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Recently, there have been reports of postnatal vasculogenesis in cases of ischaemia models. The aim of the present study is to
provide evidence of postnatal vasculogenesis in breast-cancer – bearing mice. Based on cell surface antigen expression, we
isolated endothelial precursor cells from bone marrow, peripheral blood and tumour-infiltrating cells from mice that had
received six human breast cancer xenografts. In all three areas (bone marrow, peripheral blood and tumour-infiltrating cells),
endothelial precursor cell population was elevated in all transplanted mice. Differentiation and migration activities of
endothelial precursor cells were measured by comparing levels of the endothelial precursor cell maturation markers Flk-1, Flt-
1, Tie2, VE-cadherin and CD31 among these three areas. The endothelial precursor cell population was 14% or greater in the
gated lymphocyte-size fraction of the inflammatory breast cancer xenograft named WIBC-9, which exhibits a hypervascular
structure and de novo formation of vascular channels, namely vasculogenic mimicry (Shirakawa et al, 2001). In vitro, bone
marrow-derived endothelial precursor cells from four human breast cancer xenografts proliferated and formed multiple
clusters of spindle-shaped attaching cells on a vitronectin-coated dish. The attaching cells, which incorporated DiI-labelled
acetylated low-density lipoprotein (DiI-acLDL) and were negative for Mac-1. The putative bone marrow derived endothelial
precursor cell subset, which was double positive of CD34 and Flk-1, and comparative bone marrow derived CD34 positive
with Flk-1 negative subset were cultured. The former subset incorporated DiI-acLDL and were integrated with HUVECs.
Furthermore, they demonstrated significantly higher levels of murine vascular endothelial growth factor and interleukin-8 in
culture supernatant on time course by enzyme-linked immunosorbent assay. These findings constitute direct evidence that
breast cancer induces postnatal vasculogenesis in vivo.
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Postnatal neovascularisation is thought to result exclusively from
proliferation and remodelling of fully differentiated ECs derived
from pre-existing blood vessels (Holash et al, 1999). This adult
paradigm, referred to as angiogenesis, contrasts with vasculogen-
esis, the term applied to the formation of embryonic blood
vessels from endothelial precursor cells (EPCs). Recently, however,
EPCs have been isolated from adult peripheral blood (PB) and
umbilical cord blood, and these cells attach themselves to vitro-
nectin-coated dishes (Asahara et al, 1997; 1999; Isner and
Asahara, 1999; Takahashi et al, 1999; Kalka et al, 2000; Murohara
et al, 2000). Augmentation of transfused EPCs has been observed
in ischaemic tissue, and participation of transfused EPCs in
neovascular formation has been observed in mature animal
models. Previously, we reported the establishment of a new
human IBC xenograft (WIBC-9) that exhibits angiogenesis and
de novo formation of vascular channels, vasculogenic mimicry
(Shirakawa et al, 2001). WIBC-9 overexpresses human (h) angio-
genic factors (interleukin-8 (IL-8), vascular endothelial growth
factor (VEGF), basic fibroblast growth factor (bFGF), angiopoie-
tin-1 (Ang-1)) and murine (m) angiogenic factors (integrin
avb3, flt-1, tie-2, VEGF, Ang 2), compared with 3 non-IBC xeno-

grafts, at the mRNA and/or protein level. Previously, by blocking
the VEGF-Flt-1 and Angiopoietin 1,2-Tie2 pathways in IBC, we
achieved a ratio of tumour growth inhibition of 99% or greater
and demonstrated marked anti-angiogenic and putative anti-
vasculogenic effects (Shirakawa et al, 2002). In the present study,
we tested our hypothesis that human breast cancer lines (specifi-
cally, WIBC-9) can induce proliferation, of ECs and EPCs in
animal models.

MATERIALS AND METHODS

Human VEGF transfection vector (pcDNA3-hVEGF) and
cell lines

An EcoRI-HindIII 0.6 kb human(h)VEGF cDNA fragment was
subcloned into the pcDNA3.1/Neo vector (Invitrogen, San
Diego, CA, USA). SK-BR3 and MCF-7 cells (American Type
Culture Collection, Rockville, MD, USA) grown in DMEM with
10% FBS were transfected with this expression construct
(pcDNA3.1/hVEGF) or with the vector alone (pcDNA3.1/Neo)
using the Lipofectamine Plus reagent (Invitrogen, San Diego,
CA, USA) and selected with Geneticin(G418) (Invitrogen, San
Diego, CA, USA). Stably-transfected SK-BR3/hVEGF and MCF-
7/hVEGF cell lines were maintained in media containing
400 mg ml71 Geneticin.
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Xenografts

WIBC-9 and the established non-IBC xenografts MC-2, MC-5
and MC-18 were maintained as described elsewhere (Shirakawa
et al, 2001). SK-BR3, MCF-7, SK-BR3/hVEGF and MCF-7/
hVEGF cells were injected subcutaneously into the second
mammary fat pads of athymic, female, ovariectomised 4-week-
old BALBc nu/nu mice (107 cells 100 ml71 serum-free culture
medium). To evaluate EPCs and hVEGF concentration in
peripheral blood, retro-orbital bleeding into capillary tubes
was undertaken from tumour-bearing mice (n=5 per study
group) when the tumour became 10 mm in maximum
diameter after transplant. Femurs were also undertaken from
these mice to extract bone marrow. All animal experiments
have been carried out with ethical committee approval. The
ethical guidelines that were followed meet the standards
required by UKCCCR guidelines (Workman et al, 1998).
WIBC-9 and the established non-IBC xenografts MC-2, MC-5
and MC-18 were maintained as described elsewhere (Shirakawa
et al, 2001).

The animals received a weekly percutaneous administration of
100 mg of 17b estradiol (Sigma, Saint Louis, MO, USA) in 10 ml
of ethanol, in order to obtain tumours with a volume of
1000 mm3.

Mobilisation of ECs and EPCs by recombinant human
GM – CSF (rhGM – CSF) and rhVEGF

rhGM – CSF (molecular weight, 14 kD) and rhVEGF (molecular
weight, 38.2 kD), in powdered form (Sigma), were dissolved in phos-
phate-buffered saline (PBS). To determine the mobilisation activity
of GM – CSF and VEGF on ECs and EPCs, 50 ng of rhGM – CSF or
10 ng of rhVEGF was injected into BALB/c nude mice (Clea Japan,
Tokyo, Japan) intraperitoneally as in vivo controls.

Preparation of cultured conditioned medium and
determination of hVEGF concentration by ELISA

SK-BR3, SK-BR3/hVEGF, MCF-7 and MCF-7/hVEGF cells
(16106 cells well71) were incubated for 2 days at 378C, and the
supernatants were then collected and stored at 7808C until used.
Concentration of hVEGF was measured by ELISA in 100 ml
samples of supernatant, using immunoassay kits (Immuno-Biologi-
cal Laboratories Co., Ltd., Fujioka, Japan). Each assay was
performed in triplicate.

Flow cytometry (quantitation of EPCs and ECs)

To examine quantity and differentiation of EPCs, mononucear cells
(MNCs) (derived from BM, PB and TI cells) from each xenografted
BALB/c nude mouse (n=5) were subjected to flow cytometric analy-
sis to examine surface expression of the proteins mFlk-1, mFlt-1,
mTie2, mVE-cadherin, mCD31, mCD34, mCD45, mTER (an
erythroid marker) and mMac-1 (CD11b; myeloid marker). Resected
xenografts were passed three times through a 200 mm gauge71 stain-
less steel mesh after being minced. The cells were suspended in a
medium containing a 20 – 60% PercollTM gradient (Amersham Phar-
macia Biotech, Uppsala, Sweden) and centrifuged at 1500 r.p.m. for
20 min at room temperature. The cells in the 30% layer of Percoll
were then collected, and erythrocytes were removed by treatment
with 0.83% ammonium chloride in 10 mM Tris-HCl (pH 7.5).
Peripheral blood was centrifuged on lymphosepar 2 (Immuno-
Biological Laboratories, Gunma, Japan) at 1800 r.p.m. for 30 min
at room temparature after red cell lysis and the cells were collected
as MNCs. Bone marrow from the femur was also treated with
0.83% ammonium chloride in 10 mM Tris-HCl (pH 7.5) for red cell
lysis and subjected to flow cytometric analysis. Rat anti-murine (m)
CD31, biotin-conjugated rat anti-mCD34, rat anti-mCD45, rabbit
anti-mFlt-1, phycoerythrin(PE)-conjugated rat anti-mFlk-1, rabbit
anti-mTie-2, goat anti-mVE-cadherin, rat anti-mTER119, and rat
anti-mMac-1 (BD Pharmingen, San Diego, CA, USA) were used as
the primary antibodies. Anti-rat fluorescein isothiocyanate (FITC),
anti-rabbit FITC, anti-goat FITC and anti-rat-phycoerythrin (PE),
streptavidin-peridinin chlorophyll-a Protein(PerCP) (BD Pharmin-
gen, San Diego, CA, USA) were used as the secondary antibodies.
All primary antibodies were subjected to isotype control. To analyse
the EPC or EC population, we gated on the lymphocyte-size fraction
(Murohara et al, 2000). EPCs(mCD34+, mFlk-1+) in the BM,PB and
TI were enumerated by three-colour flow cytometry to detect the
expression of mFlt-1, mTie-2, mVE-cadherin, mCD31.

EPC culture

On day 1 of culture, BM- or PB-derived EPCs were cultured in
Stem pro (GIBCO BRL, Grand Island, NY, USA). Floating MNCs
and sorted mCD34-positive MNCs were cultured overnight on
non-coated plastic plates, and 56105 cells were then transferred
to murine fibronectin-coated plastic plates (GIBCO BRL) for
culturing. From day 2 of culture, EPCs were cultured in SFM
(GIBCO BRL) supplemented with 20% FBS and bovine pituitary
extract. On days 4 and 13 of culture, AT cells and clusters were
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Table 1 EPC population in human breast cancer xenografts and chemotactic effect

BM PBC TI

CD34++CD457 CD34+/CD457 CD34+/CD457

CD34++Flk-1+ +TER7+Mac-17 MNCs CD34++Flk-1+ +TER7/Mac-17 CD34++Flk-1+ +TER7/Mac-17

(%) (%) (6104cells ml71) (6104cells ml71) (6104cells ml71) (%) (%)

Control 0.1+0.1 0.1+0.1 112+15 1.1+0.9 1.0+0.8 – –
WIBC-9 14.3+3.2** 10.6+2.1** 302+24** 39.6+6.9** 21.6+6.3** 28.1+6.1* 14.2+2.7**
MC-2 0.5+0.2* 0.4+0.1* 130+13 9.1+2.6* 1.6+0.5 1.4+0.2 0.5+0.1
MC-5 1.8+0.4* 0.8+0.2* 149+18* 2.3+0.6* 2.6+0.6* 2.7+0.3 1.5+0.2
MC-18 2.8+1.0* 3.5+1.0* 119+36 2.7+1.0* 3.5+1.0* 7.5+2.1 3.5+1.1
MCF-7 2.8+0.5* 1.3+0.3* 122+21 2.6+0.7* 3.0+1.1* 2.7+0.3 1.5+0.2
MCF7/hVEGF 9.8+3.3** 7.3+1.6** 270+46** 22.9+7.0** 20.5+6.2** 16.3+3.6* 10.2+2.8*
rhGM-CSF (50 ng64 i.p.) 0.5+0.1* 0.6+0.1* 200+39** 7.6+1.2** 11.8+1.6**
rhVEGF (10 ng64 i.p.) 0.7+0.2* 0.8+0.2* 120+11 5.8+1.5** 7.4+2.5**

EPC population in human breast cancer xenografts. MNCs derived from BM, PB and TI cells in each human breast cancer xenografted BALB/c nude mice: WIBC-9, MC-2, MC-5,
MC-18, MCF-7, MCF-7/huVEGF and control (n=5) were subjected to flow cytometric analysis to examine surface expression of Flk-1, CD34, CD45, TER, and Mac-1. Each
xenografted tumour was adjusted to 10 mm in diameter. In BM, PB and TI cells, all human breast cancer lines induiced up-regulation of EPC populations. In particular,
WIBC-9 demonstrated the highest level of induction among the lines. rhGM-CSF (50 ng_4 i.p.) and rhVEGF (10 ng_4 i.p.) mobilisation induced up-regulation of EPC popula-
tions at the same level as WIBC-9. *P50.05, **P50.01 compared with control.
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Figure 1 Flow cytometry (quantitation of EPCs and ECs). In WIBC-9 xenografted mice, the populations of EPCs were markedly elevated in MNCs de-
rived from BM, PB and TI cells. The following MNC subtypes were clearly visualised: CD34+/Flk-1+, CD34+/Flt-1+, CD34+/Tie2+ and CD34+/VE-cadherin+.
In WIBC-9 mice, the population of cells that were CD457/TER7/Mac-17/CD34+ was approximately 10%, almost equal to the population of cells that were
CD34+/Flk-1+ MNCs. The EC population (CD34+/CD-31+ MNCs) was also high in WIBC-9 mice, although not as high as the EPC population. EC popula-
tions of MC-5 xenografted mice were higher than those of the controls.
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examined. On day 13, numbers of AT cells in each BM and PB
sample were counted.

Immunocytochemistry

Spindle-shaped AT cells observed at 14 days of culture were
subjected to immunocytochemistry to analyse the expression of
Mac-1-FITC (Pharmingen).

Cellular uptake of acetylated LDL

We investigated Ac-LDL uptake (a process characteristic of
endothelial lineage) into AT cells (Asahara et al, 1997). AT cells
cultured on fibronectin were incubated in medium containing
10 mg ml71 DiI-labelled Ac-LDL (DiI-Ac-LDL; Molecular Probes,
Eugene, OR, USA) for 24 h at 378C. Cells were then examined
under a fluorescence microscope.

Culture of EC and EPC on HUVEC monolayer

BM-derived MNCs from WIBC-9 xenografted mice that are
mCD34+ and mFlt-1+ (sorted by FACS), were cultured in Stem
pro (GIBCO BRL, Grand Island, NY, USA) for 13 days and incu-
bated in the medium containing 10 mg ml71 DiI-labelled Ac-LDL
(DiI-Ac-LDL; Molecular Probes, Eugene, OR, USA) for 24 h at
378C. These cells were seeded on HUVEC monolayer cultured on
Growth Factor Reduced Matrigel matrix (Becton Dickinson
Labware, Bedford, MA) on day 5.

Preparation of BM derived CD34++Flk-1+ subset and
CD34++Flk-17 subset cultured conditioned medium and
determination of mVEGF and mIL-8 concentration by
ELISA

BM derived CD34++Flk-1+ MNC subset and CD34++Flk-17 MNC
subset (16105 cells well71) were sorted by using FACS (n=5) and

incubated for 14 days at 378C, and the supernatants were collected
every 12 h and stored at 7808C until used. Concentrations of
mVEGF and mIL-8 were measured by ELISA in 100 ml samples
of supernatant, using Immunoassay Kits (Immuno-Biological
Laboratories Co. Ltd., Fujioka, Japan). Each assay was performed
in triplicate.

Statistical analysis

All data are expressed as the mean+s.d. StatView computer soft-
ware (ATMS Co., Tokyo, Japan) was used for the statistical
analysis of differences in results of MTT, migration assay and
EPC population between groups. Two-sided P50.05 and P50.01
were considered to indicate statistical significance.

RESULTS

Flow cytometry (quantitation of EPCs) (Table 1 and
Figures 1 and 2)

The population of EPCs was markedly elevated in all three
sources of MNCs (BM, PB and TI) in WIBC-9 xenografted
mice. The MNC subtypes that were clearly visualised were
CD34-positive (CD34+)/Flk-1+, CD34+/Flt-1+, CD34+/Tie2+ and
CD34+/VE-cadherin+. It should be noted that, in WIBC-9 mice,
the population of cells that were CD45-negative (CD457)/
TER1197/Mac-17/CD34+ (considered part of the EPC popula-
tion) was around 10%, which is almost equal to the number
of CD34+/Flk-1+ MNCs in BM and PB. The EC population
(CD34+/CD31+ MNCs) was also prominent in WIBC-9 mice.
The real number of MNCs in PB was also elevated in WIBC-
9, MCF-7/hVEGF, and rhGM – CSF mice. EPC and EC popula-
tions were slightly elevated in MC-5. These results are shown in
Table 1, with additional data for MC-2, MC-18, MCF-7 and
MCF-7/hVEGF, plus data for chemotactic effects. All human
breast cancer lines induced EPC populations in BM, PB

E
xp

er
im

en
ta

l
T

h
er

ap
eu

ti
cs

BM derived MNCs PB derived MNCs TI derived MNCs

mFlt-1mFlt-1mFlt-1

mCD34 mCD34 mCD34

mTie-2mTie-2mTie-2

mFlk-1 mFlk-1 mFlk-1

mVE-
cadherin

mVE-
cadherinmVE-

cadherin

mCD31 mCD31 mCD31

Figure 2 EPCs(mCD34+, mFlk-1+) in the bone marrow and peripheral blood in WIBC-9, included a large number of FLT1+(98.9%/97.5%), and
TIE2+(71.8%/64.2%) but include small number of VE-cadherin (23.2%/30.6%) and CD31+(20.9%/20.9%).
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compared with control. WIBC-9 induced the highest EPC popu-
lations (10% or greater) among the breast cancer lines. rhGM –
CSF (50 ng64, i.p.) and rhVEGF (10 ng64, i.p.) also induced

significantly higher levels of EPC populations only in peripheral
blood compared with control. EPCs(mCD34+, mFlk-1+) in the
BM,PB and TI enumerated by three-color flow cytometry
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Figure 3 (A) AT cell population in the xenografts. AT cells, including ECs were counted. In WIBC-9 samples, the AT cell population was high. AT po-
pulations in other cancer lines were higher than in the control, a finding consistent with the size of the CD34+/Flk-1+ MNC population. (B) BM-derived EPC
morphogenesis on murine fibronectin. On day 4 after plating CD34+ floating MNCs, spindle-shaped AT cells and cluster formation were evident in WIBC-9
samples. On day 13, all AT cells were found to uptake DiI-labelled acLDL. Immunocytochemistry revealed that all cells were Mac-1 – negative. Each scale bar
is 50 mm.
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showed high expression of mFlt-1 and low expression of
mCD31.

AT cell population in samples from xenografted mice
(Figure 3A)

In WIBC-9 samples, AT cells comprised markedly high percentages
of total cells (20% or greater). In other lines, AT cell populations
were higher than that of the control, a finding consistent with the
observed CD34+/Flk-1+ populations.

BM-derived EPC morphogenesis on murine fibronectin
(Figure 3B)

On day 4 after plating the CD34+ floating MNCs, spindle-shaped
AT cells and cluster formation were clearly visible in WIBC-9
samples. On day 13, WIBC-9 AT cells were found to uptake DiI-
labelled acLDL. Immunocytochemistry revealed that these cells
were negative for Mac-1, indicating that they were not of a mono-
cyte lineage.

Culture of EC and EPC on HUVEC monolayer (Figure 4)

BM-derived MNCs that are mCD34+ and mFlt-1+ incorporated
DiI-labelled acLDL and were integrated in a HUVEC monolayer
(forming capillary networks) implying their maturation to ECs.

The production of angiogenic factors by putative EPCs
(Figure 5)

BM derived CD34+Flk-1+ MNC subset and CD34+Flk-17 MNC
subset produced mVEGF and mIL-8 on time course. The former
subset demonstrated significantly higher levels of murine VEGF
and IL-8 in culture supernatant on time course by ELISA.

DISCUSSION

Neovascularisation encompasses both angiogenesis and vasculogen-
esis. In angiogenesis (the classic paradigm for new vessel growth),
mature, differentiated ECs break free from their basement
membrane, migrate and proliferate to form branches of parental
vessels. The fact that tumours induce angiogenesis indicates that
tumour development and metastasis are dependent upon neovascu-
larisation, and suggests that this relationship involves angiogenic
growth factors that are specific to neoplasms (Folkman and Klags-
brun, 1987; Kendall and Thomas, 1993; O’Reilly et al, 1997;
Goldman et al, 1998; Tanaka et al, 1998; Ferrara and Alitalo,

1999; Mori et al, 2000). Although the therapeutic potential of
anti-angiogenic factors is reportedly promising, their antiangio-
genic mechanisms (inhibition of migration, proliferation and
tube formation) have not been well characterised. Vasculogenesis
involves participation of BM-derived EPCs that circulate to sites
of neovascularisation, where they differentiate into mature ECs
(Asahara et al, 1997, 1999; Isner and Asahara, 1999; Takahashi et
al, 1999; Kalka et al, 2000; Murohara et al, 2000). The results of
the present study indicate that six human breast cancer lines,
including the IBC line WIBC-9, induce postnatal EPC kinetics as
well as EC kinetics. The chemotactic modulation of proliferation
and migration of EPCs that we observed was mainly the result
of VEGF mobilisation, a finding consistent with those of a previous
study (Asahara et al, 1997). MCF-7/hVEGF and WIBC-9 showed
markedly enhanced growth on mice and higher microvascular
density by histology compared with MCF-7 in this series study
(Shirakawa et al, 2001) as previously described (Lewin et al,
1999). This enhanced growth may be a result of contribution of
endothelial precursors induced by angiogenic factor such as VEGF
(de Bont et al, 2001). Moreover, MNCs which contain haemato-
poietic precursors as well as EPCs in peripheral blood markedly
increased in WIBC-9 and MCF7/hVEGF xenografted mice. This
may be due to the mobilisation of the common precursors for
EPCs and haematopoietic cells residing in bone marrow led by
the elevation of plasma levels of factors such as VEGF secreted
by cancer cells (Hattori et al, 2001). Thus, our results support
the notion that BM-derived precursors provide a sufficient source
of ECs to enhance the growth of breast cancer in vivo. In vitro, the
CD34+ floating MNCs on day 4 after plating, spindle-shaped AT
cells and cluster formation were clearly visible in WIBC-9 samples.
Although, we have already reported the TI EPCs in WIBC-9 xeno-
grafted mice(Shirakawa et al, 2002), the population of EPCs was
markedly elevated in all three sources of MNCs (BM, PB and
TI) in WIBC-9 among the xenografted mice. These facts possibly
show the induction of vasculogenesis especially in WIBC-9. On
day 13, AT cells from WIBC-9 were found to uptake DiI-labelled
acLDL. Immunocytochemistry revealed that these cells were nega-
tive for Mac-1, indicating that they were not of a monocyte
lineage. These facts possibly show the maturation from EPC to
EC in vitro culture.

In WIBC-9, human angiogenic factors (hAng1, hVEGF, hbFGF)
and murine angiogenic factors (mflt-1, m integrin b3, mVEGF, and
mCD31), were expressed at higher levels than they were in the
three non-IBC xenografts. However, because our results indicate
that the human breast cancer lines MC-2, MC-5 and MC-18
secrete low levels of hVEGF, modulation by accessory molecules
constitutes a cytokine network, and autocrine or paracrine secre-
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Figure 4 (A) HUVECs and BM-derived EPCs (mCD34+ and mFlt-1+) formed capillary networks. (B) BM-derived EPCs, which incorporated DiI-labelled
acLDL, were integrated with HUVECs. Phase contrast photomicrographs showed capillary networks. Each scale bar is 10 mm.
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tion of angiogenic factors is likely to be associated with modulation
of EPC recruitment (Shirakawa et al, 2001). The VEGF family

receptor, mflt-1 and the Ang receptor, hTie-1, and hTie-2, mtie-2
was expressed at a higher level in WIBC-9, but mflk-1 and mflt-4
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Figure 5 BM derived CD34++Flk-1+ MNC subset and CD34++Flk-17 MNC subset (16105 cells well71) were sorted by using FACS (n=5) and in-
cubated for 14 days at 378C, and the supernatants were collected every 12 h and stored at 7808C until used. Concentrations of mVEGF and mIL-8 were
measured by ELISA in 100 ml samples of supernatant, using Immunoassay Kits (Immuno-Biological Laboratories Co., Ltd., Fujioka, Japan). Each assay was
performed in triplicate.
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were not detected in WIBC-9. Expression of hFlt-1 and KDR was
detected in all xenografts. The cytokine, hIL-1b was only detected
in WIBC-9, and a higher expression of hIL-8 was detected in
WIBC-9. The adhesion molecule, h integrin b3, m integrin b3
and m integrin av were detected at higher levels in WIBC-9 as
previously described (Shirakawa et al, 2001).

BM-, PB- and TI-derived murine EPCs and ECs from human
breast cancer-bearing mice were found to exhibit a specific pattern
of cell surface antigen expression; i.e., double positive for mCD34
and mFlk-1. The subtypes, which may show the maturation of
EPC, detected were mCD34+/mFlk-1+, mCD34+/mFlt-1+,
mCD34+/mTie-2+, mCD34+/mVE-cadherin+ and mCD34+/
mCD31+. In this model, we detected both EPCs and ECs, or their
subtypes (maturation), among BM-, PB- and TI-derived cells. The
data of multiple markers analysis, which are Flk-1, Flt-1, Tie-2, VE-
cadherin, and CD31 by using tri-color FACS, indicated that the
populations of CD34++FLK1+ in the bone marrow and peripheral
blood in WIBC-9, included a large number of FLT1+(98.9%/
97.5%), and TIE2+(71.8%/64.2%) but include small number of
VE-cadherin (23.2%/30.6%) and CD31+(20.9%/20.9%). Induced
EPCs and ECs were clearly shown to be non-malignant cells, and
May-Gimsa staining revealed that they were of the same phenotype
as rhVEGF- and rhGM – CSF – mobilised EPCs and ECs (data not
shown). Surprisingly, induced EPC populations which were posi-
tive of mCD34 and mFlk-1, showed the production of mVEGF
and mIL-8 in culture supernatant on time course. This result

implies autocrine regulation of proliferation of these precursors
in vivo, and coincides with the recent report of the regulation of
haematopoietic stem cells (Gerber et al, 2002). In our model, this
autocrine cascade may play an important role of the induction of
vasculogenesis and the tumour growth.

The chemotactic expansion of EPCs derived from PB or cord
blood and transplantation of these EPCs have previously been
reported (Asahara et al, 1997, 1999; Isner and Asahara, 1999; Taka-
hashi et al, 1999; Kalka et al, 2000; Murohara et al, 2000);
transplanted EPCs were found to significantly proliferate in ischae-
mic foci and differentiate in situ through a process of
vasculogenesis. In the present study, we demonstrated that breast
cancer-bearing mice exhibit significant expansion of precursors
including EPCs and ECs; specifically, maturation and proliferation
of these cells in tumours was clearly evident.
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