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Death-associated protein kinase is a positive regulator of programmed cell death induced by interferon g. To investigate the
role of epigenetic inactivation of death-associated protein kinase in gastrointestinal cancer, we examined the methylation status
of the 5’ CpG island of the death-associated protein kinase gene. Methylation of the 5’ CpG island was detected in 3 of 9
colorectal and 3 of 17 gastric cancer cell lines, while among primary tumours, it was detected in 4 of 28 (14%) colorectal and
4 of 27 (15%) gastric cancers. By contrast, methylation of the edge of the CpG island was detected in virtually every sample
examined. Death-associated protein kinase expression was diminished in four cell lines that showed dense methylation of the
5’ CpG island, and treatment with 5-aza-2’-deoxycitidine, a methyltransferase inhibitor, restored gene expression. Acetylation
of histones H3 and H4 in the 5’ region of the gene was assessed by chromatin immunoprecipitation and was found to
correlate directly with gene expression and inversely with DNA methylation. Thus, aberrant DNA methylation and histone
deacetylation of the 5’ CpG island, but not the edge of the CpG island, appears to play a key role in silencing death-associated
protein kinase expression in gastrointestinal malignancies.
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Death-associated protein kinase (DAPK) was initially identified as a
positive mediator of programmed cell death induced by interferon
g (Deiss et al, 1995), though it is now known to also be involved in
cell death induced by FAS, tumour necrosis factor a, and detach-
ment from extracellular matrix (Inbal et al, 1997; Cohen et al,
1997, 1999). DAPK also suppresses oncogene-induced transforma-
tion induced by p19ARF-dependent activation of p53 (Raveh et al,
2001), thus regulating a key apoptotic checkpoint in human
tumours. As disruption of processes involved in programmed cell
death is a common feature of human cancer, it is significant that
DAPK was recently shown to be inactivated by promoter methyla-
tion in a variety of human tumours, including B cell lymphoma,
small cell lung cancer and multiple myeloma (Kissil et al, 1997;
Katzenellenbogen et al, 1999; Esteller, 2000; Tang et al, 2000; Dong
et al, 2001; Kim et al, 2001; Ng et al, 2001).

There is now compelling evidence that DNA methylation plays a
key role in silencing gene expression during the progression of
gastrointestinal cancer (Jones and Laird, 1999; Toyota and Issa,
1999; Baylin et al, 2001). We previously showed that p16INK4A,
E-cadherin, hMLH1 and 14-3-3sigma are all inactivated in gastric
cancers by promoter hypermethylation (Suzuki et al, 1999, 2000),
and that methylation of p16INK4A and hMLH1 is frequently

detected in colorectal and gastric cancers associated with the
CpG island (CGI) methylator phenotype (Toyota et al, 1999a,b).
The precise molecular mechanism responsible for DNA methyla-
tion-dependent gene silencing remains unclear; however, recent
findings suggest the involvement of histone deacetylation (Bird
and Wolffe, 1999; Magdinier and Wolffe, 2001; Nguyen et al,
2001). Indeed, inhibition of histone deacetylation acts synergisti-
cally with inhibition of DNA methylation (Cameron et al, 1999)
to induce gene expression.

To clarify the molecular mechanism involved in silencing DAPK
expression in gastrointestinal cancer, we examined the DNA
methylation and histone acetylation status of the 5’ CGI of the
DAPK gene in a panel of cell lines and primary cancers. Our results
indicate that aberrant methylation and histone deacetylation of the
region around the transcription start site is closely associated with
the loss of DAPK expression, and that methyltransferase and
histone deacetylase inhibitors act synergistically to restore expres-
sion. The use of such drugs may thus represent an effective new
approach to the treatment of colorectal and gastric cancer.

MATERIALS AND METHODS

Cell line and tissue

Nine colorectal and 17 gastric cancer cell lines were used for
methylation analysis. Of these, all of the colorectal and nine of
the gastric cancer cell lines were obtained either from the American
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Type Culture Collection (Manassas, VA, USA) or from the Japa-
nese Collection of Research Bioresources (Tokyo, Japan). The
remaining eight gastric cancer cell lines (HSC39, HSC40, HSC41,
HSC42, HSC43, HSC44, HSC45 and SH-101) were established by
K Yanagihara (Yanagihara et al, 1991, 1993). In addition, 28
primary colorectal and 27 gastric cancer specimens as well as two
specimens of normal colon mucosa and two of normal stomach
mucosa were obtained from the Department of Surgery, Sapporo
Keiyukai Hospital (Suzuki et al, 2000).

All cell lines were cultured in appropriate medium. DNA was
extracted using the phenol/chloroform extraction method, while
total RNA was extracted using ISOGEN (Nippon Gene, Japan)
according to the manufacture’s instructions. To analyse restoration
of DAPK expression, MKN28 and HSC44 cells were incubated for
96 h with 1 mM 5-aza-2’-deoxycytidine (5-aza-dC) (SIGMA, St.
Louis, MO, USA) and/or for 24 h with 300 nM trichostatin
(TSA), a histone deacetylase inhibitor (WAKO, Tokyo, Japan),
after which they were harvested and their RNA extracted for
further analysis.

Combined bisulphite restriction analysis (COBRA)

Initially, genomic DNA was treated with sodium bisulphite
(SIGMA) as described previously (Clark et al, 1994). Briefly, 2 mg
of DNA were denatured for 10 min at 378C in 2 M NaOH, after
which 30 ml of 10 mM hydroquinone (Sigma Chemical Co) and
520 ml of 3 M sodium bisulphite (pH 5.0) were added, and the
resultant mixture was incubated for 16 h at 508C. The modified
DNA was then purified using a Wizard DNA Purification System
(Promaga, Madison, WI, USA), after which it was again treated
with NaOH and precipitated. Finally, the DNA precipitate was
resuspended in 20 ml of TE buffer and stored at 7208C until use.

Combined bisulphite restriction analysis (COBRA), a semi-
quantitative methylation analysis, was carried out as described
previously (Xiong and Laird, 1997). PCR was performed in a
volume of 50 ml containing 16PCR buffer (67 mM Tris-HCl,
pH 8.8, 16.6 mM (NH4)2SO4, 6.7 mM MgCl2, and 10 mM beta-
mercaptoethanol), 0.25 mM dNTP mixture, 0.5 mM each primer
and 1.0 U of Hot Start Taq polymerase (TaKaRa). Touchdown
PCR was then carried out using the primer sequences and restric-
tion enzymes listed in Table 1. Primers were designed based on the
nucleotide sequences obtained from Genbank (AL591852). Samples
(20 ml) of PCR product were digested with restriction enzymes that
cleave CpG sites retained because of methylation. After ethanol
precipitation, the DNA was subjected to 3% agarose gel electro-
phoresis and stained with ethidium bromide.

RT – PCR

Total RNA was prepared from samples of normal stomach and
colon tissue, lymphocytes and cancer cell lines, after which 5 mg
samples were reverse-transcribed using Superscript II (GIBCO) to
prepare first strand cDNA. Primer sequences and PCR parameters
are shown in Table 1. Controls consisted of RNA treated identically
but without the addition of reverse transcriptase and are labelled as
RT. The integrity of the cDNA was confirmed by amplifying
GAPDH as described previously (Suzuki et al, 2000). Samples
(10 ml) of amplified product were then subjected to 2.5% agarose
gel electrophoresis and stained with ethidium bromide.

Chromatin immunoprecipitation analysis (ChIP)

ChIP was performed as described previously (Magdinier and
Wolffe, 2001). Briefly, DNA was crosslinked with chromatin by
incubating cells in 1% formaldehyde for 10 min at 378C. The cells
were then washed with ice-cold PBS containing protease inhibitors
and resuspended in lysis buffer (1% SDS, 10 mM EDTA, 50 mM

Tris-HCl, pH 8.0, and protease inhibitor). The DNA with chroma-

tin was then fragmented into 200 – 1000 bp segments by sonication,
after which immunoprecipitation was carried out for 16 h at 48C
using anti-acetylated histone H3 antibody (Upstate Biotechnolo-
gies, Lake Placid, NY, USA) as a probe. The resultant immune
complexes were collected using protein A-agarose, after which
the DNA was purified by phenol/chloroform extraction, precipi-
tated with ethanol and resuspended in water. About 1 out of 100
of the precipitated DNA was used for PCR; 1 out of 100 of the
solution before adding antibody was used as internal control for
the amount of DNA. PCR was performed in solution containing
16PCR buffer (TaKaRa), 1 mM primers, 0.25 mM dNTP mixture
and 1.0 U of Hot Start Taq polymerase (TaKaRa). The primer
sequences for the PCR reaction are shown in Table 1. The ampli-
fied products were subjected to agarose gel electrophoresis, and the
intensity of resultant bands was calculated using a Lane and Spot
Analyzer (Atto, Japan).

RESULTS

DAPK contains a CGI that spans approximately 2 kb in its 5’
region. By comparing the genomic sequences obtained by the
human genome project (AL591852) with cDNA sequences
(AU100257) obtained from a 5’-end-enriched cDNA library
constructed using the oligo-capping method (Suzuki et al, 1997),
the transcription start site of DAPK was determined to be
239 bp upstream from the boundary between exon 1 and intron
1 (Figure 1A, arrow). To examine the methylation status of DAPK
in colorectal and gastric cancers, five primer sets were designed to
span the entire DAPK CGI (Figure 1A). Among the 26 cell lines
analysed, 96% (25 of 26) showed methylation of Alu, situated at
the 5’ edge of the CGI, while 88% (23 of 26) showed methylation
of exon 2, situated at the 3’ edge (Figure 1B). By contrast, methyla-
tion of the 5’ CGI and intron 1 was detected in only 23% (6 of 26)
and 35% (9 of 26) of cell lines, respectively, and all cells showing
methylation of the 5’ CGI also showed methylation of intron 1
(Figure 1B).

To examine the methylation status of DAPK in primary
tumours, COBRA was performed using samples of bisulphite-trea-
ted DNA from 28 colorectal and 27 gastric cancer cases and a
corresponding sample of normal gastric mucosa (Figure 2). Methy-
lation of exon 2 was detected in virtually every tumour analysed,
whereas methylation of the 5’ CGI was detected in only 14% (4
of 28) colorectal and 15% (4 or 27) of gastric cancer cases.

To assess DAPK expression, RT – PCR was performed using
cDNA prepared from normal tissues and cancer cell lines (Figures
3A,B). Eight of 10 gastric and 5 of 7 colorectal cancer cell lines
expressed DAPK at readily detectable levels, while four cell lines
(MKN28, HSC44, Colo320 and SW480) showed no expression at
all. To confirm the role of DNA methylation in the silencing of
DAPK expression, two of the cell lines not expressing DAPK
(MKN28 and HSC44) were treated with 5-aza-dC, a methyltrans-
ferase inhibitor, and/or TSA, a histone deacetylase inhibitor.
Expression of DAPK was partially restored by treating the cells with
5-aza-dC, and addition of TSA synergistically enhanced the effect
(Figure 3C). Treatment with TSA alone had no affect on gene
expression.

Summary of methylation level of each region and expression of
DAPK is shown in Figure 4. We found that the cell lines could be
divided into five groups based on the methylation densities deter-
mined by COBRA. Although methylation of Alu and exon 2
occurred frequently, such methylation at the edge of the CGI did
not affect DAPK expression, and all cell lines belonging to groups
1, 2 and 3 expressed DAPK mRNA at readily detectable levels. On
the other hand, methylation of the 5’ CGI was well correlated with
loss of expression. It is also notable that, with the exception of
Colo320, which was methylated at the 5’ CGI but not at Alu or
exon 2, cell lines showing methylation of 5’ CGI typically showed
substantial methylation of the entire CGI.
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Table 1 Primer sequences for bisulphite-PCR, RT – PCR and ChIP analysis

Sequence Annealing temperature (8C) Enzyme, Size (bp)

Bisulphite-PCR
Alu F: 5’-GTGGGAAGTAGAGAAAGTGGATAGA-3’ 60 (3), 58 (4), 56 (5), 54 (26) TaiI

R: 5’-ACCTCCCAAAATACTAAAATTACAAAC-3’ *190=165+25
5’ CGI-1 F: 5’-AGYGTYGGTTTGGTAGGGTAG-3’ 60 (3), 58 (4), 56 (5), 54 (26) BstUI

F: 5’-TAACTCRATCCRACTATCCTCCTC-3’ *158=118+40
**5’ CGI-2 F: 5’-TAGATTTTGTYGTTGYGAGTTGT-3’ 55 (3), 53 (4), 51 (5), 49 (26) BstUI

R: 5’-ATCCCCATTAACCRCCTACC-3’ *157=120+37
Intron 1 F: 5’-GGGAAGGGGAGAGGGTGGTTA-3’ 64 (3), 61 (4), 58 (5), 55 (26) TaqI

R: 5’-ACCCAACTTTCCCACCTCCAA-3’ *170=125+45
Exon 2 F: 5’-TAAAAGGATTGGAGATTGATGTATG-3’ 55 (3), 53 (4), 51 (5), 49 (26) MboI

R: 5’-TACCCCCTTTACCTACCAAATTC-3’ *188=116+72

RT – PCR F: 5’-AACGTGAACATCAAGAACCGAGAA-3’ 60 (3), 58 (4), 56 (5), 54 (23) 398
R: 5’-CTGGCTCCCATCAGACAGAGATAC-3’

ChIP
Alu F: 5’-GGGGTGGGAAGTAGAGAAAGTGG-3’ 60 (35) 182

R: 5’-TGCTGGGATTACAGGCGTGAG-3’
5’ CGI F: 5’-GAGAGGCTGCTTCGGAGTGTGAG-3’ 62 (35) 164

R: 5’-GCGGCGGGAACACAGCTAGG-3’
Exon 2 F: 5’-AAAGGACTGGAGACTGATGCATGAG-3’ 60 (35) 187

R: 5’-GTACCCCCTTTACCTGCCAAGTTC-3’
GAPDH F: 5’-TCGGTGCGTGCCCAGTTGAACC-3’ 62 (35) 246

R: 5’-ATGCGGCTGACTGTCGAACAGGAG-3’

*Sizes of PCR products and sizes of fragments after restriction digestion were shown. **Primers were designed based on the reverse strand.
Y=C or T, R=G or A.
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Figure 1 Analysis of DAPK CGI methylation. (A) CpG sites are shown as vertical bars; exons and Alu are shown as solid boxes. The regions analysed are
shown below the line. (B) Representative results of a COBRA of the DAPK CGI carried out in a panel of colorectal and gastric cancer cell lines. The methy-
lation status of the five indicated regions of the DAPK CGI was examined by bisulphite-PCR using appropriate primers. The regions and restriction enzymes
(in parenthesis) used are shown on the left. The degree of methylation was calculated by densitometry and are shown as percentages below the gels; M,
methylated alleles.
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To examine the histone acetylation status in the region around the
DAPK CGI, ChIP assays were performed using antibodies against
acetylated histone H3 and H4 (Figure 5A), enabling relative levels
of histone acetylation were determined for each region of the
DAPK CGI (Figure 5B). Overall, acetylation of both histone H3
and H4 were found to correlate directly with gene expression
and inversely with DNA methylation in the region around the tran-
scription start site (5’ CGI). It is notable that histone acetylation at
the edge of the CGI (Alu and exon 2) also correlated with gene
expression, regardless of whether the DNA was methylated. Levels
of histone acetylation were enhanced slightly by treatment with 5-
aza-dC and were significantly restored by treatment with TSA.

DISCUSSION

DAPK is a pro-apoptotic serine/threonine kinase whose expression
is induced by interferon-g (Deiss et al, 1995), and whose inactiva-
tion by DNA methylation of its promoter region is associated with
various human tumours (Kissil et al, 1997; Katzenellenbogen et al,
1999; Esteller, 2000; Kim et al, 2001; Tang et al, 2000; Dong et al,
2001). Indeed, Kang et al (2001) recently reported that the DAPK
gene is methylated in 30% of gastric cancers and in 30% of samples
of gastric mucosa from regions adjacent to the cancers. Still, the
precise relationship between DNA methylation and gene expression
remains unclear. For instance, DAPK has a relatively large CGI at
its 5’ end, and it was not known whether the entire CGI is methy-
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lated in cancer cells or whether regional methylation is sufficient to
silence gene expression. To clarify this issue, we used a semi-quan-
titative methylation assay to assess the methylation status of the
entire DAPK CGI in a large panel of colorectal and gastric cancer
cells. Our findings indicate that dense methylation of the region
around the transcription start site is closely associated with DAPK
gene silencing.

Our findings also suggest that the edge of the CGI is more
susceptible to methylation in cancer cells than more central
regions, but this does not cause gene silencing, and the functional
consequences of methylating the edge of the CGI remain unknown.
One attractive hypothesis is that methylation of the edge – for
example, at transposons such as Alu and B1 or at simple repetitive
sequences as shown in E-cadherin and GST-P (Graff et al, 1997;
Yates et al, 1999; Millar et al, 2000) serves as a trigger for spreading
methylation into the centre of the region. In fact, Alu sequences
situated about 500 bp upstream of the DAPK 5’ CGI are densely
methylated in a large majority of samples, suggesting the role for
repetitive elements as a trigger for 5’ CGI methylation. Methylation
of exon 2, was also frequently detected in cell lines, regardless of
gene expression, which is consistent with earlier findings that
methylation downstream of the CGI does not affect gene silencing
(Jones, 1999; Salem et al, 2000).

Among the six cell lines that showed methylation of the 5’
CGI, all showed methylation of intron 1. Although methylation
of intron 1 is not sufficient to silence DAPK expression, it may
facilitate the spread of methylation from exon 2 to the 5’ CGI.
One exception to that scenario was seen in Colo320 cells, where

the 5’ CGI was methylated, but Alu and exon 2 were not. In
that case, methylation may be redistributed in some way, rather
than simply spread. Further investigation will be necessary to
determine how methylation spreads into the centre of the
DAPK CGI, which is normally strongly protected from methyla-
tion.

Recent studies have shown that histone deacetylation also plays a
key role in methylation-induced gene silencing (Bird and Wolffe,
1999; Cameron et al, 1999; Nguyen et al, 2001). Consistent with
that idea, our ChIP results showed DNA methylation and histone
acetylation to be inversely related in the region around the tran-
scription start site. Restoration of histone acetylation by
treatment with TSA, a histone deacetylase inhibitor, did not restore
gene expression, however; furthermore, DNA methylation silenced
gene expression even in the presence of histone acetylation. Cell
lines showing dense methylation of the 5’ CGI tended to show
low levels of histone acetylation at both the 5’ CGI and at edge
of the CGI; thus function of the whole 5’ region of the gene
appears to be linked to histone deacetylation, which is followed
by chromatin condensation in these cell lines. In contrast, cell lines
not methylated at the 5’ CGI showed acetylated histone at the edge
of island, regardless of whether the DNA was methylated or not,
which suggests the association between DNA methylation and
histone acetylation is regulated differently in the 5’ CGI and at
the edge of the CGI.

As the level of DAPK expression is unaffected by exposure to
a DNA-damaging agent in unmethylated cells (data not shown),
activation of DAPK is believed to be controlled at a post-tran-
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below the column: (A) Alu; (B) 5’CGI; (C) exon 2.
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scription level. In fact, Shohat et al (2001) demonstrated that
DAPK activity is controlled by phosphorylation of Ser308 within
the CaM regulatory domain. The role of DAPK in the tumor-
igenesis of gastrointestinal cancer remains unknown, but in
malignant lymphoma, loss of DAPK reduces responsiveness to
interferon-g (Katzenellenbogen et al, 1999). In addition, DAPK
was recently shown to be involved in activation of a p53-depen-
dent apoptotic pathway, and its loss appears to result in
inactivation of p53 in tumours (Raveh et al, 2001). Conversely,
restoration of DAPK to physiological levels in a highly meta-
static mouse lung carcinoma model, in which DAPK
expression was otherwise silenced, strongly reduced the meta-
static capacity of the disease (Inbal et al, 1997). It therefore
seems likely that loss of DAPK confers a selective advantage
to cancer cells and may play a causative role in the metastasis
of gastrointestinal cancer. Thus, DAPK may be a useful molecu-
lar marker suggesting the prognosis of gastrointestinal cancers.
Because the number of cases we analysed in this study was
too small to find correlation between DAPK methylation and
metastasis, it is necessary to determine such correlation using
large number of cases.

In summary, we have shown that regional DNA methylation and
histone deacetylation plays a key role in silencing DAPK gene
expression in colorectal and gastric cancers. Inhibition of DNA
methylation and histone deacetylation acted synergistically to
induce gene expression, suggesting that DAPK may be an effective
molecular target for the treatment of a subset of colorectal and
gastric cancers through activation of apoptosis using methyltrans-
ferase and histone deacetylase inhibitors.
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