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Vascular endothelial growth factor is an important angiogenic factor for tumour progression because it increases endothelial-
cell proliferation and remodels extracellular matrix in blood vessels. We demonstrated that hyperthermia at 428C, termed
heat shock, suppressed the gene expression and production of vascular endothelial growth factor in human fibrosarcoma HT-
1080 cells and inhibited its in vitro angiogenic action on human umbilical vein endothelial cells. The gene expression of
alternative splicing variants for vascular endothelial growth factor, VEGF121, VEGF165 and VEGF189, was constitutively detected
in HT-1080 cells, but the VEGF189 transcript was less abundant than VEGF121 and VEGF165. When HT-1080 cells were
treated with heat shock at 428C for 4 h and then maintained at 378C for another 24 h, the gene expression of all vascular
endothelial growth factor variants was suppressed. In addition, HT-1080 cells were found to produce abundant VEGF165, but
much less VEGF121, both of which were inhibited by heat shock. Furthermore, the level of vascular endothelial growth factor
in sera from six cancer patients was significantly diminished 2 – 3 weeks after completion of whole-body hyperthermia at 428C
(49.9+36.5 pg ml71, P50.01) as compared with that prior to the treatment (177.0+77.5 pg ml71). On the other hand,
HT-1080 cell-conditioned medium showed vascular endothelial growth factor-dependent cell proliferative activity and the
augmentation of pro-matrix metalloproteinase-1 production in human umbilical vein endothelial cells. The augmentation of
endothelial-cell proliferation and pro-matrix metalloproteinase-1 production was poor when human umbilical vein endothelial
cells were treated with conditioned medium from heat-shocked HT-1080 cells. These results suggest that hyperthermia acts as
an anti-angiogenic strategy by suppressing the expression of tumour-derived vascular endothelial growth factor production and
thereby inhibiting endothelial-cell proliferation and extracellular matrix remodelling in blood vessels.
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Angiogenesis is essential for tumour development and metastasis,
and tumour-derived angiogenic factor(s) play(s) an important role
in the formation of new vessels and tumour progression in vivo
and in vitro (Weidner et al, 1991; Ferrara et al, 1992; Folkman,
1992). Vascular endothelial growth factor (VEGF) (Ferrara and
Henzel, 1989; Leung et al, 1989), basic fibroblast growth factor
(bFGF) (Abraham et al, 1986; Gospodarowicz et al, 1987), trans-
forming growth factor-a (TGF-a) (Schreiber et al, 1986) and
platelet-derived growth factor (Holmgren et al, 1991; Risau et al,
1992) all have been identified as angiogenic factors. Among them,
VEGF is considered to be the pivotal factor in tumour neovascular-
isation, because it increases in endothelial-cell proliferation and
migration (Leung et al, 1989; Connolly et al, 1989; Ferrara et al,
1992), enhancement of tumour growth in vivo (Kondo et al,
1993, 2000) and remodelling of perivascular matrices by augment-
ing proteinases such as matrix metalloproteinases (MMPs) (Fisher
et al, 1994; Moses, 1997).

VEGF is a 34 – 42 kDa heparin-binding and dimeric glycopro-
tein, and four isoforms have been characterised. Three of these,

VEGF121, VEGF165 and VEGF189 are composed of 121, 165 and
189 amino acids, respectively, and are generated by alternative spli-
cing of eight exons (Tischer et al, 1991). VEGF189 is encoded by all
the exons, and VEGF165 and VEGF121 are missing the amino acid
residues corresponding to exon 6 and exons 6 and 7, respectively
(Tischer et al, 1991). The fourth VEGF cDNA species, VEGF206

was discovered in a human foetal-liver cDNA library and the gene
codes for a predicted protein with 206 amino acids. In comparison
to VEGF165, VEGF206 contains an additional 41 amino acids
between exons 5 and 7 as well as a basic 24 amino acid insertion
also found in VEGF189 (Houck et al, 1991). VEGF165 and VEGF121

have been reported to be secreted in a wide variety of transformed
cell lines (Senger et al, 1986; Connolly et al, 1989; Myoken et al,
1991; Kondo et al, 1994) and VEGF165 is an abundant species
detectable in several tumours (Ferrara et al, 1992). In contrast,
VEGF189 and VEGF206 exist on the cell surface as structural profiles
possessing hydrophobic residues (Houck et al, 1991). On the other
hand, several therapeutic studies show that the inhibition of the
biological activity and/or the production of VEGF suppresses
tumour angiogenesis and growth in vivo (Kim et al, 1993; Kondo
et al, 1993; Asano et al, 1995; Borgstrom et al, 1996; Cheng et
al, 1996; Saleh et al, 1996; Im et al, 1999), suggesting that
tumour-derived VEGF plays a crucial role for tumour neovascular-
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isation in vivo. Therefore, the suppression of VEGF expression in
tumours would become a potent clinical strategy in cancer therapy
for regulating tumour angiogenesis.

Hyperthermic treatment of malignant tumours is one cancer
therapy by which the possible mechanism of the proliferation of
tumour cells is relatively inhibited (Urano et al, 1983; Cellier et
al, 1993). In addition, Toyota et al (1997) reported that a whole-
body hyperthermia inhibits metastasis of breast cancer cells in rat
in vivo. Moreover, it has been reported that not only progression
but also metastasis of tumours are inhibited in most cases of cancer
patients treated with a whole-body hyperthermia (Takeuchi et al,
1996, 1999). We recently reported that heat shock suppresses in
vitro invasive activity of human fibrosarcoma HT-1080 cells by
suppressing the production of membrane type 1-MMP (MT1-
MMP) and the activation of proMMP-2/progelatinase A (Sato et
al, 1999; Sawaji et al, 2000). On the other hand, Fajardo et al
(1988) reported that hyperthermia inhibits angiogenesis in vivo.
Therefore, it is likely that hyperthermia is efficacious for preventing
tumour metastasis and invasion, but it remains unclear whether
hyperthermia could influence the expression of VEGF in tumour
cells.

In the present study, we investigated the effect of heat shock on
the production of VEGF in HT-1080 cells and the biological activ-
ities of conditioned medium from heat-shocked HT-1080 cells for
endothelial-cell proliferation and proMMP-1/interstitial procolla-
genase production. Heat shock suppressed the constitutively
expressed gene and the production of alternative splicing variants
of VEGF in HT-1080 cells. Similar suppression of VEGF level
was observed in vivo when patients with different cancers were
treated with the whole-body hyperthermia. In addition, the
augmentation of endothelial-cell proliferation and proMMP-1
production was reduced in the conditioned medium from heat-
shocked HT-1080 cells. Therefore, we suggest that hyperthermia
suppresses angiogenesis by inhibiting the production of tumour-
derived VEGF in vivo and in vitro.

MATERIALS AND METHODS

Cell culture and heat-shock treatment

Human fibrosarcoma HT-1080 cells (Health Science Research
Bank, Osaka, Japan) were cultured in MEM (Life Technologies,
Inc., Grand Island, NY, USA) supplemented with 10% FBS (Asahi
Techno Glass Co., Tokyo, Japan) and MEM non-essential amino
acids (Life Technologies). Human umbilical vein endothelial cells
(HUVECs) (Takara Shuzo Co., Shiga, Japan) were cultured in
EBM supplemented with 2% FBS, 10 ng ml71 human epidermal
growth factor and 12 mg ml71 bovine brain extract (Takara
Shuzo). In the heat-shock experiments, confluent HT-1080 cells
were treated with heat shock at 428C for 4 h in MEM supplemen-
ted with 0.2% lactalbumin hydrolysate and then incubated for
another 24 h at 378C (Sato et al, 1999; Sawaji et al, 2000). The
harvested culture medium was used for assay of endothelial-cell
proliferation and Western blot analysis as described below.

Semiquantification of VEGF mRNA by reverse
transcriptase-polymerase chain reaction (RT – PCR)

Cytoplasmic RNA in untreated and heat-shocked HT-1080 cells was
isolated by ISOGEN (Nippon Gene Co., Toyama, Japan) according
to the manufacturer’s instructions. One microgram of the isolated
RNA was subjected to the synthesis of first-strand cDNA by Molo-
ney-murine leukaemia virus reverse transcriptase, RNase inhibitor
(Roche Diagnostics, Tokyo, Japan) and oligo(dT)12 – 18 primer (Life
Technologies) for 1 h at 378C. One-tenth of the cDNA generated from
the RT reaction was used for PCR amplification for human VEGF and
human glyceraldehyde-3-phosphate dehydrogenase (GAPDH). To
detect the individual splicing variants for VEGF, a common forward

primer and variant-specific reverse primers were designed (Table 1).
The forward and reverse primers for human GAPDH were 5’-
CCACCCATGGCAATTCCATGGCA-3’ and 5’-TCTAGACGGCAG-
GTCAGGTCCACC-3’, respectively. Polymerase chain reaction
(PCR) was performed with 928C for 40 s, at 548C for 40 s and 728C
for 1 min with 25 – 29 cycles for VEGFs and GAPDH. The amplified
PCR products were analysed on 1% agarose gel and visualised by ethi-
dium bromide staining. The PCR products were subcloned into
pGEM-T vector (Promega, Madison, WI, USA), and then the cDNA
sequence was confirmed with a Sequenase version 2.0 DNA sequen-
cing kit (Amersham Biosciences, Tokyo, Japan) according to the
manufacturer’s instructions. The relative amounts of the amplified
gene for VEGFs were quantified by densitometric scanning using
the Image Analyzer LAS-1000 plus (Fuji Photo Film Co., Ltd., Tokyo,
Japan) and then indicated after correction for that of GAPDH.

Western blot analysis for VEGF and proMMP-1

The production of VEGF in HT-1080 cells, and that of proMMP-1
in HUVECs were monitored by Western blot analysis with antibo-
dies against human VEGF and human proMMP-1, respectively.
Briefly, the harvested culture medium was subjected to SDS – PAGE
with 12.5% and 10% acrylamide gel to detect VEGF and proMMP-
1, respectively, and then proteins separated in the gel were electro-
transferred onto a nitrocellulose membrane as described previously
(Takahashi et al, 1991). The membrane was reacted with rabbit
anti-(human VEGF) antibody (IBL, Gunma, Japan) or sheep
anti-(human proMMP-1) antibody (kindly provided by Dr Hideaki
Nagase), which was then complexed with horseradish peroxidase-
conjugated goat anti-(rabbit IgG)IgG or goat anti-(sheep IgG)IgG
(Sigma Chemical Co., St. Louis, MO, USA), respectively. Immu-
noreactive VEGF and proMMP-1 were visualised with ECL-
Western blotting detection reagents (Amersham Biosciences)
according to the manufacturer’s instructions. The relative amounts
of VEGF and proMMP-1 were quantified by densitometric scan-
ning using the Image Analyzer LAS-1000 plus (Fuji Photo Film).

Endothelial-cell proliferation assay

HUVECs (500 cells well71) were seeded into 96-multi well plates
and cultured for 24 h at 378C to achieve cell adhesion. The cells
were washed twice with Ca2+- and Mg2+-free phosphate buffered
saline (PBS) and then incubated for the indicated periods with
the HT-1080 cell-conditioned medium which was diluted 1 : 1
(vol : vol) with 0.5% FBS/EBM. The proliferation of HUVECs was
monitored by alamer Blue assay (Wako Pure Chemical Co., Osaka,
Japan) (Ahmed et al, 1994) according to the manufacturer’s
instructions. The fluorescence was measured by excitation at
540 nm and emission at 590 nm.

Neutralizing experiment with antibodies

The HT-1080 cell-conditioned medium was incubated first with
50 mg ml71 of polyclonal antibody against human VEGF, human
TGF-a, human tumour necrosis factor-a (TNF-a) (R&D Systems
Inc., Minneapolis, MN, USA) or monoclonal antibody against
human bFGF (Transduction Laboratories, Lexington, KY, USA) at
48C for 24 h and then incubated with Protein A-Sepharose (Amer-
sham Biosciences) for 1 h at room temperature. The Protein A-
Sepharose-IgG complex was precipitated by centrifugation at
10 0006g for 10 min and the resultant supernatant was sterilised
and then used for the assay of endothelial-cell proliferation and
proMMP-1 production as described above.

Whole-body hyperthermia

Whole-body hyperthermia was performed with a far-infrared radia-
tion heat device, using the instruments RHD2002 and RHS7500
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(Enthermics Medical Systems Inc., Menomonee Falls, WI, USA)
(Robins et al, 1985). Patients were anaesthetised and then subjected
to the hyperthermia by maintaining a temperature of 42 – 438C
locally in the hyperthermic chamber and 41.5 – 428C systemically
(rectal temperature) for 1 h (Takeuchi et al, 1996). The hyperther-
mic therapy was performed once a week for 4 weeks. Two – seven
days prior to the first treatment, and 2 – 3 weeks after the comple-
tion of the whole-body hyperthermia, blood was collected from the
patients and then the serum level of VEGF was measured by VEGF
immunoassay. This therapeutic treatment was performed only after
approval of the protocol by the ethics committee of the hospital
and after obtaining informed consent.

Measurement of VEGF

The levels of VEGF in sera from six cancer patients before and after
whole-body hyperthermia were measured by human VEGF Immu-
noassay kit (R&D Systems) according to the manufacturer’s
instructions. A VEGF antibody contained in this kit recognises
both VEGF121 and VEGF165, and thus the immunoassay can be
used to determine mass values for human VEGF121 and VEGF165.

Statistical analysis

Data were analysed by Student’s t-test. P50.01 was considered to
be statistically significant.

RESULTS

Gene expression of VEGF variants in HT-1080 cells

The VEGF gene consists of the common exons 1 – 5 and the indivi-
dually specific exons for the variants: exon 8 for VEGF121, exons 7
and 8 for VEGF165, and exons 6, 7 and 8 for VEGF189 (Figure 1).
A common forward primer for VEGF (v-F) (17 – 40 bp, exon 1)
was designed downstream from the start codon (Table 1 and Figure
1). Specific reverse primers for VEGF121 (v121-R), VEGF165 (v165-
R) and VEGF189 (v189-R) were also designed across exons 5 and 8
(418 – 441 bp), exons 5 and 7 (418 – 441 bp) and exons 6 and 7
(481 – 504 bp), respectively (Table 1 and Figure 1). We first charac-
terised the expression of VEGF transcripts in HT-1080 cells by RT –
PCR analysis using these PCR primers. As shown in Figure 2, the

gene expression of VEGF121 (425 bp), VEGF165 (425 bp) and
VEGF189 (488 bp) was detected in HT-1080 cells and the amplifica-
tion was cycle number-dependent. In addition, the gene level of
VEGF189 was found to be less than that of VEGF121 and VEGF165

in HT-1080 cells. Furthermore, we confirmed that the DNA
sequence of the amplified VEGF variants was completely identical
to that in the previous paper by Leung et al (1989) (data not
shown). However, we did not detect a VEGF206 transcript in HT-
1080 cells by RT – PCR using the common forward primer and a
specific reverse one that was designed with a terminal codon in exon
8 (data not shown).

Heat shock suppresses gene expression and production of
VEGF in HT-1080 cells

We examined the influence of heat shock on the gene expression of
VEGF variants in HT-1080 cells. When the cells were pretreated with
heat shock at 428C for 4 h and then incubated for another 24 h at
378C, VEGF121, VEGF165 and VEGF189 transcripts were decreased
to 34, 45 and 41%, respectively, of the values for the untreated cells
(Figure 3). Western blot analysis showed that HT-1080 cells
produced abundant VEGF165 with the same mobility of recombi-
nant human VEGF165 (Figure 4, lane 1). The production of
VEGF165 in heat-shocked HT-1080 cells was suppressed to 53% of
the values for untreated cells (Figure 4, lane 2). In addition, VEGF121

was detected in HT-1080 cells, but in a much smaller amount than
VEGF165, and its production was similarly suppressed by heat shock
(Figure 4, lanes 1 and 2). Therefore, these results suggest that heat
shock suppresses the production of VEGF165 and VEGF121 through
the depression of their mRNA expression in HT-1080 cells.

Effect of conditioned medium from heat-shocked HT-1080
cells on proliferation of HUVECs

VEGF possesses the mitogenic activity to cause proliferation of
endothelial cells in angiogenesis (Leung et al, 1989; Connolly et
al, 1989; Ferrara et al, 1992). We next examined the endothelial-cell
proliferative activity of conditioned medium from untreated and
heat-shocked HT-1080 cells. When the conditioned medium from
HT-1080 cells was added to HUVECs, the endothelial-cell prolif-
eration was increased in a time-dependent manner and doubled
for 3 days (Figure 5, filled triangles). However, the conditioned
medium from heat-shocked HT-1080 cells no longer indicated
proliferative activity toward HUVECs (Figure 5, filled squares).
On the other hand, as shown in Figure 6, the enhancement of
endothelial-cell proliferation by the conditioned medium from
HT-1080 cells (lane 2) was neutralised with an antibody against
VEGF (lane 3), but not by an antibody to bFGF (lane 4), which
is known as another angiogenic factor in vivo and in vitro (Abra-
ham et al, 1986; Gospodarowicz et al, 1987). In addition, we
confirmed that neither TGF-a nor TNF-a antibody interfered with
the proliferative activity on HUVECs (data not shown). These
results indicate that the enhancement of endothelial-cell prolifera-
tion by conditioned medium from HT-1080 cells was mediated
specifically by VEGF, and suggest that heat shock is adequate for
inhibiting the endothelial-cell proliferation by suppressing
tumour-derived VEGF production.
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Table 1 PCR primer sets for amplification of human VEGF splicing variants

Forward Reverse

Gene Primer Sequence (location) Primers Sequence (location) Product size

VEGF121 v121-R 5’-CCGCCTCGGCTTGTCACATTTTTC-3’ (418 – 441 bp) 425 bp
VEGF165 v-F 5’-CTTGGGTGCATTGGAGCCTTGCCT-3’ v165-R 5’-TGAGCAAGGCCCACAGGGATTTTC-3’ (418 – 441 bp) 425 bp
VEGF189 (17 – 40 bp) v189-R 5’-CCCACAGGGAACGCTCCAGGACTT-3’ (481 – 504 bp) 488 bp

1-5

1-5

1-5

VEGF121

VEGF165

VEGF189

v121-R

v165-R

v189-R

v-F

v-F

v-F

8

8

8

7

76

Figure 1 Structure of human VEGF mRNA. Exons are represented by
box and numbered. Arrows indicate the specific primers for VEGF variants
as shown in Table 1.
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Effect of conditioned medium from heat-shocked HT-1080
cells on production of endothelial proMMP-1

The augmentation of proteolytic activity is crucial for extracellular
matrix (ECM) remodelling in order to provide a permissive envir-
onment in which activated endothelial cells can proliferate and
form new vessels (Moses, 1997; Liotta et al, 1991). In addition,
endothelial MMPs such as MMP-1 and MT1-MMP have been
shown to participate in ECM remodelling in the perivascular envir-
onment (Fisher et al, 1994; Hiraoka et al, 1998). We therefore
investigated the effect of conditioned medium from HT-1080 cells
on the production of proMMP-1 in HUVECs. Western blot analy-
sis showed that the production of proMMP-1 in HUVEC was
augmented by the conditioned medium from HT-1080 cells (6.2-
fold) as well as by recombinant human VEGF165 (4.2-fold) (Figure
7A, lanes 2 and 4, respectively). In addition, the augmentation of
proMMP-1 production was inhibited by adding a neutralising anti-
body against VEGF (Figure 7A, lanes 3 and 5). Furthermore, the
augmentation of proMMP-1 production was poor in HUVECs
treated with the conditioned medium from heat-shocked HT-
1080 cells rather than that from untreated HT-1080 cells (Figure

7B, lanes 2 and 3). These results suggest that heat shock is effica-
cious in the prevention of MMP-dependent ECM remodelling in
the process of angiogenesis by suppressing the production of
tumour-derived VEGF.

Whole-body hyperthermia diminishes the serum level of
VEGF in cancer patients in vivo

To clarify whether hyperthermia inhibits the production of VEGF
in vivo, we investigated the serum level of VEGF in various cancer
patients before and after whole-body hyperthermia at 428C (Takeu-
chi et al, 1996, 1999). The patient characteristics are listed in Table
2. Six patients had various forms of advanced cancer, and the
histology and tumour-node-metastasis (TNM) in the individual
patients were characterised at the initial diagnosis. In addition, five
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Figure 2 Characterisation of gene expression of VEGF splicing variants in
human fibrosarcoma HT-1080 cells. Isolated RNA (1 mg) was subjected to
RT – PCR analysis with 25 (lanes 1, 4 and 7), 27 (lanes 2, 5 and 8) and 29
cycles (lanes 3, 6 and 9) using specific primers for respective VEGF splicing
variants; VEGF121, VEGF165 and VEGF189 as indicated in Figure 1 and Table
1. Two independent experiments were reproducible and typical data were
shown. Lanes 1 – 3, VEGF121; lanes 4 – 6, VEGF165 and lanes 7 – 9, VEGF189.

VEGF121 VEGF165 VEGF189

100       34           100        45           100      41

–          +              –         +              –           + 

: Relative amounts

VEGF mRNA

GAPDH mRNA

: Heat shock

Figure 3 Heat shock suppresses gene expression of VEGF variants in
HT-1080 cells. Confluent HT-1080 cells were treated with or without heat
shock at 428C for 4 h and then incubated for another 24 h. Isolated RNA
was subjected to RT – PCR analysis with 27 cycles for VEGF121 and
VEGF165 and with 29 cycles for VEGF189 as described in Figure 2. The re-
lative amounts of VEGF mRNA were quantified by densitometric scanning
followed by normalising against that of GAPDH mRNA and expressed tak-
ing the untreated HT-1080 cells as 100. Three independent experiments
were reproducible and typical data were shown.

100           53   : Relative amounts

1                2                3                4     

VEGF165

VEGF121

Figure 4 Heat shock suppresses production of VEGF in HT-1080 cells.
Confluent HT-1080 cells were treated with or without heat shock as de-
scribed in Figure 3. The harvested culture medium was subjected to Wes-
tern blot analysis for VEGF as described in Materials and Methods. The
relative amounts of VEGF165 were quantified by densitometric scanning
and expressed taking the untreated HT-1080 cells as 100. Three indepen-
dent experiments were reproducible and typical data were shown. Lane 1,
untreated HT-1080 cells; lane 2, heat-shocked HT-1080 cells; lane 3, re-
combinant human VEGF165 (10 ng) and lane 4, recombinant human
VEGF121 (20 ng).
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Figure 5 Proliferation of HUVECs by HT-1080 cell-derived conditioned
medium. HUVECs (500 cells well-1) were treated with control medium
(filled circles), with the HT-1080 cell-conditioned medium (filled triangles)
or with the heat-shocked HT-1080 cell-conditioned medium (filled
squares). The proliferation of HUVECs was monitored by alamer Blue assay
as described in Materials and Methods. The data are the mean+s.d. of va-
lues from six wells at each point. ***Significantly different from HUVECs
treated with control medium (P50.001). Two independent experiments
were reproducible and typical data were shown.
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of these patients had received previous chemotherapy and/or radio-
therapy. When sera from these patients were collected 2 – 7 days
prior to the first whole-body hyperthermia, the serum level of
VEGF was higher than 100 pg ml71 in all patients and its average
(+s.d) was 177.0 (+77.5) pg ml71 (Table 2). Two – three weeks
after completion of the hyperthermic therapy, the level of VEGF
decreased to 49.9 (+36.5) pg ml71, which was almost the same
as the normal VEGF level (Hyodo et al, 1998). Therefore, it is
suggested that whole-body hyperthermia efficiently diminishes the
level of VEGF in advanced cancer patients.

DISCUSSION

VEGF has been characterised as existing in four isoforms; VEGF121,
VEGF165, VEGF189 and VEGF206 (Ferrara et al, 1992). To individu-
ally and specifically amplify these variants by semi-quantitative
RT – PCR, we designed unique PCR primers and demonstrated that
HT-1080 cells expressed predominantly VEGF121 and VEGF165

mRNA as well as a smaller amount of the VEGF189 transcript,
and did not express VEGF206. In addition, Western blot analysis
showed that the immunoreactive VEGF was mostly VEGF165 and
a smaller amount of VEGF121, while the mRNA level of both
isoforms was the same in HT-1080 cells. No immunologically
detected VEGF variants could be found in the cell-membrane frac-
tion of HT-1080 cells (data not shown), although VEGF189 and
VEGF206 exist as cell-associated forms (Houck et al, 1991). On
the other hand, tumour cells have been shown to produce other
angiogenic factors such as bFGF (Abraham et al, 1986; Gospodar-
owicz et al, 1987), TGF-a (Smith et al, 1987) and PDGF
(Holmgren et al, 1991; Risau et al, 1992). We demonstrated that
the proliferation of HUVECs by conditioned medium derived from

HT-1080 cells was effectively prevented by adding VEGF antibody,
but not by adding antibodies to bFGF, TGF-a and TNF-a (data not
shown). Therefore, it is suggested that the angiogenic factor
derived from HT-1080 cells is primarily VEGF165.

Exposing malignant cells to hyperthermia is a therapeutic strat-
egy that prevents tumour progression by inhibiting the
proliferation of tumour cells (Urano et al, 1983). Fajardo et al
(1988) also reported that hyperthermia inhibits angiogenesis by
interference with cell replication and/or inhibition of the migration
of vascular endothelial cells. However, the effect of hyperthermia
on the production of VEGF is not specified. In the present study,
we demonstrated for the first time that heat shock suppresses the
gene expression and the production of VEGF165 in HT-1080 cells.
Moreover, the heat shock-mediated suppressions of both VEGF165

production and its gene expression were similarly observed in
human squamous carcinoma A431 cells (data not shown). Thus,
this novel evidence that heat shock directly down-regulates the
expression of VEGFs in HT-1080 cells is likely to be ubiquitously
observed in tumour cells.

Endothelial cells are basically quiescent, but when activated by
VEGF, they turn into the angiogenic phenotype and then prolifer-
ate and migrate to form new vessels in vivo and in vitro (Weidner
et al, 1991; Ferrara et al, 1992). In addition, VEGF-mediated
neovascularisation is closely associated with tumour growth in vivo
(Kim et al, 1993; Asano et al, 1995; Cheng et al, 1996; Im et al,
1999). In fact, Kim et al (1993) reported that the intraperitoneal
injection of a specific monoclonal antibody for human VEGF165

inhibits the growth of rhabdomyosarcoma, glioblastoma multi-
forme and leiomyosarcoma cell lines in nude mice. Im et al
(1999) also reported that an antisense cDNA molecule of VEGF
induces anti-tumorigenic effects in vivo on human glioma tumours
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Figure 6 Characterisation of HT-1080 cell-derived factor for endothe-
lial-cell proliferation. Conditioned medium from HT-1080 cells was pre-
treated with an antibody against VEGF (50 mg ml71) or bFGF
(50 mg ml71) and then HUVECs (500 cells well71) were treated with
or without the conditioned medium. After 2 days treatment, the prolif-
eration of HUVECs was monitored by alamer Blue assay as described in
Figure 5. The data are the mean+s.d. of values from six wells. Two in-
dependent experiments were reproducible and typical data were shown.
Lane 1, HUVECs cultured in control medium; lane 2, HUVECs treated
with the HT-1080 cell-conditioned medium; lane 3, HUVECs treated
with the HT-1080 cell-conditioned medium pretreated with VEGF anti-
body and lane 4, HUVECs treated with the HT-1080 cell-conditioned
medium pretreated with bFGF antibody. ***Significantly different from
HUVECs treated with the HT-1080 cell-conditioned medium
(P50.001).

100          620            275          415          183 : Relative amounts

1              2              3               4              5

100          628          238    : Relative amounts

1              2             3

proMMP-1

proMMP-1

A

B

Figure 7 HT-1080 cell-derived VEGF stimulates HUVECs to produce
proMMP-1. (A) Conditioned medium from HT-1080 cells and the culture
medium supplemented with human recombinant VEGF165 (20 ng ml71)
were pretreated with or without an antibody against VEGF (50 mg ml71)
and then HUVECs were treated with these conditioned media for 24 h.
The harvested culture medium was subjected to Western blot analysis
for proMMP-1 as described in Materials and Methods. Lane 1, untreated
HUVECs; lane 2, HUVECs treated with the HT-1080 cell-conditioned
medium; lane 3, HUVECs treated with the HT-1080 cell-conditioned med-
ium pretreated with VEGF antibody; lane 4, HUVECs treated with recom-
binant human VEGF165 and lane 5, HUVECs treated with recombinant
human VEGF165 pretreated with VEGF antibody. (B) Confluent HUVECs
were treated with or without conditioned medium from untreated or
heat-shocked HT-1080 cells. Three independent experiments were repro-
ducible and typical data were shown. Lane 1, untreated HUVECs; lane 2,
HUVECs treated with the HT-1080 cell-conditioned medium and lane 3,
HUVECs treated with the heat-shocked HT-1080 cell-conditioned med-
ium. The relative amounts of proMMP-1 production were quantified by
densitometric scanning and expressed taking the untreated HUVECs as
100.
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established in nude mice. Therefore, it is likely that VEGF is a clin-
ical target molecule for cancer therapy. Thus, our finding that heat
shock inhibited VEGF expression in tumour cells strongly suggests
that hyperthermia might be one therapeutic strategy for preventing
angiogenesis together with known therapeutic properties such as
anti-tumorigenic activity in vivo.

Recently, Kanamori et al (1999) reported that hyperthermia
at 448C induces the expression of VEGF in SCC VII tumours
in C3H/He mice, by the mechanism that heat-mediated vascular
damage may attribute to hypoxia and thereafter tumour necro-
sis. This phenomenon is different from our finding, that heat
shock suppresses VEGF expression in tumour cells. In our
experiments, heat shock at 428C for 4 h does not influence
cellular functions such as biosynthesis of total proteins and
tumour cell growth in vitro (Sato et al, 1999; Sawaji et al,
2000). Thus, the discrepancy may be due to the difference of
experimental conditions such as temperature and heat-exposing
period. Furthermore, we demonstrated that the level of VEGF
in serum was diminished in all cancer patients treated with
whole-body hyperthermia. Therefore, it is very likely that the
in vitro findings in the present study reflect on the in vivo
effect of whole-body hyperthermia, and that the suppression
of tumour progression and metastasis by whole-body hyperther-
mia may partly contribute to the prevention of angiogenesis by
inhibiting VEGF production in vivo.

Extracellular matrix remodelling is required for endothelial – cell
proliferation and migration in the process of angiogenesis, and is
closely dependent on endothelial cell-derived proteinases such as
MMPs (Liotta et al, 1991; Moses, 1997). Endothelial MMP-1 has
been shown to participate in angiogenesis in vitro (Unemori et
al, 1992; Fisher et al, 1994). A recent study by Hiraoka et al
(1998) also reported that MT1-MMP in endothelial cells is
involved in neovessel formation in mice deficient in both plasmi-
nogen activator and plasminogen. In this communication, we

indicated that HT-1080 cells produced a large amount of VEGF
by which the production of proMMP-1 in HUVECs was augmen-
ted, and also that heat shock effectively interfered with the
production of VEGF. Furthermore, we recently reported that heat
shock suppresses in vitro tumour invasive activity by suppressing
the production of MT1-MMP and thereafter inhibiting the activa-
tion of proMMP-2 in tumour cells (Sato et al, 1999; Sawaji et al,
2000). Therefore, it is suggested that hyperthermia elicits not only
an anti-angiogenic effect by inhibiting tumour-derived VEGF
production but also an anti-metastatic action by suppressing the
production and activation of proMMPs.

In conclusion, we demonstrated that heat shock suppresses the
gene expression of three VEGF splicing variants, VEGF121, VEGF165

and VEGF189, and decreases the predominant product of VEGF165

in HT-1080 cells. In addition, the heat shock-mediated suppression
of VEGF production results in the inhibition of tumour cell-
induced proliferation and MMP production in endothelial cells.
Furthermore, whole-body hyperthermia diminished the augmented
level of VEGF in serum from patients with advanced cancers in
vivo. Therefore, these results strongly suggest that this suppression
by hyperthermia of tumour cell-derived VEGF production may
explain, in part, the reason why hyperthermic therapy effectively
prevents tumor growth and metastasis in vivo.

ACKNOWLEDGEMENTS

This work was supported in part by the Japan Private School
Promotion Foundation and by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Science and Culture of
Japan (No. 12672122). We thank Dr Hideaki Nagase (The Kennedy
Institute of Rheumatology, Imperial College, London, UK) for his
generous gift of sheep anti-(human proMMP-1)antibody.

REFERENCES

Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA,
Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine clone
encoding the angiogenic protein, basic fibroblast growth factor. Science
233: 545 – 548

Ahmed SA, Gogal Jr RM, Walsh JE (1994) A new rapid and simple non-
radioactive assay to monitor and determine the proliferation of lympho-
cytes: An alternative to [3H]thymidine incorporation assay. J Immunol
Methods 170: 211 – 224

Asano M, Yukita A, Matsumoto T, Kondo S, Suzuki H (1995) Inhibition of
tumor growth and metastasis by an immunoneutralizing monoclonal anti-
body to human vascular endothelial growth factor/vascular permeability
factor121. Cancer Res 55: 5296 – 5301

Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N (1996) Complete inhibition
of angiogenesis and growth of microtumors by anti-vascular endothelial
growth factor neutralizing antibody: Novel concepts of angiostatic therapy
from intravital videomicroscopy. Cancer Res 56: 4032 – 4039

Cellier MF, Taimi M, Chateau MT, Cannat A, Marti J (1993) Thermal
stress as an inducer of differentiation of U937 cells. Leukemia Res 17:
649 – 656

Cheng S-Y, Huang H-JS, Nagane M, Ji X-D, Wang D, Shih CC-Y, Arap W,
Huang C-M, Cavenee WK (1996) Suppression of glioblastoma angiogeni-
city and tumorigenicity by inhibition of endogenous expression of vascular
endothelial growth factor. Proc Natl Acad Sci USA 93: 8502 – 8507

G
en

etics
an

d
G

en
o

m
ics

Table 2 The patient characteristics and the serum level of VEGF before and after whole-body hyperthermia

Patients VEGF (pg ml71)

No. Sex Primary cancer Histologya TNMb Metastasisc CH/RDd Before WBH After WBH

1 Female Thyroid cancer PC T2N1M1 Bone RD 194.1 83.3
2 Female Breast cancer AD T2N1M0 Lung None 297.2 18.1
3 Male Gastric cancer AD, W T4N1M0 ND CH 231.7 89.8
4 Male Rectal cancer AD T3N2M1 Brain, Lung CH 107.2 7.1
5 Female Ureteral cancer TC T2N2M0 Bladder CH/RD 119.0 27.7
6 Male Pancreatic cancer ICCA T4N1M1 Liver CH 113.0 74.0

Mean+s.d. 177.0+77.5 49.9+36.5**

Sera from six patients (1 – 6) with various forms of cancer were individually collected before and after whole-body hyperthermia (WBH) and then subjected to VEGF immu-
noassay as described in Materials and Methods. **Significantly different from before WBH (P50.01). aHistology: PC, papillocarcinoma; AD, adenocarcinoma; W, well
differentiated, TC, transitional cell in the grade 3 and ICCA, islet cell carcinoma. bTNM, tumour-node-metastasis at the initial diagnosis. cMetastasis: ND, not determined.
dCH/RD: the previous history of chemotherapy (CH) and/or radiotherapy (RD).

Hyperthermia suppresses VEGF production

Y Sawaji et al

1602

British Journal of Cancer (2002) 86(10), 1597 – 1603 ª 2002 Cancer Research UK



Connolly DT, Olander JV, Heuvelman D, Nelson R, Monsell R, Siegel N,
Haymore BL, Leimgruber R, Feder J (1989) Human vascular permeability
factor. Isolation from U937 cells. J Biol Chem 264: 20017 – 20024

Fajardo LF, Prionas SD, Kowalski J, Kwan HH (1988) Hyperthermia inhibits
angiogenesis. Radiat Res 114: 297 – 306

Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-
binding growth factor specific for vascular endothelial cells. Biochem
Biophys Res Commun 161: 851 – 858

Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological
properties of the vascular endothelial growth factor family of proteins.
Endocr Rev 13: 18 – 32

Fisher C, Gilbertson-Beadling S, Powers EA, Petzold G, Poorman R, Mitchell
MA (1994) Interstitial collagenase is required for angiogenesis in vitro. Dev
Biol 162: 499 – 510

Folkman J (1992) The role of angiogenesis in tumor growth. Cancer Biol 3:
65 – 71

Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural
characterization and biological functions of fibroblast growth factor.
Endocr Rev 8: 95 – 114

Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ (1998) Matrix metallopro-
teinases regulate neovascularization by acting as pericellular fibrinolysins.
Cell 95: 365 – 377

Holmgren L, Glaser A, Pfeifer-Ohlsson S, Ohlsson R (1991) Angiogenesis
during human extraembryonic development involves the spatiotemporal
control of PDGF ligand and receptor gene expression. Development 113:
749 – 754

Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW (1991) The
vascular endothelial growth factor family: Identification of a fourth mole-
cular species and characterization of alternative splicing of RNA. Mol
Endocrinol 5: 1806 – 1814

Hyodo I, Doi T, Endo H, Hosokawa Y, Nishikawa Y, Tanimizu M, Jinno K,
Kotani Y (1998) Clinical significance of plasma vascular endothelial growth
factor in gastrointestinal cancer. Eur J Cancer 34: 2041 – 2045

Im S-A, Gomez-Manzano C, Fueyo J, Liu T-J, Ke LD, Kim J-S, Lee H-Y, Steck
PA, Kyritsis AP, Yung WKA (1999) Antiangiogenesis treatment for glio-
mas: transfer of antisense-vascular endothelial growth factor inhibits
tumor growth in vivo. Cancer Res 59: 895 – 900

Kanamori S, Nishimura Y, Okuno Y, Horii N, Saga T, Hiraoka M (1999)
Induction of vascular endothelial growth factor (VEGF) by hyperthermia
and/or an angiogenesis inhibitor. Int J Hyperthermia 15: 267 – 278

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993)
Inhibition of vascular endothelial growth factor-induced angiogenesis
suppresses tumour growth in vivo. Nature 362: 841 – 844

Kondo S, Asano M, Suzuki H (1993) Significance of vascular endothelial
growth factor/vascular permeability factor for solid tumor growth, and
its inhibition by the antibody. Biochem Biophys Res Commun 194:
1234 – 1241

Kondo S, Asano M, Matsuo K, Ohmori I, Suzuki H (1994) Vascular endothe-
lial growth factor/vascular permeability factor is detectable in the sera of
tumor-bearing mice and cancer patients. Biochim Biophys Acta 1221:
211 – 214

Kondo Y, Arii S, Mori A, Furutani M, Chiba T, Imamura M (2000) Enhance-
ment of angiogenesis, tumor growth, and metastasis by transfection of
vascular endothelial growth factor into LoVo human colon cancer cell line.
Clin Cancer Res 6: 622 – 630

Leung DW, Cachianes G, Kuang W-J, Goeddel DV, Ferrara N (1989) Vascu-
lar endothelial growth factor is a secreted angiogenic mitogen. Science 246:
1306 – 1309

Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and
angiogenesis: An imbalance of positive and negative regulation. Cell 64:
327 – 336

Moses MA (1997) The regulation of neovascularization of matrix metallopro-
teinases and their inhibitors. Stem Cells 15: 180 – 189

Myoken Y, Kayada Y, Okamoto T, Kan M, Sato GH, Sato JD (1991) Vascular
endothelial cell growth factor (VEGF) produced by A-431 human epider-
moid carcinoma cells and identification of VEGF membrane binding sites.
Proc Natl Acad Sci USA 88: 5819 – 5823

Risau W, Drexler H, Mironov V, Smits A, Siegbahn A, Funa K, Heldin CH
(1992) Platelet-derived growth factor is angiogenic in vivo. Growth Factors
7: 261 – 266

Robins HI, Dennis WH, Neville AJ, Shecterle LM, Martin PA, Grossman J,
Davis TE, Neville SR, Gillis WK, Rusy BF (1985) A nontoxic system for
41.88C whole-body hyperthermia: Results of a Phase I study using a radi-
ant heat device. Cancer Res 45: 3937 – 3944

Saleh M, Stacker SA, Wilks AF (1996) Inhibition of growth of C6 glioma cells
in vivo by expression of antisense vascular endothelial growth factor
sequence. Cancer Res 56: 393 – 401

Sato T, Sawaji Y, Matsui N, Sato H, Seiki M, Mori Y, Ito A (1999) Heat shock
suppresses membrane type 1-matrix metalloproteinase production and
progelatinase A activation in human fibrosarcoma HT-1080 cells and
thereby inhibits cellular invasion. Biochem Biophys Res Commun 265:
189 – 193

Sawaji Y, Sato T, Seiki M, Ito A (2000) Heat shock-mediated transient
increase in intracellular 3’, 5’-cyclic AMP results in tumor specific suppres-
sion of membrane type 1-matrix metalloproteinase production and
progelatinase A activation. Clin Exp Metastasis 18: 131 – 138

Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-a:
A more potent angiogenic mediator than epidermal growth factor. Science
232: 1250 – 1253

Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved
vascular permeability factor secreted by a variety of human and rodent
tumor cell lines. Cancer Res 46: 5629 – 5632

Smith JJ, Derynck R, Korc M (1987) Production of transforming growth
factor a in human pancreatic cancer cells: Evidence for a superagonist
autocrine cycle. Proc Natl Acad Sci USA 84: 7567 – 7570

Takahashi S, Ito A, Nagino M, Mori Y, Xie B, Nagase H (1991) Cyclic adeno-
sine 3’,5’-monophosphate suppresses interleukin 1-induced synthesis of
matrix metalloproteinases but not of tissue inhibitor of metalloproteinases
in human uterine cervical fibroblasts. J Biol Chem 266: 19894 – 19899

Takeuchi A, Shimizu M, Takeuchi T, Iijima N, Kobayashi J, Kobayashi Y,
Ozaki M, Itabashi A, Yokoyama M (1999) Whole body mild hyperthermia
by near-infrared rays. Jpn J Hyperthermic Oncol 15: 187 – 192

Takeuchi T, Takeuchi A, Chikuma S, Kobayashi Y, Kashiwagi S, Hasumura
M, Yokoyama M (1996) Evaluation of therapy efficacy according to the
far-infrared whole-body hyperthermia heat divice. Jpn J Hyperthermic
Oncol 12: 156 – 163

Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC,
Abraham JA (1991) The human gene for vascular endothelial growth
factor. Multiple protein forms are encoded through alternative exon spli-
cing. J Biol Chem 266: 11947 – 11954

Toyota N, Strebel FR, Stephens LC, Matsuda H, Bull JM (1997) Long-dura-
tion, mild whole body hyperthermia with cisplatin: Tumour response and
kinetics of apoptosis and necrosis in a metastatic rat mammary adenocar-
cinoma. Int J Hyperthermia 13: 497 – 506

Unemori EN, Ferrara N, Bauer EA, Amento EP (1992) Vascular endothelial
growth factor induces interstitial collagenase expression in human
endothelial cells. J Cell Physiol 153: 557 – 562

Urano M, Rice L, Epstein R, Suit HD, Chu AM (1983) Effect of whole-body
hyperthermia on cell survival, metastasis frequency, and host immunity in
moderately and weakly immunogenic murine tumors. Cancer Res 43:
1039 – 1043

Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis
and metastasis-correlation in invasive breast carcinoma. N Engl J Med
324: 1 – 8

G
en

et
ic

s
an

d
G

en
o

m
ic

s

Hyperthermia suppresses VEGF production

Y Sawaji et al

1603

ª 2002 Cancer Research UK British Journal of Cancer (2002) 86(10), 1597 – 1603


	tab_xref1
	fig_xreffig1
	fig_xreffig2
	fig_xreffig3
	fig_xreffig4
	fig_xreffig5
	fig_xreffig6
	fig_xreffig7
	tab_xref2

