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Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in
the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal
cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and
properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal
epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold
interindividual variability. Nifedipine oxidation activity+s.d. for colorectal cancer microsomes was 67.8+36.6 pmol
min71 mg71. The Km of the tumoral enzyme (42+8 mM) is similar to that in healthy colorectal epithelium (36+8 mM)
and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity
was 3.1+1.2 pmol min71 mg71. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by
the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of
cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the
ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs.
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Among the enzyme families that compose the cytochrome P450
multienzymatic system, the most relevant for drug metabolism
are CYP1, CYP2 and CYP3. The cytochrome P450 3A (CYP3A)
enzyme subfamily represents up to 60% of total cytochrome
P450 in human liver samples (Shimada et al, 1994), and it is
involved in the metabolism of a huge number of procarcinogens,
mutagenic agents and clinically used antineoplastic drugs (for a
review, see Guenguerich, 1999). Three isozymes compose the
CYP3A subfamily in humans. These are CYP3A4 and CYP3A5,
with close catalytic functions, and the foetal form CYP3A7
(Gillam et al, 1995; Nelson et al, 1996) Recently a new CYP3A
gene designated as CYP3A43 has been described (Gellner et al,
2001).

CYP3A-mediated drug metabolism is not limited to liver.
Evidences for the expression of CYP3A in extrahepatic tissues have
been reported, and in particular the expression of CYP3A enzyme
activity or immunoreactive protein in diverse segments of intestinal
epithelium has been shown. This includes oesophageal squamous
mucosa (Hughes et al, 1999), duodenum, gallbladder (Yokose et
al, 1999) and jejunum (Sandstrom et al, 1999). The fact that intest-
inal CYP3A significantly contribute to the ‘first pass’ metabolism of
several drugs (Kolars et al, 1991) indicates that local metabolism in
intestinal epithelium is a relevant factor in individuals treated with
CYP3A substrates. Evidences indicating the presence of CYP3A4

and CYP3A5 mRNA transcripts in human colorectal epithelium
and in cultured colorectal cancer lines have been reported (Kolars
et al, 1994; McKinnon et al, 1995; Fontana et al, 1999; Yao et al,
2000; Nakamura et al, 2002). However the presence of functional
CYP3A enzyme activity in colorectal epithelium has not been
demonstrated to date.

Major clinical implications of the putative presence of CYP3A in
colorectal epithelium derive from the use of anticancer drugs that
are CYP3A4 substrates in colorectal cancer therapy. CYP3A-
mediated drug metabolism may be a relevant clinical factor in
tumour sensitivity to these anticancer drugs. If functionally active
CYP3A enzyme activity is present in colorectal cancer tissue, the
enzyme would permit to cancer cells the metabolism of substrates
such as cyclophosphamide or ifosphamide that are activated by
CYP3A. By turn, the presence of CYP3A activity would confer to
cancer cells the ability to inactivate two widely used taxanes, such
as paclitaxel and docetaxel and vinca alkaloids that are CYP3A4
substrates (Guengerich, 1999; Yao et al, 2000).

Whether functional CYP3A enzyme activity is present in color-
ectal tissue with extents of activity high enough to permit
intracellular drug inactivation, and many related questions remains
to be answered. In this study we investigated the presence of func-
tionally active CYP3A activity in human colorectal cancer tissue.
The extent of the enzyme activity, interindividual variability, the
properties of the cancer enzyme, and the occurrence of qualitative
and quantitative differences on the enzyme activity between healthy
and cancer tissues were studied. The role of the CYP3A enzyme as
a putative local inactivation mechanism for the anticancer drug
paclitaxel in cancer tissue was also analysed.
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METHODS

Chemicals

Nifedipine and oxidised nifedipine were obtained from Ultrafine
Chemicals (Manchester, UK). Ketoconazole was from ICN Biome-
dical Inc. (OH, USA). NADPH, glucose-6-phosphate and glucose-
6-phosphate dehydrogenase were purchased from Boehringer
Mannheim (Barcelona, Spain). Paclitaxel was purchased from Sigma
Chemical Co. (Madrid, Spain). These and all other chemicals used
in this study were of analytical grade. Water was filtered through
a Milli Q water system (Millipore Corp., Bedford, MA, USA).

Patient selection and preparation of samples

Microsomes were prepared from biopsy specimens from 17 patients
that underwent surgical resection of colorectal cancer. Both, cancer
tissue and healthy surrounding tissue were collected. White Spanish
patients (nine males, eight females) with age (s.d. and range) 65.4
(11.1, 45 – 78) years, diagnosed of colorectal carcinoma were
included in the study from January 2000 to January 2001. In every
patient the diagnosis of carcinoma was based on the histological data
of the surgical resection specimens. Human liver samples were
obtained from five unrelated white Spanish patients (three males,
two females) with ages (s.d. and range) 47.8 (12.3, 32 – 61) years,
who underwent laparotomy for pathologies not related to liver
disease (e.g. cholelitiasis without cholestasis, nonhepatic abdominal
tumours). The samples were flash-frozen and stored at 7808C until
analysis. Informed consent was obtained from all patients, and all
individuals requested agreed to participate in the study. The protocol
of the study was approved by the Ethics Committee of the University
Hospital Infanta Cristina (Badajoz, Spain). The preparation of
microsomal fractions and the measurements of protein concentra-
tion were performed as described elsewhere (Garcı́a-Agúndez et al,
1990). All samples were minced with scissors and homogenised at
48C in a Polytron PTMR2100 (Kinematica AG, Switzerland). Due
to differences on toughness among the different tissues analysed,
standard homogenisation times were 90 s for liver samples and
180 s for colorectal samples.

Assay for CYP3A4 enzyme activity

The CYP3A4 activity was studied by using the enzyme-specific
substrate nifedipine as described by Guengerich et al (1986), except
that the incubation volume was reduced to 30 ml and the amount
of microsomal protein used was 75 to 150 mg. The reaction was
stopped with the addition of 6 ml acetonitrile. The samples were
immediately frozen for 10 min and centrifuged for 10 min in a
microfuge at maximum speed.

Twenty ml of the supernatant were injected onto an Spherisorb
S3 ODS2 4.66150 mm column (Waters Corporation, Milford,
MA, USA) and the elution of nifedipine and its oxidised metabolite
was monitored at 254 nm. The flow rate was 1.25 ml min71 and
the mobile phase consisted of 0.1% diethylamine, pH 6 and 38%
acetonitrile. The oxidised metabolite and nifedipine eluted at 8.0
and 9.0 min, respectively. Once determined that the Km values
were similar in all tissues studied, a high nifedipine concentration
(200 mM) was used to assess the Vmax values for every individual
sample. The inhibitory effect of ketoconazole was tested by using
identical protein concentration in all tissues studied because keto-
conazole is lipophilic, and the unbound concentration of the drug
may be influenced by total protein content in the assay mixture.

Assay for paclitaxel metabolism

Human liver microsomes and colorectal cancer microsomes were
assayed for paclitaxel metabolism as described elsewhere (Harris

et al, 1994) except that the incubation volume was reduced to
30 ml, and the amount of microsomal protein was 75 to 150 mg.
The reactions were stopped by the addition of 9 ml acetonitrile.
The samples were frozen during 10 min and then centrifuged
during 10 min in a microfuge at maximum speed. Twenty ml of
the supernatant were analysed for paclitaxel and its metabolites
by HPLC (Huizing et al, 1995).

All the enzyme activity analyses were performed in amber vials
to prevent light degradation of substrates and metabolites. All
measurements were done within incubation time and under linear
conditions for microsomal protein concentration. Results obtained
from incubation mixtures of 30 ml were identical to these from
incubation mixtures of 250 ml that were randomly used as controls
for reaction volume. All the assays included samples that were
stopped at time=0 and blanks without microsomes and/or without
substrate. All the experiments were done at least for triplicate.
Kinetic data were evaluated according standard procedures by
graphical analysis of Lineweaver-Burk, Dixon and Hill’s plots. All
the results given are mean+s.d. of three or more measurements
done under identical conditions.

Analyses for mutations at the CYP3A4 gene

Genomic DNA was obtained from all biopsy specimens analysed in
this study, by using standard methods (Neitzel, 1986). Two muta-
tions affecting the CYP3A4 gene were analysed in DNA from
cancer and healthy colorectal epithelium for all the samples included
in the study. These mutations were selected due to the relatively high
frequency of allelic variants containing these mutations among
Caucasian individuals, as compared to other mutated gene variants
(Sata et al, 2000; Cavalli et al, 2001; Eiselt et al, 2001; Hsieh et al,
2001). The allelic variants analysed were CYP3A4*1B and CYP3A4*2.
We have shown that among Spaniards CYP3A4*1B is present with an
allele frequency over 5% (Garcı́a-Martı́n et al, 2002). The analyses
for CYP3A4*1B were carried out by amplification-restriction proce-
dures (Cavalli et al, 2001). The analysis for CYP3A4*2 was carried
out by direct sequencing of amplified PCR products as follows:
The amplification of the corresponding gene region was carried
out as described elsewhere (Sata et al, 2000). The sequencing mixture
containing 2 ml of the purified PCR products and 60 nM of the
corresponding primer, was assembled according the instructions of
the manufacturer (dRhodamine terminator cycle sequencing kit,
Applied Biosystems). Automated sequencing was carried out in an
Abi Prism 310 genetic analyser (Applied Biosystems). The sequen-
cing conditions were as follows: after a loading time of 60 s, the
samples were electrophoresed during 120 min at a voltage of 12
kV, with an intensity of 4 mA. The temperature was 508C.

RESULTS

The 17 human healthy colorectal epithelium samples analysed
showed measurable levels of nifedipine oxidase activity. The mean
value+s.d., as measured with 200 mM nifedipine was 97.9+
74.8 pmol min71 mg protein71. The enzyme activity displayed a
nearly 10-fold interindividual variability with values ranging 33.1
to 294.8 pmol min71 mg protein71 (95% confidence inter-
val=59.5 – 136.4). The observed variation in enzyme activity was
independent of mutations corresponding to CYP3A4*1B and
CYP3A4*2 gene variants, since none of the subjects participating
in the study carried any of these mutated genes.

Colorectal cancer microsomes displayed ability to oxidise nifedi-
pine with a mean value+s.d. of 67.8+36.6 pmol min71 mg
protein71. A nearly 10-fold variability in the enzyme activity was
also observed in colorectal cancer microsomes, with values ranging
17.0 to 156.1 pmol min71 mg protein71 (95% confidence inter-
val=49.0 – 86.5). Genotyping analyses of the cancer samples fully
corresponded to that of healthy tissue for every individual analysed.

E
xp

erim
en

tal
T

h
erap

eu
tics

Local paclitaxel metabolism in colorectal cancer

C Martı́nez et al

682

British Journal of Cancer (2002) 87(6), 681 – 686 ª 2002 Cancer Research UK



Therefore mutations corresponding to the gene variants analysed
are not responsible for the observed interindividual variability in
enzyme activity in cancer tissue.

The mean cancer activity represented 70% of the mean activity
in healthy tissue, but a high variability in the differences of the
enzyme activity between cancer and healthy tissue was observed.
Extreme cases ranged from an 85% decrease of the enzyme activity
in cancer tissue to a nearly three-fold increase in the enzyme activ-
ity, as compared to healthy tissue. A lack of correlation was
observed between the activities of microsomes from colorectal
cancer and healthy epithelium (Figure 1; r2= 0.024).

Kinetic analyses of the enzyme activity were performed in
pooled microsomal samples from colorectal cancer microsomes
(Figure 2A), healthy colorectal epithelium (Figure 2B) and human
liver microsomes (Figure 2C). The Vmax values were smaller in a
20-fold factor in colorectal cancer and in healthy epithelium, as
compared with that of human liver microsomes. The Km values
indicate similar affinity for nifedipine for all tissue enzymes (Table
1). The effect of the CYP3A inhibitor ketoconazole added to the
reaction mixture was tested in pooled colorectal cancer micro-
somes, in healthy colorectal epithelium and in human liver
microsomes for comparison. Figure 3 shows the inhibition curves
for cancer and human liver enzyme activities. Inhibition para-
meters are summarised in Table 1. It is to be noted that
ketoconazole inhibited enzyme activities from all tissues with simi-
lar Hill’s coefficient values. However, colorectal enzyme activities
show decreased sensitivity to the inhibitory effect of ketoconazole,
as compared with the human liver microsomal enzyme.

Paclitaxel metabolism in colorectal cancer

Microsomes from five randomly selected colorectal cancer samples
and three randomly selected human liver samples were analysed for
paclitaxel metabolism. For this, microsomes were incubated with
10 mM paclitaxel in the presence of an NADPH-regenerating system.
Paclitaxel was metabolised at a rate of 3.1+1.2 pmol min71 mg
protein71 in colorectal cancer samples. The activity observed in
human liver microsomes was 37.8+9.6 pmol min71 mg
protein71. In order to identify tissue-specific qualitative differences
in paclitaxel metabolism, the rate formation of two paclitaxel metabo-
lites was analysed. The predominant metabolite in human liver
microsomes, with a mean activity+s.d. of 26.8+12.1 pmol-
min71 mg71 was 6-alpha-hydroxypaclitaxel. The secondary
metabolite 3’-p-hydroxypaclitaxel, a CYP3A4 product (Harris et al,
1994), was produced at a rate of 10.9+9.0 pmol min71 mg71. In
colorectal cancer microsomes both metabolites were also identified.
Interestingly, the predominant metabolite in colorectal cancer is 3’-
p-hydroxypaclitaxel with a mean activity of 2.6+0.8 pmol
min71 mg71. The rate of formation of 6-alpha-hydroxypaclitaxel in
colorectal cancer microsomes was 0.5+0.4 pmol min71 mg71.
Figure 4 shows the inhibition curve of 3’-p-hydroxypaclitaxel forma-
tion by ketoconazole in colorectal cancer microsomes. Over 80% of
the cancer enzyme activity is inhibited with ketoconazole
concentrations over 300 nM. The mean+s.d. of the IC50 value is
30.6+4.8 nM and the Hill’s coefficient was 1.02+0.16.

DISCUSSION

The development of resistance to the cytotoxic effect of taxanes is
related to a decrease in the ability to accumulate the drug within
the cells, changes in the stability of microtubules, interference in
the ability of the drug to bind tubulin, and changes in the expression
of tubulin genes (Cabral, 2001). This study is aimed to assess the
potential of CYP3A activity in colorectal cancer as a putative resis-
tance mechanism capable to influence anticancer therapy with
drugs that are CYP3A4 substrates. The findings reported in this paper
provide evidences for local drug inactivation within cancer cells.

Extrahepatic drug metabolism is a major factor that contributes
to clinical drug effects. The most obvious mechanism is intestinal
metabolism that often plays a key role in drug inactivation. In
addition, tissue-specific expression of drug metabolising enzymes
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Figure 1 Correlation between CYP3A-nifedipine oxidation activities in
healthy colorectal epithelium and colorectal cancer tissue. Linear trend data
are shown within the graph.
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Figure 2 Saturation kinetics for nifedipine in pooled microsomes from
different tissues. (A) colorectal cancer; (B) healthy colorectal epithelium;
(C) human liver microsomes. Pooled samples were obtained from a mix-
ture of 750 mg of microsomal protein for each of the following samples: 1,
2, 3, 6, 8, 10, 13, 14, 15, 16 and 17. The selection of the samples was based
on the availability of tissue (i.e. the biggest surgical specimens were used).
Pooled human liver microsomes were obtained from a mixture of 500 mg
of microsomal protein each from five white individuals. None of them car-
ried CYP3A4*1B or CYP3A4*2 gene variants. Results are mean+s.d. of at
least three independent experiments. The r2 values for the double recipro-
cal plots (not shown) of these data are (A) 0.995; (B) 0.996; and (C)
0.991.
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is likely to be involved in local drug inactivation. If cancer develops
in a tissue that constitutively expresses an anticancer-inactivating
enzyme, it might be important to elucidate whether the cancer cells
maintain the ability to express the enzyme activity. In this regard,
an association between the expression of the dihydropyrimidine
dehydrogenase enzyme and 5-fluorouracil resistance in human
cancer cells has been demonstrated (Kirihara et al, 1999). Similar

findings have been reported for glutathione transferase enzyme
activity and resistance to mitomycin C (Singh et al, 1992; Nishiya-
ma et al, 1997).

To date only indirect data indicated the presence of CYP3A in
healthy colorectal tissue. No previous studies on CYP3A activity have
been performed in human colorectal cancer. This study provides
novel information on several relevant issues, including the demon-
stration of the presence in colorectal cancer cells of a constitutive
enzyme that permits the inactivation of CYP3A4 substrates. The
extent and variability of the activity, the kinetic properties, and the
implications of the tumour enzyme in paclitaxel metabolism are also
analysed. A key factor when investigating local metabolism in cancer
cells is to elucidate whether the expression level of enzymes is modi-
fied during the carcinogenesis process. This was analysed by
comparing the cancer enzyme activity and the activity in surrounding
healthy epithelium. Paired Wilcoxon comparison of data shown in
Figure 1 revealed non-significant differences between healthy and
colorectal tissue activities. However it should be noted that there is
an increase in the activity in some cases and a decrease in some
others. The rationale for this observation is unknown. Part of the
interindividual and intraindividual variability on enzyme activity
may be related to sampling or to differences in cellularity of indivi-
dual specimens. Nevertheless, the regulation of the expression of
CYP3A enzyme activities is poorly understood, and it cannot be ruled
out that factors affecting gene expression may be modified in some
cancer cells during the carcinogenesis process. Minor differences in
CYP3A mRNA concentration between human colorectal cancer and
healthy tissue have been reported recently (Nakamura et al, 2002).
This fully agrees with the findings concerning enzyme activity
reported in the present study. Differences in kinetic properties and
susceptibility to ketoconazole inhibition, exhibited by malignant
colonic epithelium versus normal colonic epithelium, are negligible
and indicate the absence of substantial qualitative differences of
CYP3A activity between normal and malignant tissue.

Both, healthy tissue and colorectal cancer enzymes, show Km

values for nifedipine that are similar to that of human liver.
However it is to be noted that ketoconazole, a CYP3A-specific
inhibitor (Guengerich, 1999) does not fully inhibit colorectal
enzymes, as it does in liver. This suggests the occurrence of
organ-specific differences on CYP3A enzyme activity. These differ-
ences may be related to the relative contribution of CYP3A
enzymes in colorectal epithelium (Fontana et al, 1999), since it
has been shown that in microsomal preparations containing
CYP3A4 and CYP3A5, an increase in the molar fraction of CYP3A5
drives the apparent Ki value for ketoconazole to high values (Gibbs
et al, 1999). The high sensitivity of CYP3A activity to the chemical
environment, and in particular to levels of coenzymes such as cyto-
chrome b5 and NADPH reductase (Buters et al, 1994; Gillam et al,
1995) may also underlie organ-specific differences. In addition,
tissue differences in lipid composition may influence the enzyme
activity and the inhibitory effect of ketoconazole. Regardless these
tissue differences, tumour activity is inhibited to a high extent by
submicromolar ketoconazole concentrations, as shown in Figure 4.

The main paclitaxel metabolite in colorectal cancer is 3’-p-
hydroxypaclitaxel, a CYP3A4 metabolite (Harris et al, 1994). The
wide range in the extent of enzyme activity in cancer samples
suggest that local metabolism of anticancer drugs in tumour tissue
is expected to occur with a high interindividual variability. Never-
theless, it should be pointed out that with both drugs, nifedipine
and paclitaxel, cancer cells have a small fraction of the CYP3A
activity in the liver. Although colorectal metabolism could play a
relevant role in enterohepatic recycling and reabsorption of pacli-
taxel, the ability of colorectal tissue to influence systemic
disposition of paclitaxel is expected to be of secondary importance.
The significance of the activity is rather related to the drug mole-
cules that are inactivated within cancer cells. At usual treatment
schedules cancer cells are exposed to paclitaxel concentrations

E
xp

erim
en

tal
T

h
erap

eu
tics

Table 1 Kinetic parameters of CYP-3A-nifedipine oxidase enzyme
acitivity

Healthy

Colorectal colorectal

Parameter cancer epithelium Human liver

Km (mM) 42+8 36+8 27+6
Vmax (pmol min71 mg71) 75+9 104+12 1550+120
Ketoconazole inhibition

Imax (percentage of activity) 64+4 62+9 100
Ki (nM) 170+12 130+20 17+2
Hill’s coefficient 0.9+0.4 1.1+0.2 0.9+0.2

Results correspond to mean+s.d. of at least five independent experiments.
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Figure 3 Inhibition of nifedipine oxidase enzyme activity by ketocona-
zole. The experiments were carried out in pooled microsomes from hu-
man liver and colorectal cancer. The percentage of activity is referred to
the activity in the absence of inhibitor. Results are mean+s.d. of at least
three independent experiments.
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Figure 4 Inhibition of 3’-p-hydroxypaclitaxel formation by ketoconazole
in colorectal cancer. The experiments were carried out in pooled micro-
somes from colorectal cancer. The percentage of activity is referred to
the activity in the absence of inhibitor. Results are mean+s.d. of three in-
dependent experiments.
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within the low micromolar range (Wu et al, 2000), which is high
enough to consider the cancer enzyme within the frame of pharma-
cological relevance.

The potential clinical interest of the findings reported in the
present study is based on the possibility to inhibit the cancer
enzyme, and thereby the local inactivation mechanism. This study
shows that the cancer enzyme activity can be inhibited to a high
extent by ketoconazole. It is tempting to speculate that individuals
suffering from colorectal cancer tumours with high CYP3A activity
would benefit from the combined use of taxanes and CYP3A inhibi-
tors. Although from in vitro studies it could be expected that
CYP3A4 inhibition cause an increased systemic exposure to pacli-
taxel, in vivo studies revealed that the coadministration of
paclitaxel and ketoconazole does not change the plasma concentra-
tion of paclitaxel and its 6-alpha-hydroxylated metabolite (Jamis-
Dow et al, 1997). This is an expected finding since in most indivi-
duals paclitaxel metabolism in liver is mainly carried out by the
CYP2C8 enzyme (Sonnichsen et al, 1995; Desai et al, 1998), that
is not substantially inhibited by ketoconazole. In contrast, our find-
ings indicate that local metabolism in colorectal cancer tissue is
mainly CYP3A-dependent, and that CYP2C8 metabolism is of
secondary importance. This is in agreement with the low level of
expression of CYP2C8 in intestine (Klose et al, 1999). These findings
taken together suggest that the coadministration of ketoconazole

may decrease paclitaxel inactivation in colorectal cancer without
significant effects on systemic paclitaxel metabolism. However, the
high number of drugs that are CYP3A4 substrates and the fact that
cancer patients are often simultaneously treated with several drugs,
makes it undesirable to cause a systemic inhibition of CYP3A4 in
these patients. Efforts should be made to design methods capable
to cause a local inhibition of the tumour CYP3A4 enzyme. It should
be mentioned that CYP3A4 is also involved in the metabolism of
vinca alkaloids (Yao et al, 2000). Therefore the presence of CYP3A4
enzyme activity in colorectal cancer cells may also influence tumour
sensitivity to these drugs. Further studies should focus on the
presence and kinetic properties of CYP3A4 and other drug-inacti-
vating enzymes in other cancers that are treated with CYP3A4
substrates such as breast, lung and ovary cancers.
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