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Prompted by the observation of ischaemia development during the treatment of tumours by photodynamic therapy (PDT) that is
typically followed by a restoration of tumour blood flow and by the indications of secondary superoxide generation after PDT, we
aimed in this study to obtain evidence of the induction of ischaemia-reperfusion (I/R) injury in PDT-treated tumours. Using
subcutaneous mouse FsaR fibrosarcoma model and Photofrin-based PDT treatment, we have examined the activity of xanthine
oxidase (XO, a key enzyme in the I/R injury development) in tumours before and after the therapy. Compared to the levels in
nontreated tumours, there was a five-fold increase in the activity of this enzyme in tumours excised immediately after PDT. This burst
of elevated XO activity declined rapidly, returning to the pretreatment levels within the next 30min. Visible reflectance spectroscopy
confirmed the occurrence of a PDT-induced strong but temporary reduction in tumour oxygenation. The administration of XO
inhibitor oxypurinol prevented this PDT-induced rise in XO activity. The oxypurinol treatment also decreased the extent of
neutrophil accumulation in PDT-treated tumours and reduced the level of PDT-mediated cures. These results demonstrate the
induction of I/R injury in PDT-treated tumours, and show that it can contribute to the therapy outcome. Since I/R injury is a well-
recognised proinflammatory insult, we suggest that its induction in PDT-treated tumours promotes the development of inflammatory
response that has become established as a key element of the antitumour effect of PDT.
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Recent insights into the mechanisms of photodynamic therapy
(PDT)-mediated destruction of solid tumours have emphasised the
important role played by the induced inflammatory response for
the outcome of this therapy (Dougherty et al, 1998; Korbelik and
Cecic, 2003; Sun et al, 2002). Evidence has accumulated docu-
menting various inflammation-specific events following the treat-
ment of tumours with PDT, including: (i) proinflammatory changes
in vascular endothelium, (ii) complement activation and engagement
of other plasma cascade systems (kinin-generation, coagulation, and
fibrinolysis), (iii) release of inflammatory cytokines and chemokines,
arachidonic acid metabolites and various other inflammatory media-
tors, (iv) activation of poly(ADP-ribose)polymerase and NFkB
upregulation, and (v) invasion of inflammatory cells (Ryter and
Gomer, 1993; Cecic and Korbelik, 2002; Korbelik and Cecic, 2003;
Sun et al, 2002). The transcription factor NFkB is now a recognised
key regulator of inflammatory response (Lentsch and Ward, 2000).
Ischaemia-reperfusion (I/R) injury is known as a potent

instigator of inflammatory response responsible for severe tissue
damage in a variety of common pathological conditions, including
stroke, myocardial infarction, pulmonary and haemorrhagic
shock, acute kidney and liver failure, and organ transplant

rejection (Hernandez et al, 1987; Zimmerman and Granger, 1994;
De Greef et al, 1998). Tissue ischaemia is associated with the
conversion of xanthine dehydrogenase into oxidant-producing
xanthine oxidase (XO), while concomitantly hypoxanthine accu-
mulates because of the breakdown of ATP (Parks et al, 1988;
Zimmerman and Granger, 1994). At the time of reperfusion,
sudden reintroduction of oxygen enables XO to induce the
formation of xanthine from hypoxanthine, which is accompanied
with an intense release of reactive oxygen species, primarily
superoxide anion (Parkins et al, 1998). The induced oxidative
stress at the level of vascular endothelium promotes complement
activation and elicits a series of inflammatory events culminating
in a massive invasion of activated neutrophils and other
inflammatory cells into the previously ischaemic area (Hernandez
et al, 1987; De Greef et al, 1998; Kilgore et al, 1999).
In an earlier work (Korbelik et al, 2000), we found indications

that I/R injury may play a role in the response of tumours to PDT.
A typical pattern of blood flow alterations in PDT-treated tumours
consists of an initial marked drop that tends to recover after
photodynamic light treatment, and such conditions are conducive
to the induction of I/R injury. When examining the possibility of
superoxide generation during the reperfusion episode, we found
that the administration of superoxide dismutase (SOD) immedi-
ately after PDT resulted in a decrease in tumour cure rates
(Korbelik et al, 2000). Since I/R injury, if indeed inflicted in PDT-
treated tumours, would be of a considerable relevance for the
development of inflammatory responses, microvascular dysfunc-
tion and tumour cures, our objective in the present study was to
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obtain more conclusive evidence that would support the induction
of this insult. We demonstrate that PDT results in a marked
elevation in the activity of XO (a key enzyme that hallmarks the I/R
process) in treated tumours, and show that XO inhibition
attenuates the neutrophil infiltration into PDT-treated tumours
and decreases tumour cure rates.

MATERIALS AND METHODS

Tumour model

Subcutaneous FsaR fibrosarcomas (Volpe et al, 1985) were
inoculated by implanting 1� 106 in vitro expanded tumour cells
into the lower sacral region of syngeneic C3H/HeN mice. Tumours
were used for experiments when reaching 6–8mm in largest
diameter with thickness around 2mm. All animal procedures were
conducted according to the approval issued by The Animal Ethics
Committee of the University of British Columbia and meet the
standards required by the UKCCR guidelines (Workman et al,
1998).

PDT protocol

Photofrin (porfimer sodium, Axcan Pharma Inc., Mont-Saint-
Hilaire, Quebec, Canada) was administered intravenously at
10mg kg�1 at 24 h prior to the delivery of light generated by a
high throughoutput fibre illuminator (Sciencetech Inc., London,
Ontario, Canada) equipped with a 150Q QTH lamp with integrated
ellipsoidal reflector and 630710 nm interference filter. The light
was delivered through an 8-mm core diameter liquid light guide
model 77638 (Oriel Instruments, Stratford, CT, USA). The power
density achieved for monodirectional superficial illumination of
tumours and B1mm of surrounding normal tissue was around
110mWcm�2. During PDT light treatment, the mice were held
unanaesthetised in restraining holders. For the evaluation of
tumour cure or regrowth, the mice (eight per treatment group)
were, after PDT, examined every second day for signs of tumour
growth. Tumour cure was defined as no sign of recurrence at 90
days post-PDT. The XO inhibitor oxypurinol, purchased from
Sigma Chemical Co. (St Louis, MO, USA), was dissolved in
phosphate-buffered saline and administered intraperitoneally at
17mg/kg�1. The ethical guidelines were followed that meet the
above-mentioned standards (Workman et al, 1998).

Measurement of XO activity

Amplext Red Xanthine/Xantine Oxidase Assay Kit (Molecular
Probes, Eugene, OR, USA) was used for the measurement of XO
activity in homogenates of the excised FsaR tumours. Briefly, this
assay is based on the activity of hydrogen peroxide (formed by
spontaneous degradation of superoxide, which is a major product
in XO-mediated oxidation of hypoxanthine) that in the presence of
horseradish peroxidase reacts stoichiometrically with Amplex Red
reagent to generate the red-fluorescent oxidation product,
resorufin. Resorufin fluorescence was measured in a fluorescence
microplate reader using 530 and 590 nm wavelengths for excitation
and detection, respectively. The results expressed in mUh�1mg�1

of tumour tissue were derived by preparing a XO standard curve.
In obtaining the excised tumours, we followed the ethical
guidelines that meet the above-mentioned standards (Workman
et al, 1998).

Reflectance spectroscopy

The reflectance spectra were measured with a fibre optic spectro-
meter system developed in our laboratory (Zeng et al, 1995).
A tungsten lamp is used for illumination through one branch of
a bifurcated fibre bundle. Another branch of the fibre bundle

collects and transmits the reflected light from the tissue to a
spectrometer (Ocean Optics, FL, USA, model USB 2000) for
spectral analysis. The fibre bundle has a holder to position itself at
451 to the skin surface to avoid the specular (mirror) reflection so
that only the diffuse reflected light, which has gone into the tissue
and sampled the tumour, was collected. The data acquisition of
each spectrum is completed in less than 1 s and the measurements
generate no significant PDT effect to the tissue. The spectral
signals between 500 and 600 nm were used to assess the blood
oxygenation status of the probed tissue volume. The ethical
guidelines were followed that meet the above-mentioned standards
(Workman et al, 1998).

Flow cytometry

Tumour neutrophil levels were assessed using a flow cytometry
protocol described in detail elsewhere (Cecic et al, 2001). Briefly,
the excised tumours were dissociated into single-cell suspensions
and the cells were stained with fluorescein isothiocyanate (FITC)-
or phycoerythrin (PE)-conjugated monoclonal antibodies raised
against specific murine membrane markers. Neutrophils were
identified as cells stained positively for myeloid differentiation
antigen GR1 (Ly-6G) and negatively for macrophage-specific
antigen F4/80. Flow cytometry was performed with a Coulter
Epics Elite ESP (Coulter Electronics, Hialeah, FL, USA) using
standard techniques. In obtaining the excised tumours, we
followed the ethical guidelines that meet the above-mentioned
standards (Workman et al, 1998).

Statistical analysis

The unpaired Student’s t-test was applied to test the difference
between means for the data from XO measurement and flow
cytometry. Log-rank test was used for the tumour response
evaluation. The difference with Po0.05 was considered statistically
significant.

RESULTS

The activity of XO determined in the homogenates of nontreated
FsaR tumuors was around 7mUh�1mg�1 of tumour tissue (Figure 1).
No significant change in this level was detected in the light-only
and Photofrin-only treatment control groups. However, a five-fold
increase in XO activity was found in the tumours exposed to
Photofrin-based PDT and excised immediately after the termina-
tion of light delivery. The activity of this enzyme was still elevated,
but at a lower level, in tumours excised at 15min post-PDT,
while it dropped to the control levels in tumours excised at 30min
post-PDT.
In additional experiments, we examined the effect of oxypurinol,

a specific inhibitor of XO (Granger et al, 1986; Spector et al, 1986).
Although the light dose was increased from a moderately curative
150 J cm�2 (when used with 10mg kg�1 of Photofrin) to a highly
curative 250 J cm�2, there was no further increase in the XO
activity in tumours excised immediately post-PDT (the average
level was in fact somewhat lower) (Figure 2). A group of tumours
was also excised at 10min post-PDT and the results show that the
XO activity markedly declined in this short time period. The
administration of oxypurinol at 30min before PDT light treatment
completely prevented the PDT-induced burst in XO activity, while
oxypurinol has not significantly affected the activity of this enzyme
in nontreated tumours.
An obvious cause for the observed changes in XO activity would

be a temporary decline in the oxygenation of PDT-treated
tumours. To verify this, we monitored the oxygenation status in
a group of six subcutaneous FsaR tumours starting before PDT and
extending to 1 h after PDT using a noninvasive visible reflectance
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measurement. Very similar results were obtained with all the
tumours and a representative example is shown in Figure 3. The
reflectance spectrum recorded with the tumour before PDT has
the characteristic troughs (dips) at 542 and 577 nm (arrows) that
result from the secondary absorption bands of oxyhaemoglobin
(Figure 3A). The spectrum obtained with the same tumour
immediately after PDT exhibits a striking absence of the 542 and
577 nm troughs, which shows that oxyhaemoglobin in the tumour
tissue was replaced by deoxyhaemoglobin at that time. After 1 h,
the reflectance spectrum of the tumour regained the characteristics
seen in the pre-PDT treatment spectrum with the reappearance of
542 and 577 nm troughs. These changes in oxyhaemoglobin/
deoxyhaemoglobin levels are more clearly presented by ratioing
the post-PDT spectrum to pre-PDT spectrum (Figure 3B). The
values around 542 and 577 nm are now depicted as prominent
peaks emphasising the reduction in oxyhaemoglobin levels
immediately after PDT compared to pre-PDT values. This drop
in haemoglobin oxygen saturation obviously does not persist, since
ratioing the reflectance spectrum taken at 1 h after PDT to the
spectrum taken before PDT reveals no peaks around 542 and
577 nm; in fact, a small trough at 577 nm hints that oxygen levels
might have even exceeded the pre-PDT values.
Proinflammatory effects associated with XO activity are known

to stimulate local neutrophil sequestration (Zimmerman and
Granger, 1994), and it is also well established that PDT induces

neutrophil accumulation in the treated tumours (Krosl et al, 1995;
Gollnick et al, 1997; Sun et al, 2002). The oxypurinol treatment
that inhibits XO activity produced a decrease in the levels of
neutrophils found in PDT-treated tumours (Figure 4). Flow
cytometry-based analysis of cell suspensions disaggregated from
FsaR tumour tissue reveals that nontreated tumours contained
only a minor neutrophil population (around 3%), which raised
dramatically following PDT treatment. The time point of 12 h post-
PDT depicted in Figure 4 is within the period of peak levels of the
PDT-induced neutrophil invasion with the FsaR tumor model
(Cecic, de Vit, Sluiter and Korbelik, unpublished results). While
over 40% of cells in PDT-treated tumours at that time point were
neutrophils, this level decreased significantly, although not
dramatically, in the samples obtained from mice treated with
oxypurinol.
The impact of oxypurinol treatment on PDT response of FsaR

tumours is shown in Figure 5. The chosen PDT dose resulted in a
rapid ablation of treated tumours, and only a minor fraction of
these lesions recurred several weeks later. The oxypurinol
administration performed before PDT showed no significant effect
on the initial PDT response, but it increased the rate of tumour
recurrence and this resulted in statistically significant decline in
tumour cures. In contrast, the administration of oxypurinol at 1 h
after PDT exhibited no significant effect on the tumour response
to PDT.

DISCUSSION

Treatment of FsaR tumours with Photofrin-based PDT results in a
burst of elevated XO activity peaking immediately after the
termination of photodynamic light delivery that rapidly declines
and fades away within 30min post-PDT (Figures 1 and 2). This
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Figure 1 The effect of PDT on XO activity in FsaR tumours.
Subcutaneous FsaR tumours growing in C3H/HeN mice were treated by
PDT (Photofrin 10mg kg�1 followed 24 h later by 150 J cm�2). The
tumours were excised either immediately post-PDT light treatment, or
15 or 30min later. Their homogenates were used for the determination of
XO activity as described in Materials and Methods. The samples were
also prepared from nontreated tumours, tumours from mice not given
Photofrin excised immediately after light treatment (light only), and those
from mice given Photofrin 24 h earlier but not treated with light (Photofrin
only). Bars represent s.d., n¼ 4; *depicts statistically significant difference
from the level in nontreated tumours (Po0.01).
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Figure 2 The effect of oxypurinol pretreatment on XO activity in PDT-
treated FsaR tumours. Subcutaneous FsaR tumours were treated with
PDT and the samples prepared for XO measurement as described in
Figure 1, except that the time of excision was either immediately after PDT
light treatment or 10min later. Oxypurinol (17mg kg�1) was injected
intraperitoneally 30min before the onset of light treatment. Bars are s.d.,
n¼ 4; *depicts statistically significant difference from the level in nontreated
tumours (Po0.01).
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phenomenon correlates with the blood reperfusion in PDT-treated
tumours occurring after an ischaemic period induced during the
light treatment (Korbelik et al, 2000; van Geel et al, 1994). A
combination of several factors is probably responsible for the
generation of ischaemia in PDT-targeted tissues. One is the
depletion of oxygen through its consumption by the photodynamic
process (Foster et al, 1991; Bush et al, 2000). Also contributing is
the reduced blood flow consequent to the vasoconstriction caused
by inflammatory mediators like thromboxane whose release is
known to be induced by PDT (Fingar et al, 1990, 1992), and blood
flow stasis resulting from microvascular damage or obstruction by
adhering neutrophils and platelets (Star et al, 1986; Henderson and
Fingar, 1989; Fingar et al, 1992). As soon as its consumption drops
with the termination of light delivery, oxygen will diffuse from the

surrounding tissues into the ischaemic region. The reoxygenation
will be supported by the vasodilating effect of mediators such as
histamine and prostaglandins (Kamide et al, 1984; Henderson and
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Donovan, 1989; Henderson and Dougherty, 1992), and nitric oxide
(NO) produced by activated neutrophils (Cecic and Korbelik,
2002).
The occurrence of the above-discussed changes in tumour

oxygenation is supported by the evidence obtained using visible
reflectance measurement with FsaR tumours (Figure 3). Diffuse
reflectance spectroscopy probes the scattering and absorption
properties of tissue. Haemoglobin, one of the main chromophores
in well-perfused tissues in the visible range, is characterised by the
strong absorption bands of its oxygenated form (oxyhaemoglobin)
at 542 and 577 nm (Zonios et al, 2001). These bands are lost when
oxyhaemoglobin is converted into deoxyhaemoglobin under
reduced oxygen concentrations, which enables the development
of visible reflectance technique for noninvasive in vivo monitoring
of changes in tissue oxygenation. In the spectral range 500–
600 nm, the tissue penetration depth with this technique is up to
1mm (Hillenkamp, 1979). This makes it adequate for monitoring
the oxygenation of subcutaneous lesions such as FsaR tumours,
particularly in mouse models since the skin overlying the tumours
(o200 mm) is thinner than human skin. The reflectance spectra
that we obtained with a series of FsaR tumours before and after
PDT were remarkably consistent and highly reproducible. At
this point, presented are qualitative characteristics of dramatic
PDT-induced changes in tumour oxygenation. They demonstrate
that the oxygenation of FsaR tumours is markedly reduced at
the end of PDT light delivery, but is restored to pretreatment
or even higher values 1 h later (when these tumours were
showing signs of a strong oedema). We are currently developing
a ratio technique for processing data from pre- and post-PDT
treatment spectra (based on a modification of the model described
by Zonios et al, 2001) for deriving quantitative values for changes
in tumour oxygenation. We have also carried out a preliminary
examination of oxygen tension in FsaR tumours with Eppendorf
pO2 histograph. These measurements indicate that nontreated
FsaR tumours are moderately oxygenated (average 39.5mmHg)
and that there is a greater than two-fold increase in these levels at
1 h post-PDT treatment as used in the reflectance spectrum
protocol (M Korbelik, AI Minchinton, J Sun, unpublished results).
Obviously, more investigation is warranted on the kinetics of
oxygenation and blood perfusion changes in PDT-treated tumours
as this is directly linked with the mechanism of antitumour effect
of this modality, but such a task goes well beyond the scope of the
present paper.
The reperfusion following an ischaemic episode is a well-

recognised indication for the development of a classical physio-
logical insult, the I/R injury (Zimmerman and Granger, 1994;
Kilgore et al, 1999). This event is hallmarked by the burst in XO
activity such as demonstrated in this report. Therefore, it can be
concluded that the I/R injury was induced in PDT-treated FsaR
tumours. The occurrence of this insult can obviously have
important implications for the response of PDT-treated tumours.
Intense generation of superoxide mediated by XO is largely

responsible for the damage inflicted by I/R injury (Parkins et al,
1998). The endothelium of the vasculature in PDT-treated tumours
could sustain a heavy damage from the released superoxide and
such event will have a powerful proinflammatory impact. The I/R
injury is known to be associated with the activation of complement
(a potent instigator of the inflammatory process whose engage-
ment was recently demonstrated in PDT-treated tumours (Cecic
and Korbelik, 2002)), proadhesive changes in the endothelium,
release of various inflammatory mediators, PARP activation, and
influx of activated neutrophils (Szabo and Dawson, 1998; Kilgore
et al, 1999). Oxypurinol, which inhibits the PDT-induced XO
activation (Figure 2), also attenuates the accumulation of
neutrophils in PDT-treated tumours (Figure 4). In an earlier
report, we have shown that the oxypurinol treatment reduces, as
well, the extent of systemic neutrophilia that develops in mice
bearing PDT-treated tumours (Cecic and Korbelik, 2002). These

observations suggest that the impact from I/R injury contributes to
the induction of neutrophil invasion into the tumours treated by
PDT.
Evidence that superoxide formation is associated with PDT

treatment was provided in several earlier studies. In addition
to our finding that intravenous SOD administration immediately
after photodynamic light treatment decreases the cure rate of
PDT-treated mouse FsaR and EMT6 tumours (Korbelik et al,
2000), Athar et al (1989) have shown that the effect of PDT on
mouse skin can be augmented by an SOD inhibitor and diminished
by an SOD mimic. Using ESR spectroscopy, the superoxide
production was also documented in PDT-treated tissues (Athar
et al, 1988) and in photoirradiated aqueous photosensitiser
liposomal preparations (Hajdur et al, 1997a, b).
Superoxide and its dismutation product hydrogen peroxide have

been described as stimulators of transcriptional activation of stress
proteins (Demple et al, 1999). On the other hand, PDT-generated
tumour ischaemia can elicit a specific stress response known to
activate hypoxia-inducible factor-1 (HIF-1) that can be responsible
for the induction of VEGF expression (Ferrario et al, 2000), and
activation of early response genes including cyclooxygenase-2 and
inducible nitric oxide synthase (Hierholzer et al, 2001). Thus, in
addition to the primary stress response triggered by singlet oxygen
generated directly in photodynamic reactions (Dougherty et al,
1998), several forms of secondary stress may be inflicted in PDT-
treated tumours: oxidative stress mediated by superoxide,
oxidative and nitrosative stress mediated by NO (Korbelik and
Cecic, 2003), and hypoxic stress. The extent of PDT-induced injury
and its contribution to the antitumour effect of this modality is
likely to differ depending on the type of treated tumour and
photosensitiser class used for PDT. It may also be influenced by
the duration of PDT light treatment and the dose rate, although we
have not observed significant differences following the treatment
with 150 and 250 J cm�2, both delivered at around 110mWcm�2

(Figures 1 and 2). The rate of xanthine dehydrogenase conversion
into XO during ischaemia differs in various tissues. In the ileum,
nearly complete conversion occurs within 10 s, whereas in the
heart XO levels double after 8min of nonperfusion (McCord,
1985). Similar differences can be expected to exist among different
types of tumours. Therefore, the extent of PDT-induced I/R injury,
which with FsaR tumours is obviously contributing to the therapy
outcome (Figure 5), is likely to vary in different types of lesions.
With respect to the photosensitisers used for PDT, in addition
to the XO activation following Photofrin-based PDT described
in this study, we have evidence of a similar effect produced
by benzoporphyrin derivative-based PDT (Korbelik and Cecic,
2003).
An important element that can influence the extent of I/R injury

in PDT-treated tumours is the extent of endogenous NO
production, which varies among solid human and animal tumours
(Parkins et al, 1995; Tozer and Everett, 1997). NO reacts rapidly
with superoxide forming peroxynitrite anion (Blough and Zafiriou,
1985; McCall et al, 1989) and this can result in superoxide
detoxification (Wink et al, 2001). This element may contribute to
the observed tendency of an increased resistance to PDT of
tumours characterised by elevated intrinsic NO production
(Korbelik et al, 2000). Low NO-producing tumours were shown
to be more profoundly affected by transient clamping of blood
vessels feeding subcutaneous tumours that results in I/R injury
associated with substantial tumour cytotoxicity (Parkins et al,
1985, 1988).
In conclusion, this work demonstrates that PDT can induce I/R

injury and the extent of this insult may be sufficiently pronounced
to have an important impact on the therapy outcome. The
infliction of I/R injury is a classical proinflammatory event, and we
suggest that it participates in the induction of inflammatory
response that has a major role in the antitumour effect of PDT
(Korbelik and Cecic, 2003).
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