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Patient prognosis in the case of malignant brain tumours is generally poor, despite significant improvements in the early
detection of the tumours, and thus the development of new treatment modalities is needed. One of the most prominent
modalities is specific immunotherapy, for which the elucidation of antigenic molecules of malignant brain tumours recognized
by T cells is essential. We report here a gene, UDP-Gal: bGlcNAc b1, 3-galactosyltransferase, polypeptide 3, encoding three
epitope peptides recognised by tumor-reactive cytotoxic T lymphocytes in an HLA-A2-restricted manner. Two of the three
peptides possessed an ability to induce HLA-A2-restricted and tumour-reactive cytotoxic T lymphocytes from peripheral
blood mononuclear cells of patients with brain tumours. These peptides may be useful in the peptide-based specific
immunotherapy for patients with malignant brain tumours.
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Brain tumours, particularly malignant brain tumours, continue to
be a major unsolved health problem in the world. Over the past
decade, despite the fact that aggressive combined treatment modal-
ities had been developed, little improvement was made in the
prognosis and survival of patients with malignant glial neoplasms
(Shrieve et al, 1999; Nwokedi et al, 2002). Standard management
of patients with malignant glioma, especially glioblastoma multi-
forme, entailes surgical resection, then postoperative external
beam radiotherapy (EBRT). However, because of persistent disease
after both surgery and EBRT, tumour progression inevitably occurs
in all patients (Fine et al, 1993. Therefore, the development of new
therapeutic modalities for brain tumours is needed.

Recent progress in tumour immunology has clarified which
molecules are involved in specific tumour immunity, including
tumour rejection antigens that can be recognised by cytotoxic T-
lymphocytes (CTLs) in melanomas and other cancers (van der
Bruggen et al, 1991; Gaugler et al, 1994; Kawakami et al, 1994;
Romero et al, 1998; Shichijo et al, 1998; Gomi et al, 1999; Yang
et al, 1999; Kawano et al, 2000; Nakao et al, 2000; Yamada et al,
2001). Some of the antigenic peptides encoded by the tumour-
rejection antigen genes have been used as a peptide-based vaccine
in clinical trials for cancer patients, and apparent tumour regres-
sion was observed in some melanoma patients (Gaugler et al,
1994; Romero et al, 1998). Although, little information is available
regarding immunotherapy in the case of brain tumours, vaccina-
tion with tumour-rejection antigens might be useful for patients
with these tumours, particularly malignant gliomas.

We report here three epitope peptides derived UDP-Gal:
bGlcNAc b1, 3-galactosyltransferase, polypeptide 3 (GALT3), which
can be recognised by tumour-reactive CTLs in an HLA-A2-
restricted manner. These peptides could be applicable in use for
peptide-based therapeutic vaccine for patients with brain tumours.

MATERIALS AND METHODS

HLA-A2-restricted CTLs

An HLA-A2-restricted and tumour-reactive CTL line (OK-CTLs)
was established from tumour-infiltrating lymphocytes of a patient
with colon cancer (HLA-A0207/3101, -B46/51, -Cw1) by incuba-
tion with interleukin-2 (IL-2) (100 U ml71) for more than 50
days, as reported previously (Ito et al, 2001). Interferon (IFN)-g
producing activity of CTLs was assessed by an enzyme-linked
immunosorbent assay (ELISA, limit of sensitivity: 10 pg ml71).
Genotypes of HLA-class I alleles of the tumour cells have been
reported (Shichijo et al, 1998). We investigated the surface pheno-
types of CTLs using a direct immunofluorescence with fluorescein
isothiocyanate (FITC)-conjugated anti-CD3 (Nu-T3), -CD4 (Nu-
Th/i), or CD-8 (Nu-Ts/c) monoclonal antibodies (mAbs) (Nichirei,
Tokyo, Japan). For inhibition study, we used 20 mg ml71 of anti-
HLA-class I (W6/32, IgG2a), anti-HLA-class II (H-DR-1, IgG2a),
anti-CD8 (Nu-Ts/c, IgG), or anti-CD4 (Nu-Th/i, IgG1) mAbs.

Tumour cell lines

Tumour cell lines used in this study were as follows: KNS60 (HLA-
A2+ malignant glioma), KNS81 (HLA-A27 malignant glioma),
KALS1 (HLA-A2+ glioblastoma), T-98G (HLA-A2+ glioblastoma),
no.10 (HLA-A2+ anaplastic astrocytoma), no.11 (HLA-A2+

anaplastic astrocytoma), KINGS-1 (HLA-A27 anaplastic astrocyto-
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ma), SF126 (HLA-A2+ astrocytoma), B2-17 (HLA-A2+ astrocyto-
ma), U-251 (HLA-A2+ astrocytoma), ONS76 (HLA-A2+

medulloblastoma), SW620 (HLA-A2+ colon adenocarcinoma),
and QG-56 (HLA-A27 lung squamous-cell carcinoma).

Identification of a cDNA clone

The gene expression cloning method was used to identify genes
coding tumour antigens recognised by the OK-CTLs as reported
previously (Ito et al, 2001). A cDNA library of KNS60 glioblastoma
cells was inserted into an expression vector pCMV-SPORT-2 (Invi-
trogen, Carlsbad, CA, USA). The cDNA of either HLA-A0207,
-A2402, or -A2601 was amplified by reverse transcription-polymer-
ase chain reaction (RT – PCR) and cloned into an expression
vector, pCR3 vector (Invitrogen). A full description of the transfec-
tion and screening methods was published previously (Shichijo et
al, 1998). In brief, both 200 ng of plasmid DNA pools or clones
of the cDNA library and 200 ng of HLA-A0207 plasmid DNA were
mixed in 100 ml of Opti-MEM (Invitrogen) with 1 ml of Lipofecta-
mine (Invitrogen) and incubated for 30 min at room temperature.
Subsequently, DNA mixture was transfected to COS-7 cells
(56103 cells per well). Two days after cultivation, OK-CTLs
(16105 cells per well) were added to the COS-7 culture. After
18 h, we collected the supernatant and measured the concentration
of IFN-g. DNA sequencing was performed with a dyedeoxynucleo-
tide sequencing method and analysed with an ABI PRISMTM 377
DNA Sequencer (Perkin-Elmer, Foster City, CA, USA).

Semi-quantitative analysis of GALT3 expression at the
mRNA level

GALT3 expression was quantitated by RT – PCR. Total RNA was
isolated from cancer cell lines (56106 cells) using RNAzolTM B
(Tel-Test, Friendswood, TX, USA) according to the manufacturer’s
instruction. We prepared cDNA using a SuperScriptTM Preamplifi-
cation System for First Strand cDNA Synthesis (Invitrogen). The
template cDNA was further amplified by PCR. The primers used
for GALT3 amplification (nucleotides 869 – 1684) were as follows:
sense primer, 5’-GCTGGCTTACACTGAACT-3’, and antisense
primer, 5’-CGTCTTTTCTTCCCTCTCTT-3’. A primer pair used
for b-actin (nucleotides 60 – 381) was as follows: sense primer,
5’-CTTCGCGGGCGACGATGC-3’, and antisense primer, 5’-
CGTACATGGCTGGGGTGTTG-3’. PCR was performed as follows:
35 cycles for GALT3 (at 948C for 1 min, 538C for 2 min, and 728C
for 1 min) and 35 cycles for b-actin (at 948C for 1 min, 588C for
2 min, and 728C for 1 min). The expression index of GALT3
mRNA was calculated by the following formula: index=(b-actin
density of the PBMCs/b-actin density of a sample)6(GALT3
density of a sample/GALT3 density of the PBMCs).

Peptides

We searched at the literature level for peptides capable of binding
to HLA-A2 molecules (Rammensee et al, 1995), and 21 HLA-A2-
binding peptides (purity 470%) derived from GALT3 were
custom synthesised by Biologica (Nagoya, Japan) for the screening.
For further studies, three peptides (GALT3159 – 167, GALT3244 – 253,
GALT3275 – 283) with 95% purity were synthesised. For screening
of peptides, OK-CTLs were incubated with T2 cells (an HLA-A2+

TAP-deficient cell line) pre-pulsed with one of the peptides
(10 mM) for 18 h, and then the supernatant was collected to
measure IFN-g by ELISA.

In vitro culture

We used the following method to induce CTLs. PBMCs (16105

cells per well) were incubated with 10 mM of one of the peptides

in wells of 96-well micro culture plates as reported previously
(Suzuki et al, 2002). The culture medium consisted of 45%
RPMI-1640 medium, 45% AIM-V medium (Invitrogen), 10%
FCS, 100 U ml71 of interleukin-2 (IL-2, Shionogi, Osaka, Japan),
and 0.1 mM MEM nonessential amino acid solution (Invitrogen).
Half of the volume of the medium in each well was replaced every
3 days with fresh medium containing a corresponding peptide
(20 mM ) until day 12. The cells were harvested at day 13 and
tested for their ability to produce IFN-g in response to the corre-
sponding peptide or control HIV peptide. The cells were further
expanded in the presence of the corresponding peptide, IL-2,
and irradiated autologous PBMCs as antigen-presenting cells. We
examined the cells again for their surface phenotypes and
measured CTL activity by a 6 h 51Cr-release assay at days 21 – 28
of the second culture.

RESULTS

Reactivity of the OK-CTLs to brain tumours

Reactivity of the OK-CTLs, which was established from TILs of
colon cancer patient to brain tumour cell lines, was examined
to know whether this CTL lines is suitable in use for identifica-
tion of CTL-directed antigens. The detailed characteristics of the
OK-CTLs were previously reported (Ito et al, 2001). The OK-
CTLs produced significant amounts of IFN-g in response to
HLA-A2+ brain tumour cells, including KNS60 (malignant glio-
ma) and U-251 (astrocytoma), as well as colon cancer cells
(SW620), but not to HLA-A27 KALS-1 (glioblastoma) and
COS-7 cells (Figure 1A). IFN-g production was inhibited by the
addition of anti-HLA-class I (W6/32), anti-CD8, or anti-HLA-
A2 mAb, but not by that of anti-HLA-class II or anti-CD4 mAbs
(Figure 1B). These results suggest that the OK-CTLs specifically
recognised brain tumour cells in an HLA-A2-restricted manner
through an interaction between class-I and CD8 molecules, and
these were used as the effector CTLs in the following experi-
ments.

Cloning of a cDNA encoding a tumour antigen

To identify genes encoding KNS60-derived antigens recognised by
the OK-CTLs, a total of 16105 cDNA clones from the cDNA
library of KNS60 was screened. The cDNA library was co-trans-
fected with HLA-A0207 cDNA to COS-7 cells followed by a test
of their ability to stimulate IFN-g production by the OK-CTLs.
After repeated screenings, one cDNA clone 8B6 (2292 bp) was
identified. Namely, the cDNA clone stimulated the OK-CTLs in a
dose-dependent manner when the cDNA was co-transfected with
HLA-A0207 but not when it was co-transfected with control
HLA-A2402 (Figure 2). The nucleotide sequence of the clone 8B6
(GeneBank accession number is AB060691) was identical to the
partial sequence of the UDP-Gal: bGlcNAc b1, 3-galactsyltransfer-
ase, polypeptide 3 (GALT3) gene (GeneBank accession number is
NM_003781) (Figure 3). The cDNA 8B6 encoded 204 amino acids,
which were identical to the C-terminal amino acids of GALT3.
These results indicate that the GALT3 gene encoded an antigen that
was recognised by the OK-CTLs.

mRNA expression of GALT3

The expression of GALT3 in normal tissues and tumour cell lines
was analysed by semi-quantitative RT – PCR. GALT3 mRNA was
found in all of the brain tumour cell lines tested (three astrocyto-
mas, three anaplastic astrocytomas, two glioblastomas, two
malignant gliomas, and one medulloblastoma) (Figure 4A). The
expression of GALT3 in these cell lines varied, and no correlation
with histological types of original tumours was observed. In
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contrast, it was not expressed in Epstein-Barr-Virus-transformed B
cell line (EBV-BC). The highest expression was observed in normal
brain tissue (Figure 4B). Relatively strong expression of GALT3 was
also observed in several normal tissues, such as lung, kidney, and
spleen, whereas it was not expressed at all in stomach and testis.
The expression of GALT3 in several SAGE (serial analysis of gene
expression) libraries of brain tumours and other cancers including
colon cancer has been reported in a database of the National
Center for Biotechnology Information, NIH (data not shown).
The GALT3 expression in the normal brain was also confirmed
by SAGE database analysis.

Identification of immunogenic epitopes of GALT3 capable
of inducing CTLs

Twenty-one GALT3-derived peptides, possessing HLA-A2-binding
motifs, was loaded on T2 cells, and its ability to induce IFN-g
production by the OK-CTLs was examined. Although the isolated
cDNA 8B6 does not contain the sequence encoding the N-terminal
amino acids of GALT3, peptides from whole GALT3 were included
in the peptide screening. Three peptides, GALT3159 – 167

[TIMAFRWVT], GALT3244 – 253 [IMSRDLVPRI], and GALT3275 –

283 [NLLKVNIHI], induced significant levels of IFN-g production
by the OK-CTLs (Figure 5A). The stimulating effects of these
peptides was dose-dependent, and the effect was observed in more
than 10 mM of concentration for peptide loading on T2 cells
(Figure 5B). It was further tried to confirm that GALT3-reactive
T cells were CD8+ and HLA-A2-restricted. An addition of anti-
HLA-A2, anti-HLA-class I, or anti-CD8 mAb significantly
suppressed the response, but no suppression was observed by the
addition of anti-HLA-class II (HLA-DR) mAb (Figure 5C). These
results suggested that the OK-CTLs recognised the GALT3-derived
peptides in association with HLA-A2 molecules.

CTL induction by the GALT3-derived peptides from
patients with brain tumours

We tested these three GALT3 peptides to determine their ability to
induce CTLs from six patients with brain tumours (four glioblas-
tomas, one metastatic brain tumour, and one meningioma) and
six healthy donors. Their PBMCs were stimulated six times in vitro
with one of the three peptides (GALT3159 – 167, GALT3244 – 253, and
GALT3275 – 283), and IFN-g production in response to the corre-
sponding peptide was analysed (Figure 6). EBV-derived peptide
(GLCTLVAML) capable of binding to HLA-A2 molecules was used
as a positive control as reported previously (Suzuki et al, 2002).
The PBMC culture of five patients (two glioblastomas, one meta-
static brain tumour, one meningioma, and one lung cancer)
produced significant levels of IFN-g in response to the correspond-
ing peptide-loaded T2 cells (Figure 6A). In contrast, none of the
PBMC cultures of six healthy donors produced IFN-g in response
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Figure 1 Reactivity of the OK-CTLs to brain tumours. (A) The OK-CTLs were tested for their ability to produce IFN-g in response to a panel of sti-
mulator cells at different effector to target (E/T) ratios. Target cells are KNS60 (HLA-A2+ malignant glioma), U251 (HLA-A2+ astrocytoma), SW620 (HLA-
A2+ colon adenocarcinoma), KALS-1 (HLA-A27 glioblastoma), and COS-7. (B) Effects of mAbs on IFN-g production by the OK-CTLs in response to
KNS60 was examined. 20 mg ml71 of mAb was added to the culture. Values represent the mean of the triplicate determinants. *P50.05.
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to the corresponding peptide stimulation except for the EBV
peptide (data not shown). Cytotoxic activity of the peptide-reactive
T cells was further examined by a 6 h 51Cr-release assay, and repre-
sentative results are shown in Figure 6B. The peptide-reactive T
cells from PBMCs of two patients stimulated with either
GALT3159 – 167 or GALT3275 – 283 showed significant levels of cyto-
toxicity against HLA-A2+ KNS-60 and SW620 (colon cancer),
but not HLA-A27 KALS-1, HLA-A2+ EBV-B cells, or autologous
PHA-blasts. In contrast, no cytotoxic activity was observed in
GALT3244 – 253 induced PBMCs (data not shown).

DISCUSSION

We identified that GALT3 was an antigen recognised by HLA-A2-
restricted and brain tumour-reactive CTLs. GALT3 was expressed

at mRNA levels in all of the brain tumour cell lines tested. The
message was also detectable in several normal tissues with the high-
est expression in brain. The GALT3, also termed b3GalNAc-T1,
possessed a globoside (Gb4) synthase activity (Amado et al, 1998;
Okajima et al, 2000). Globoside is the most prominent neutral
glycosphingolipid in both cerebromicrovascular endothelial cells
and erythrocytes. Brain tumours, such as pilocytic astrocytomas
and pleomorphic xanthoastrocytomas, also contain a high propor-
tion (415%) of globoside in total neutral glycolipids (Yates et al,
1999). A function of globoside as an initiator of signal transduction
associated with cell adhesion has been reported (Song et al, 1998).
Interestingly, globoside has also been reported as a tumour-asso-
ciated glycosphingolipid antigen defined by a monoclonal
antibody (Hakomori, 1998). Namely, clustered glycosphingolipid
antigens organised with transducer molecules in the microdomain
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Figure 4 (A) Semi-quantitative RT – PCR analysis of the expression of GALT3 in brain tumour cell lines. Calculation method of the expression index is
shown in the Materials and Methods. SAGE tags per million are cited from SAGE database. (B) Expression of GALT3 mRNA in the normal tissues.
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have been found to comprise a structural and functional unit
involved in tumour cell adhesion coupled with signal transduction,
and they may also initiate the metastatic process.

We isolated a cDNA clone which is partially identical to the
GALT3 gene. In addition, several bands were observed when
RT – PCR was done on two brain tumour cell lines, as shown in
Figure 4A. These results may indicate that the GALT3 gene could
be alternatively spliced, especially in tumour cells, or have a gene
family. Further study is needed to elucidate this observation.

We identified three GALT3-derived peptides that can be recog-
nised by HLA-A2-restricted CTLs, and two of them possessed an
ability to induce HLA-A2-restricted and tumour-reactive CTLs in
PBMC culture of patients with brain tumours, but not in PBMC
culture of healthy donors. These CTLs did not show cytotoxicity
to either HLA-A2+ normal lymphoid cells (PHA-blast) or EBV-B
cells. Several studies suggest that, at least in some circumstances,
glioma cells can be recognised by CTLs or other immunocompe-
tent cells in vivo, despite the location of glioma cells in the
central nervous system (CNS), which is believed to be an immuno-
logically-privileged site (Yates, 1986; Hickey et al, 1991). It has also
been reported that brain-tumour vessels lose their blood-brain
barrier features after interaction with immune cells (Owens et al,
1994), and activated T cells cross the brain – blood barrier of such
vessels (Hafler and Weiner, 1987). In addition, significant traffick-
ing of activated T cells throughout the CNS has been reported
(Yates, 1986; Hickey et al, 1991). Those results together with the
results in the present study suggest that peptide-based immu-
notherapy is feasible in patients with brain tumours. The GALT3
peptides may also be applicable for other cancers, since peptide-
specific CTLs could be induced in PBMCs of a lung cancer patient
(Figure 6A) and the GALT3 expression was observed in various

tumour cell lines (data not shown). Vaccination of GALT3 peptide
for patients with brain tumour might induce adverse events
because of its expression in normal brain and the other normal
tissues. However, it should be noted that no severe adverse effects
in normal tissues or organs have been reported in the clinical trials
of cancer vaccines specific to the MAGE-1, MAGE-3, Melan-A,
gp100, tyrosinase, and NY-ESO-1 in melanoma patients, although
these molecules are expressed in the normal testis, retina, and/or
melanocytes at both the mRNA and protein levels (Hu et al,
1996; Marchand et al, 1998; Rodolfo and Colombo, 1999; Thurner
et al, 1999; Mackensen et al, 2000; Jager et al, 2001). Similarly, no
severe adverse effects on the function of normal organs have been
observed in our clinical trials of peptide-based cancer vaccines for
colon cancer patients, even though some of the target molecules
are ubiquitously expressed in normal colon (Miyagi et al, 2001).
Intracellular traffic of antigenic molecules and subsequent proces-
sing of the antigenic peptides in proteasomes of normal cells
may differ from that of tumour cells in these cases. Alternatively,
some molecules in normal cells, including a family of serpins (a
group of serine-protease inhibitors), might be involved in resis-
tance of normal cell to CTL-mediated lysis.

In conclusion, we identified that GALT3 could be recognised by
HLA-A2-restricted and tumour-reactive CTLs and that two GALT3
peptides were capable of inducing brain tumour-reactive CTLs
from HLA-A2+ patients with brain tumours. In general, the
HLA-A2 allele is found in 53% of Chinese, 40% of Japanese,
49% of Northern America Caucasians, 38% of Southern America
Caucasins, and 23% of African Blacks (Imanishi et al, 1992). These
results suggest that these GALT3-derived peptides could be a
candidate for therapeutic vaccines for a relatively large number
of brain tumour patients with HLA-A2 molecules in the world.
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Figure 6 Induction of brain tumour-reactive CTLs by the GALT3-derived peptides. (A) PBMCs from four brain tumour patients (Pt.1,2. glioblastoma, Pt.3.
metastatic brain tumor, Pt.4. meningioma) and one lung cancer patient (Pt.5) were stimulated with one of the three GALT3-derived peptides (10 mM) and
IFN-g production in response to the corresponding peptide was examined. (B) PBMCs of two brain tumour patients, which were stimulated with either the
GALT3159 – 167 or GALT3275 – 283, were examined for their cytotoxicity against four target cells. Values represent the means of triplicate assay. *P50.05.
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