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Platelet-derived endothelial cell growth factor (PD-ECGF)/thymidine phosphorylase (TP) catalyses the reversible phosphorolysis of
thymidine to thymine and 2-deoxyribose-1-phosphate and is involved in the metabolism of fluoropyrimidines. It can also activate 50-
deoxyfluorouridine (50DFUR) and possibly 5-fluorouracil (5FU) and Ftorafur (Ft), but inactivates trifluorothymidine (TFT). We
studied the contribution of TP activity to the sensitivity for these fluoropyrimidines by modulating its activity and/or expression level in
colon and lung cancer cells using a specific inhibitor of TP (TPI) or by overproduction of TP via stable transfection of human TP.
Expression was analysed using competitive template-RT–PCR (CT-RT–PCR), Western blot and an activity assay. TP activity ranged
from nondetectable to 70678 pmol h�1 10�6 cells, in Colo320 and a TP overexpressing clone Colo320TP1, respectively. We found a
good correlation between TP activity and mRNA expression (r¼ 0.964, Po0.01) in our cell panel. To determine the role of TP in the
sensitivity to 5FU, 50DFUR, Ft and TFT, cells were cultured with the various fluoropyrimidines with or without TPI and differences in
IC50’s were established. TPI modified 50DFUR, increasing the IC50’s 2.5- to 1396-fold in WiDR and Colo320TP1, respectively. 5-
Fluorouracil could be modified by inhibiting TP but to a lesser extent than 50DFUR: IC50’s increased 1.9- to 14.7-fold for WiDR and
Colo320TP1, respectively. There was no effect on TFT or Ft. There appears to be a threshold level of TP activity to influence the
50DFUR and 5FU sensitivity, which is higher for 5FU. Even high levels of TP overexpression only had a moderate effect on 5FU
sensitivity.
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Platelet-derived endothelial cell growth factor (PD-ECGF) is an
angiogenic factor discovered in the late 1980s (Miyazono et al,
1987; Ishikawa et al, 1989). Sequence analysis of the gene revealed
a stretch of 120 amino acids to be identical to thymidine
phosphorylase (TP), an enzyme catalysing the reversible phos-
phorolysis of thymidine to thymine and 2-deoxyribose-1-phos-
phate (dR-1-P) (Furukawa et al, 1992). Subsequently, this
enzymatic activity was identified for PD-ECGF (Moghaddam and
Bicknell, 1992; Usuki et al, 1992). The two enzymes are considered
to be identical and are designated as TP. The protein is expressed
in normal tissues and cells, including macrophages, Kupffer cells,
endothelial cells, ovary, salivary gland and brain (Fox et al, 1995).
Increased TP expression, compared to normal tissue, was found in
breast (Moghaddam et al, 1995), bladder (O’Brien et al, 1995,
1996), gastric (Takebayashi et al, 1996a), colorectal (Takebayashi
et al, 1996b), lung (Giatromanolaki et al, 1998) cancer and several
other tumours in numerous histochemical studies. In general, a
high TP has been shown to be a prognostic factor for poor survival
in gastric and colorectal cancer (Takebayashi et al, 1996 a, b;
Matsumura et al, 1998; van Triest et al, 2000), but in oesophageal

carcinoma there are conflicting reports (Ikeguchi et al, 1999; Koide
et al, 1999) about its prognostic significance.
Besides its angiogenic action, the enzymatic activity of TP plays

a role in fluoropyrimidine sensitivity, being able to activate 5-
fluorouracil (5FU) and 50-deoxyfluorouridine (50DFUR) (Ackland
and Peters, 1999), and an increased expression was related with a
better outcome of treatment with 5FU and its derivatives (Fox et al,
1997; Saito et al, 1999). The potential actions of TP in the
metabolism of various fluoropyrimidines are depicted in Figure 1.
TP activates 50DFUR to 5FU by cleaving the 5-deoxyribose moiety,
while by addition of 2-deoxyribose-1-phosphate TP can activate
5FU to 5-fluoro-20-deoxyuridine, a precursor of FdUMP which
inhibits thymidylate synthase, responsible for de novo thymidylate
synthesis. Recently, there is renewed interest in the role of TP,
since it activates 50DFUR, an intermediate in Capecitabine
(Xeloda) metabolism to 5FU. Capecitabine is a newly designed
oral fluoropyrimidine carbamate which is converted to 5FU in
three steps, the first step is catalysed by carboxyl esterase located
almost exclusively in the liver, the second step by cytidine
deaminase expressed in the liver and various types of tumours, and
the last by TP which is higher in tumours than in normal tissues
thus ensuring an enhanced efficacy (Miwa et al, 1998).
Trifluorothymidine (TFT) has previously been used in antiviral

therapy and has been evaluated for cancer therapy as a single agent
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(Ansfield and Ramirez, 1971; Warrell Jr et al, 1979). It has shown
efficacy in 5FU-resistant tumour cell lines bypassing the resistance
mechanisms of these cells (Fukushima et al, 2000). Trifluorothy-
midine is inactivated by TP to trifluorothymine. This inactivation
can be prevented by combining it with a specific thymidine
phosphorylase inhibitor (TPI), which increased the bioavailability
(Fukushima et al, 2000). This combination of TFT and TPI in the
molar ratio 1:0.5, called TAS-102, is currently tested in phase I
trials and can be administered orally (Thomas et al, 2002).
Also for another 5FU prodrug, Ftorafur (Ft), it has been

postulated that it might be activated by TP (Kohne and Peters,
2000). Ftorafur is part of the oral formulation of UFT and S-1.
To determine to what extent TP plays a role in sensitivity to

these fluoropyrimidines, we modulated TP activity in several colon
cancer cell lines and one non small cell lung cancer (NSCLC) by
inhibiting TP activity with TPI, and/or by overexpression of TP via
stable transfection with a plasmid containing the cDNA for TP.

MATERIALS AND METHODS

Chemicals

Dulbecco’s modified Eagle’s medium (DMEM) RPMI 1640 and
foetal calf serum (FCS) were obtained from Gibco BRL (Life
Technology, Breda, The Netherlands). 5-Fluorouracil and 50DFUR
were purchased from Sigma Chemicals Co. (St Louis, MO, USA),
Ft, TFT and TPI were provided by Taiho Pharmaceuticals (Hanno,
Japan). Hybond ECL nitrocellulose membranes, Hyperfilm ECL
and ECL (plus) detection kit were obtained from Amersham
International (Buckinghamshire, UK). The primary polyclonal
antibody was goat anti-human PD-ECGF (R&D Systems,
Abingdon, UK), the secondary antibody was peroxidase-conju-
gated rabbit anti-goat (Dako, Glostrup, Denmark). RNAzol was
obtained from Campro Scientific (Veenendaal, The Netherlands),
Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV-
RT) from Promega (Madison, WI, USA), deoxynucleotides
(dNTPs), random hexamers and Taq polymerase from Pharmacia
Biotech (Roosendaal, The Netherlands). All other chemicals were
of analytical grade and commercially available.

Cell lines and transfection

The origins of the human colon carcinoma cell lines, Lovo, WiDR,
HT29, SW1369, SW948, Colo320 and of that of the human NSCLC,
H460 have been described previously (Tolis et al, 1999; van Triest

et al, 1999). Colo320TP1 and H460TP2 are transfected variants of
Colo320 and H460. All colon cell cancer lines were maintained in
DMEM supplemented with 10% FCS, H460 was maintained in
RPMI with 10% FCS. All cells were cultured at 371C in a 5% fully
humidified atmosphere. Cell lines were growing exponentially as
monolayers during the course of all experiments.
Colo320 and H460 cells were transfected with TP. The pBABE

puromycin vector containing human TP was a kind gift from
Professor IJ Stratford (School of Pharmacy and Pharmaceutical
Science, University of Manchester, UK) (Jones et al, 2002).
Although the vector is designed for viral transfection, we used it
for direct transfection without packaging the DNA. Cells were
transfected with 10 mg of vector using Superfect (Qiagen, Crawley,
UK), according to the manufacturer’s protocol. Selection was made
using increasing concentrations of puromycin (ICN Biomedicals,
Aurora, OH, USA). Independent clones were selected and tested
for expression of TP by Western blotting. After selection, the
clones were maintained in 1.5mgml�1 of puromycin and were
passed once without puromycin before each experiment.

Western blot analysis

For determining TP expression, logarithmic growing cells were
harvested and cell pellets were lysed by lysis buffer (1% Triton X-
100; 150mM Tris-HCL, pH 7.6; 5mM EDTA), sonificated, and
centrifuged, for 10min 14 000 g at 41C. Protein content of each
sample was assayed using the Biorad assay (BioRad Laboratories,
Richmond, CA, USA). Thirty micrograms protein of each sample
was loaded, separated on a 12.5% SDS–PAGE gel and electro-
blotted onto a nitrocellulose membrane. Membranes were
incubated overnight at room temperature in blocking buffer: 1%
bovine serum albumin (BSA; Boehringer Mannheim, Germany),
1% milkpowder; TBS-T (10mM Tris-HCl pH 8.0, 0.15 M NaCl;
0.05% Tween-20) to prevent aspecific antibody binding. After
blocking, the membranes were incubated with the primary
antibody goat anti-human PD-ECGF (1/1000), followed by horse-
radish peroxidase-conjugated rabbit anti-goat antibody (1/2000).
Enhanced chemoluminescence (ECL plus) was used for detection,
and protein expression was quantified by densitometric scanning
(model GS-690 and Molecular analist, BioRad Laboratories,
Richmond, CA, USA). Recombinant PD-ECGF (R&D systems,
Abingdon, UK) was used as a control in a dilution allowing
optimal quantification in a linear range.

Competitive template RT–PCR to determine TP mRNA
expression levels

The quantitative RT–PCR technique is based on the coamplifica-
tion of a competitive template (CT) designed specifically for each
different target. The principles have been described in detail
elsewhere (Willey et al, 1998; Rots et al, 2000; Crawford et al,
2001).
RNA was extracted from 5� 106 cells by the RNAzolTM method,

checked for DNA contamination and reverse transcribed by
random hexamers as described by the manufacturer with minimal
modifications (Rots et al, 2000). Competitive templates were
designed for b-actin (Rots et al, 2000) and TP, using the primer
sets shown in Table 1. Competitive templates were produced from
a cell line known to contain a considerable amount of TP activity
(Colo320TP1). Competitive templates were dissolved in standar-
dised solutions. Polymerase chain reaction was used for coampli-
fication of the cDNA samples with CTs to ensure accurate
quantification of the native target (NT). In order to normalise
TP expression to that of b-actin, one single master mix was
prepared for every cDNA sample containing PCR buffer (1� ),
dNTPs (200mM), Taq polymerase (0.02Uml�1), sample cDNA (1–
3 ml) and the appropriate CT mix (1–3 ml) in a volume of 49 ml. One
microlitre of premixed primers (0.05 mg ml�1) of TP and b-actin
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Figure 1 Scheme showing the possible metabolic pathways for 5FU via
TP, UP (uridine phosphorylase) and orotate phosphoribosyltransferase
(OPRT) and its different targets: TS inhibition via FdUMP and incorporation
of FdUTP and FUTP into DNA and RNA, respectively. 50-Deoxyfluoro-
uridine is an intermediate in the conversion of Capecitabine to 5FU. Finally,
the metabolic fate of TFT is shown, which can be degraded by TP or
activated by TK, resulting in TS inhibition and DNA incorporation.
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primers were added to aliquots of the master mix and reaction
mixtures were overlaid with 50 ml of mineral oil. cDNA samples
were amplified in a MJ Research PTC-2000 apparatus (Biozym,
Landgraaf, the Netherlands) with 1min steps of denaturation at
941C, primer annealing at 581C and elongation at 721C for 35
cycles starting with a hot start at 941C. PCR products were
separated by 120V electrophoresis for 2 h on 2% agarose gel
containing 0.1mgml�1 ethidium bromide. The intensity of the NT
and CT bands was quantified by digital image analysis using Scion
Image (NIH, Bethesda, DC, USA). Concentrations of NT molecules
of TP and b-actin in the cDNA samples were calculated by the ratio
of NT/CT after amplification and the molarity of the CT mixture
used as described previously (Rots et al, 2000). The relative
expression of TP mRNA was given as the ratio of the concentration
NT of TP vs NT of b-actin.

Thymidine phosphorylase activity

The TP activity was determined using an assay previously
described (Laurensse et al, 1988). Activity was measured using
thymidine as a substrate by calculating its conversion to thymine.
Depending on the TP activity, 30 or 60� 106 cellsml�1 50mM Tris/
1mM EDTA (pH 7.4) were used, which were sonificated and
centrifuged at 21 000 g at 41C. Fifty microlitres of 21 000 g
supernatant was mixed with 10 ml 0.8 M K2HPO4, 10 ml 5mM

thymidine and 130 ml TRIS/EDTA (pH 7.4) buffer, and incubated
for 15, 30 or 60min at 371C. Thymidine phosphorylase inhibitor
was used at a final concentration of 10 mM. The reaction was
stopped by the addition of 50 ml 40% trichloroacetic acid (TCA),
neutralised and analysed by HPLC as described previously
(Laurensse et al, 1988; van Triest et al, 2000).

Growth inhibition experiments

To study the role of TP in fluoropyrimidine sensitivity, the
sulphorhodamine B (SRB, Sigma Chemicals, St Louis, MO, USA)
staining method was used (Skehan et al, 1990; Keepers et al, 1991).
It has been shown by us and others that this assay produces similar

results as a clonogenic assay (Perez et al, 1993) and is an excellent
method to measure growth inhibition of anticancer drugs. Briefly,
cells were seeded at densities varying from 4000 to
15 000 cells well�1, depending on the doubling time, ensuring
exponential growth during the experiment, with or without 10mM
TPI. Drugs were added after 24 h at various concentrations and
cells were incubated for 72 h. Thereafter, cells were fixed with TCA,
final concentration 10% and stained with SRB (0.4% wt/vol In 1%
acetic acid). Optical densities were measured on a Spectra Fluor
(Tecan, Salzburg, Austria) at an absorbance of 540 nm. Growth
percentage was calculated as described previously, by setting
absorbance of control cells after 72 h at 100% and absorbance at
the time of drug addition at 0%. Values were expressed as the
concentration that corresponded to a cellular growth reduction of
50% (IC50) when compared to the value of the untreated control
cells. The IC50’s are represented as means and standard error of at
least three values. The term dose modifying factor (DMF) is used
to express the effect of TPI and is calculated by (IC50+TPI)/IC50.

Statistics

The one-tailed paired Student’s t-test was used to study the effect
of TPI on IC50’s of the different fluoropyrimidines. For the
correlations, the nonparametric Spearman’s r(r) was calculated. In
some cases when specifically indicated, we also used the
parametric Pearson’s correlation test. Changes and correlations
were considered significant when Po0.05.

RESULTS

Transfection

Colo320 and H460 cells were transfected with full-length human
TP cDNA. After selection in puromycin, several clones of both cell
lines were tested for TP expression by Western blotting (Figure 2).
One high overexpressing clone of each cell line was selected for
further experiments, Colo320 clone number 1 (Colo320TP1) and

Table 1 Primers for RT-CT-PCR of TP to synthesise competitive templates (F and CT) and
to coamplify CT and native template (NT) (F and R)

Target Position 50-30 sequence Genbank

PD-ECGF/TP F 622 ATC CAG AGC CCA GAG CAG ATG C M63193
R 1045 TGG TGA CCA GGT CCC TTA AGT CTG
CT 893 R+CCA ACC AGC GTC TTT GCC AG

F is the forward primer, R is the reverse primer, CT is the primer used to generate the CT.
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Figure 2 Western blot showing the TP expression of the H460 and Colo320 parental cells with their transfected counterparts H460TP2 and
Colo320TP1, respectively.
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H460 clone number 2 (H460TP2). The clones had similar doubling
times compared to the parental cell lines (data not shown).

Thymidine phosphorylase protein, activity and mRNA
expression

In order to determine the correlation between TP activity and
protein and mRNA expression, these parameters were determined
with the described activity assay, Western blot and CT-RT–PCR,
respectively. An example of an agarose gel with the PCR products
and their expected size is shown in Figure 3. The mRNA
expression results are depicted in Figure 4A. Thymidine phos-
phorylase activity varied considerably among the cell lines
(Figure 4B), with a moderate activity in HT29, WiDR and Lovo
cells. In all cell lines, the thymidine phosphorolysis could be
completely inhibited by TPI except in SW 948, in which inhibition
was only 34% while this activity could not be inhibited for SW1398
by TPI. Unless otherwise stated, the measured phosphorolytic
activity of the SW cell lines was adjusted according to the
inhibition percentage by TPI, and this adjusted activity was used in
the calculations. The H460 cell line had the highest activity of the
nontransfected cells. Colo320 cells had no detectable activity but
the stable transfected derivative Colo320TP1 had the highest
activity (70678 pmol hr�1 106 cells�1). Figure 4C shows a correla-
tion plot between TP mRNA and TP activity for the nontransfected
cell lines only. The mRNA expression was significantly correlated
with TP activity. There was also a significant correlation between
mRNA expression and TP protein expression, as determined by
Western blot (r¼ 0.78, Po0.05), and protein expression also
correlated significantly with TP activity (r¼ 0.75, Po0.05) in non-
transfected cell lines. Comparable protein expression patterns

(data not shown) were found using a commercially available ELISA
(Roche, Almere, The Netherlands).

Fluoropyrimidine sensitivity in relation to TP levels

To determine the role of TP in the activation of 5FU, 50DFUR, FT
and the inactivation of TFT, we determined the effect of TPI on

532

HD

415
424

296

ß-
ac

tin

PD
-E

CG
F/

TP

Figure 3 Representative example of an agarose gel on which PCR
products are separated according to their expected sizes. The gels show
three bands for b-actin: bands of 532 and 415 bp are encoded by the
forward and reverse primer for the native cDNA and CT, respectively, the
third band is the heteroduplex consisting of native cDNA and CT. For TP,
only two bands are visible, the native cDNA of 424 and 294 bp for the CT,
the heteroduplex was formed occasionally. The bands were scanned and
the OD was used to calculate a ratio between the native cDNA and CT.
The contribution of the heteroduplex was calculated as described
previously (Willey et al, 1998; Rots et al, 2000).
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Figure 4 (A) Thymidine phosphorylase mRNA expression in the
different cells lines. (B) Total TP activity of the different cell lines. Thymidine
phosphorylase activity in SW948 cells could only be inhibited for 34% by
TPI (a), while TP activity of SW1398 cells could not be inhibited by TPI (b).
Thymidine phosphorylase inhibitor completely inhibited TP in the other cell
lines. Protein content of the different cell lines varied from 79 mg for Lovo
to 194 mg protein 106 cells�1 for SW1398. (C) Correlation plot of TP
activity and mRNA expression of the nontransfected cell lines only. There
was a strong positive correlation between the two parameters. The
Pearson’s linear correlation coefficient was r¼ 0.79 (Po0.05) nd,
nondetectable.
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drug-induced growth inhibition (Table 2). The IC50s for 5FU
ranged from 0.2mM for Colo320TP1 to 5.4 mM for HT29, and had an
inverse correlation with TPI inhibitable activity (r¼ –0.63,
Po0.05). When overall phosphorolytic activity was used, r¼
–0.78 (Po0.01). This high correlation, however, was mainly
because of the contribution of the transfected cells; without these
cells no significant correlation between TP activity and 5FU
sensitivity was observed (r¼�0.28). The transfected Colo320TP1
cell line had an IC50 of 0.2 mM for 5FU compared to 2.3 mM for the
parental cell line resulting in a relative sensitivity to 5FU of 11.5.
IC50 of 5FU was returned to parental level, 2.8 mM, when TP activity
was inhibited by TPI resulting in a DMF of 14.7 for the transfected
cell line.
A similar picture emerged for 50DFUR, with IC50’s ranging from

0.058mM for Colo320TP1 to 208.9 mM for SW1398. The sensitivity to
50DFUR inversely correlated with the TPI inhibitable TP activity
(r¼�0.80, Po0.01). For the overall phosphorolytic activity,
r¼�0.83 (Po0.01). Wild-type Colo320 was, despite lacking
measurable TP activity, sensitive to 50DFUR, with an IC50 of
61.7mM, comparable to WiDR, 90.1 mM. This might indicate that
there is another route of 50DFUR activation in Colo320 cells, such
as another phosphorylase (Peters et al, 1989). There was no effect
of TPI on the IC50’s for 5

0DFUR in SW948 and SW1398 cell lines,
corresponding with the low and lack of inhibition of phosphoro-
lytic activity by TPI. The IC50’s were higher for 50DFUR than for
5FU. A good correlation between 5FU and 50DFUR sensitivity
would indicate that they would be activated by the same enzyme
and would act on the same target(s). We observed a good
correlation between all the IC50’s of 5FU and 50DFUR (r¼ 0.85,
Po0.01), which is a reflection of a partly similar mechanism of
activation.
Cell lines were sensitive to TFT with IC50’s below 1 mM, except

WiDR and HT29 which have an IC50 of 2.5 and 3.9 mM, respectively.
Trifluorothymidine seems to be the most potent of the four tested
fluoropyrimidines. In this setting of 72 h continuous exposure, the
sensitivity to TFT was not related to TP activity, which was
expected because TP can inactivate TFT.
The sensitivity for FT, the 5FU prodrug, ranged from 97.2 to

275mM for Lovo and SW 1398, respectively. There was no
significant effect of TPI on the Ft sensitivity of the nontransfected
colon cancer cells of the panel. There was no correlation between
IC50’s of Ft and 5FU.
Thymidine phosphorylase inhibitor significantly increased

IC50’s for 5FU in WiDR, Lovo, H460, H460TP2 and Colo320TP1.
The increase expressed as the DMF (ranging from 1.9 for WiDR to
14.7 for Colo320TP1), correlated with TP activity (r¼ 0.91,
Po0.01) (Figure 5). TPI also significantly increased the IC50’s for
50DFUR in WiDR, Lovo, H460, H460TP2 and Colo320TP1 by

adding TPI. The corresponding DMFs correlated with TP activity
of the cells (r¼ 0.97, Po0.01), ranging from 2.5 for WiDR to 1396
for Colo320TP1.
Expression of TP mRNA also correlated with DMFs for 5FU and

50DFUR (r¼ 0.86 and 0.95, Po0.01, respectively), but not for the
DMFs of TFT or Ft. Omission of the transfected cell lines resulted
in r¼ 0.70 (Po0.05) and r¼ 0.90 (Po0.01) for 5FU and 50DFUR,
respectively. Thymidine phosphorylase protein levels correlated
with DMF for 50DFUR (r¼ 0.70, Po0.05), but did not with DMFs
for 5FU most likely because of the more accurate and sensitive
nature of CT-RT–PCR compared with the Western blot.

DISCUSSION

In this study, we investigated the role of TP in the sensitivity
to several fluoropyrimidines: the widely used chemotherapeutic
agent 5FU, its prodrugs 50DFUR, FT and TFT, a novel oral fluoro-
pyrimidine. The activation of 50DFUR was studied because it is the
final intermediate in the activation of the oral fluoropyrimidine
Capecitabine (Xeloda), which is postulated to be dependent upon
TP.
There was a wide range of basal TP activity in our cell panel,

varying from no activity for Colo320 cells to the intermediate
activity of Lovo, WidR and HT29 cells to a high activity in H460
cells and the two transfectants H460TP2 and Colo320TP1. The
SW1398 and SW948 cell lines also had an intermediate activity
which converted TdR to thymine, but this could not be inhibited
by TPI or could only by 34%. This may be explained by the fact
that not TP, but the closely related uridine phosphorylase (UP),
catalysed this conversion. This is in contrast to the finding that
transfection of MCF7 cells with the UP gene did not influence the
effect of 5FU or 50DFUR (Cuq et al, 2001). Since Colo320 cells are
sensitive for 50DFUR, despite the lack of detectable cleavage of
TdR, there is apparently a variability of substrate specificity
of UP and TP from the different cell lines. el-Kouni et al (1993)
described that specificity of TP for substrates varied between
two different organs and cancers from mouse and humans. In
Colo320 cells, another pyrimidine nucleoside phosphorylase may
be active, that uses 50DFUR as a substrate but for which TdR is not
a substrate (Woodman et al, 1980; Cao et al, 2002).
Using TPI and transfection, sensitivity of the cells to 5FU and

50DFUR could be modulated either by inhibiting or enhancing TP
activity to different extents. It seems that TP only plays a minor
role in 5FU cytotoxicity in the nontransfected cell lines with DMFs
varying from 2 to 4, whereas in transfected cell lines the DMFs go
up to 7 and 14. In colon cancer cell lines with naturally occurring
TP activity, the contribution as concluded by TPI inhibition is

Table 2 IC50’s of the fluoropyrimidines (expressed in mM) in the presence or absence of TPI, for the different cell lines

Cell line 5FU 5FU +TPI DMF 50DFUR 50DFUR +TPI DMF TFT TFT +TPI DMF FT FT+TPI DMF

HT29 5.471.3 6.670.2 1.2 176.9727.3 275.8715.9 1.6 3.971.0 3.770.7 0.9 201.1737.9 283.2781.3 1.4
Lovo 1.170.1 2.570.2 2.2b 24.975.1 103.5717.3 4.2a 0.570.1 0.4 7.0.1 1.0 97.2715.5 86724.8 0.9
WiDR 2.570.5 4.771.0 1.9b 90.1712.0 222.5725.0 2.5b 2.570.8 3.571.0 1.4 203.9744.9 236.1727.8 1.2
Colo320 2.370.2 2.570.2 1.1 61.775.8 65.071.1 1.1 0.470.1 0.470.1 0.9 119.477.2 141.7711.2 1.2
Colo320TP1 0.270.1 2.870.3 14.7c 0.0670.02 81.0710.5 1396.6b 0.570.04 0.670.1 1.1 ND ND F
SW948 3.171.0 4.071.7 1.3 208.977.6 255.6714.3 1.2 ND ND F ND ND F
SW1398 2.070.6 3.270.6 1.6 134.8732.9 202.0737.4 1.5 ND ND F 275739.7 191.4722.1 0.7
H460 2.070.2 8.670.4 4.3c 10.971.7 332.9713.4 30.5c 0.670.1 0.670.03 0.9 ND ND F
H460TP2 1.670.2 11.171.0 6.8c 4.270.5 275.0716.1 65.1c 0.770.04 0.570.03 0.8 ND ND F

Significant differences between drug and drug with TPI (Student t-test): aPo0.05, bPo0.01, cPo0.001
Thymidine phosphorylase inhibitor was present in a final concentration of 10 mM, 24 h before drugs were added. DMF is the dose-modifying factor calculated as (IC50+TPI)/IC50.
ND=not done.
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relatively low. Uptake and other activation pathways such as UP
and OPRT (Peters et al, 1989) seem much more important.
Thymidine phosphorylase may play a more important role when
an additional source for the substrate for the activation reaction
dR-1-P is provided. For 50DFUR, it can be concluded that the role
of TP, in determining the IC50, is larger with DMFs varying from
2.5 to 30 for nontransfected cell lines, and varying up to 65 and
1400 in the transfected cell lines. In previous studies (Patterson

et al, 1995; Kato et al, 1997; Evrard et al, 1999a, b; Marchetti et al,
2001), the effect of TP on 5FU and 50DFUR was also demonstrated,
although the enhanced sensitivity of Colo320TP1 for 50DFUR
(1396-fold) was extremely high. For example, MCF7-transfected
cells had an increased sensitivity, of 165-fold (Patterson et al,
1995), PC9-transfected cells, 153-fold (Kato et al, 1997), and PROb-
transfected cells, 10-fold (Marchetti et al, 2001). In these studies,
there was also increased sensitivity to 5FU but always lower than
for 50DFUR. Other studies report that after transfection the
sensitivity increase for 5FU was higher than that of 50DFUR
(Evrard et al, 1999a, b), which is possibly because of an increased
availability of dR-1-P in these cells, necessary for activation of 5FU
by TP. Increase in dR-1-P availability in cells greatly enhances 5FU
sensitivity mediated by TP (Peters et al, 1987; Ciccolini et al, 2001).
This different role of TP in 5FU and 50DFUR cytotoxicity is
because of the fact that 50DFUR is a prodrug of 5FU and needs an
extra activation step. Activation of 50DFUR can only occur through
its conversion to 5FU, but that of 5FU can be mediated by three
different pathways. Thereafter, the drugs might exert a similar
mechanism of action.
There was no effect on Ft in the tested nontransfected cell lines.

Recent studies show that the activation of Ft is mediated by
cytochrome P450 enzymes (Komatsu et al, 2000), which have a
considerable but variable expression in colon cancer cell lines (Yu
et al, 2001) which explains the lack of correlation in IC50’s between
Ft and 5FU.
There was no effect of TPI on TFT sensitivity, which was

unexpected because it has been demonstrated that TFT is a good
substrate for TP (Fukushima et al, 2000). We expected to see a
decrease of IC50 for TFT in the cell lines with high TP expression
when given in combination with TPI. However, since the 72 h
continuous exposure might be too long to detect an effect of TPI,
we decreased drug exposure times to 2 h followed by a 72 h drug-
free growth, but also in this setting TPI did not affect TFT
sensitivity (data not shown). Possibly activation of TFT by
thymidine kinase (TK) is very efficient, preventing inactivation
by TP. Trifluorothymidine possibly acts by TS inhibition and DNA
incorporation. However, orally administered TFT in combination
with TPI (TAS-102) seems to prevent systemic degradation (e.g.
liver) of TFT resulting in increased plasma levels compared to TFT
alone (Fukushima et al, 2000).
Use of TPI might also have an indirect effect on the sensitivity of

the different fluoropyrimidines; TPI can prevent TdR degradation
which might rescue cytotoxicity of 5FU and 50DFUR. Patterson et al
(1995, 1998) indeed described that high TP can moderate
thymidine dependent rescue of TS inhibited cells. This of course
depends on the intracellular TdR concentration.
We found a good correlation between mRNA expression and

activity, mRNA expression and protein expression, indicating that
mRNA screening of tumour samples might be sufficient to
characterise the TP status, requiring a low amount of material to
determine TP status. However, cell lines are homogeneous, while
tumours are heterogeneous with unknown amounts of tumour,
stroma and infiltrating cells, which can all contain considerable
amounts of TP expression (Takahashi et al, 1996; Giatromanolaki
et al, 1998; Matsumura et al, 1998; van Triest et al, 2000).
In conclusion, we determined that there is a small role of TP in

the cytotoxicity of 5FU, and that this role could be increased when
TP expression was increased. For 50DFUR activation, the role of TP
is much more pronounced. FT sensitivity was not dependent upon
TP in the tested cell lines.
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