depletion, and cell death. Thus,
decreased ODC protein level and its enzymatic activity caused by
indomethacin were rather a consequence of impaired proliferation
than a direct effect of indomethacin on ODC protein.
Growth signals are linked to gene expression. Immediate-early

genes are activated in a protein synthesis-independent manner and
are involved in cell proliferation, differentiation, apoptosis, and
oncogenic transformation (Jochum et al, 2001). They regulate later
phases in G1 of the cell cycle and represent diverse functional
classes including transcription factors. In this study, we deter-
mined the expression of three immediate-early genes encoding
transcription factors, c-myc, Egr-1, and c-fos. c-myc target genes
include several genes involved in growth control and therefore

c-myc is implicated as a direct regulator of cell cycle machinery
(Schmidt, 1999). One of c-myc-dependent genes is odc (Bello-
Fernandez et al, 1993). During normal mitogenesis c-myc
expression transiently increases in G1. Egr-1 is a zinc-finger
transcription factor that is rapidly activated by a variety of
extracellular signals or tissue injury (Szabo et al, 2001).
Members of Fos family of transcription factors are thought to
have a primary function in activating transcription of delayed-
early genes expressed subsequently in the growth response (Taub,
1996).
c-fos, Egr-1, and several other immediate-early genes contain in

their promoter region serum response element (SRE) that is
rapidly activated in response to serum treatment. Serum activates
SRE-driven promoters via Ras-MAP kinase pathway (Tice et al,
2002). In our study, as expected, following serum readmission to
the serum-deprived HTC-IR cells, the expression of the immediate-
early genes significantly increased at 15–30min.
Treatment of cells with aspirin or celecoxib did not alter basal

and serum-stimulated c-myc expression. Also, the treatment of rats
with the selective COX-2 inhibitor, NS-398 did not change c-myc
mRNA levels in colon mucosa as compared to untreated animals,
although in rat treated with a colon-specific carcinogen, azoxy-
methane, NS-398 significantly decreased the expression of c-myc
elevated by carcinogen (Kishimoto et al, 2002). Thus, neither the
short-term treatment in vitro nor the long-term treatment in vivo
with COX-2 inhibitors altered c-myc expression. In contrast,
indomethacin can reduce c-myc protein level in colon cancer cells
(Turchanowa et al, 2001). Since COX inhibitors did not alter the
transcription of odc, it is unlikely that the inhibition of ODC
activity might be a consequence of a direct relation between c-myc
and ODC.
Both aspirin and celecoxib inhibited serum-induced Egr-1

mRNA levels and these results are consistent with the inhibitory
effect of indomethacin and NS-398 on vascular endothelial growth
factor-stimulated expression of Egr-1 in human microvascular
endothelial cells (Szabo et al, 2001).
While c-fos expression was drastically reduced by celecoxib at

each time point measured, aspirin treatment did not alter the levels
of c-fos mRNA in fasting and serum-stimulated cells. This
inhibitory effect of celecoxib on c-fos expression seems to be a
celecoxib-specific and COX-2-independent since the treatment
with nimesulide, another highly selective COX-2 inhibitor, did not
significantly alter both basal and serum-stimulated c-fos expres-
sion levels.
A distinct subset of genes is regulated by the COX-2 inhibitor

(Zhang and DuBois, 2001), and alteration in gene expression
programming could be a target in the anticancer activity of COX
inhibitors. The diminishing of Egr-1 and c-fos by celecoxib may
reduce their target gene activation involved in controlling cellular
proliferation. However, changes in the array of gene expression
might not be a cause of antiproliferative and/or aproapoptotic
effects of NSAIDs if other genes could compensate the down-
regulation of the immediate-early genes.
In summary, we have shown that the treatment of HTC-IR

hepatoma cells with the selective COX-2 inhibitor, celecoxib, was
associated with induction of apoptosis and complete inhibition of
cell proliferation, suppression of ODC activity, and diminished c-
fos expression. Aspirin exhibited a small antiproliferative effect
with moderate inhibition of ODC activity that was not associated
with the proapoptotic effect or alteration in c-fos expression. Both
inhibitors significantly decreased the expression of Egr-1.
Although celecoxib and aspirin share the ability to inhibit one or
both COX isoforms, the molecular mechanisms of antiproliferative
and proapoptotic effects of NSAIDs are still not well understood.
Some of the observed effects are likely to be related to COX-
independent pathways and may be drug-specific. Thus, the precise
mechanisms of NSAIDs action should be defined before using
these drugs for cancer chemopreventive therapy.
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