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Identifying pre-post chemotherapy differences in gene expression
in breast tumours: a statistical method appropriate for this aim
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Although widely used for the analysis of gene expression microarray data, cluster analysis may not be the most appropriate
statistical technique for some study aims. We demonstrate this by considering a previous analysis of microarray data obtained
on breast tumour specimens, many of which were paired specimens from the same patient before and after chemotherapy.
Reanalysing the data using statistical methods that appropriately utilise the paired differences for identification of differentially
expressed genes, we find 17 genes that we can confidently identify as more expressed after chemotherapy than before. These
findings were not reported by the original investigators who analysed the data using cluster analysis techniques.
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Gene expression profiles of tumour specimens, such as obtained by
cDNA microarray experiments, can be studied to address a variety
of different scientific aims. One aim is to classify the specimens
into newly-formed groups so that the gene expression profile is
similar within groups and different between groups; statistical clus-
ter analysis techniques have been used for this type of aim (Eisen et
al, 1998; Tamayo et al, 1999). When the specimens come from pre-
specified groups, then there are other possible aims. The aim on
which we are focusing in this brief communication is the identifi-
cation of genes that are expressed differentially between pre-
specified groups. Identifying such genes can lead to an understand-
ing of how the groups are different at the cellular-functional level
(when the identified genes have known function) and can also lead
to clues about the function of identified genes with unknown func-
tion. Other possible aims with pre-specified groups include
demonstrating global differences between groups using multivariate
analysis (without identifying individual genes that are differentially
expressed), and developing predictors of group membership
(Golub et al, 1999; Hedenfalk et al, 2001). As we will demonstrate
here, it is important to use the appropriate statistical methods to
address the particular aim under consideration.

Perou et al (2000) studied gene expression profiles measured
by cDNA microarrays using specimens from 65 breast tumours
from 42 individuals. Among the profiles, data from 20 indivi-
duals with specimens taken before and after a 16-week course
of doxorubicin chemotherapy were included. Based on a cluster
analysis, Perou et al (2000) note ‘Gene expression patterns in
two tumour samples from the same individual were almost
always more similar to each other than either was to any other
sample.’ This similarity does not eliminate the equally interesting
possibility of finding large and statistically significant differences

in pre vs post chemotherapy gene expression in the 20 paired
specimens. A cluster analysis is not the appropriate statistical
analysis for examining this possibility. To find genes that are
differentially expressed, we will perform an analysis that is
appropriate for this aim. We end with a discussion of the biolo-
gic significance of the identified genes.
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Table 1 Genes showing statistically significant pre-post chemotherapy
differences in expression for breat cancer patients (original cDNA microar-
ray data from Perou et al. (2000))

Gene expression

(geometric mean)

No. Pre- Post- Ratio of Adjusted

Accession no.a patients chemo chemo Post/Pre P valueb

AA478553 19 0.74 2.21 2.98 0.0006
N23941 20 1.27 2.18 1.72 0.0014
W96134 20 1.66 3.08 1.85 0.0018
N95402 20 1.19 2.07 1.74 0.0032
AA040944 20 0.42 1.79 4.21 0.0033
AA442853 20 1.53 2.61 1.71 0.0035
AA134757 20 2.32 4.69 2.02 0.0067
AA418077 20 1.75 3.38 1.94 0.0084
R12840 20 0.50 1.77 3.55 0.0166
AI831083 20 1.24 2.48 2.00 0.0178
AA044993 20 0.65 1.37 2.09 0.0180
AA0318596 20 1.19 2.06 1.73 0.0217
AA454868 18 2.95 5.05 1.71 0.0218
AA598794 20 0.72 1.52 2.10 0.0254
T74141 19 8.28 16.44 1.98 0.0326
H210741 20 0.95 1.83 1.93 0.0374
AA133129 20 0.68 1.37 2.01 0.0409

aThe names of the genes are given in Table 2. bTwo-sided adjusted P-value from step-
down permutation paired t-test, based on 100 000 randomly chosen permutations
taken from the set of all possible permutations at each step.

Received 8 August 2001; revised 10 January 2002; accepted 24 January
2002

*Correspondence: EL Korn; E-mail: korne@ctep.nci.nih.gov

British Journal of Cancer (2002) 86, 1093 – 1096

ª 2002 Cancer Research UK All rights reserved 0007 – 0920/02 $25.00

www.bjcancer.com



MATERIALS AND METHODS

The primary data were obtained at 5http://genome-www.
stanford.edu/molecularportraits/4and were pre-processed in a
standard manner: Data from spots flagged by the original investi-
gators as not useable or which were labelled ‘EMPTY’ were
omitted here. In each channel, signal for a spot was calculated
as foreground intensity minus background. Spots for which signal
was less than 100 in both channels were not used. If the signal

was less than 100 in only one channel, the spot was used with
the signal set in that channel to 100. The expression ratio was
formed as channel 2 divided by channel 1 signal. Ratios were
median normalised within each array by dividing the ratios by
the median of the ratios for that array. All analyses were
performed on log transformed median-normalised expression
ratios. Genes for which data were missing from more than half
of the 20 paired tumour specimens were eliminated from consid-
eration. This left 8029 genes for analysis.
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Figure 1 For each gene given in Table 1, plotted points are the ratios of the post-chemotherapy to pre-chemotherapy gene expression ratios for each of
18 – 20 patients, and arrows are the geometric means of the post/pre ratios.
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One statistical method for identifying genes that are differen-
tially expressed is to perform many univariate analyses, testing
genes one at a time for differential expression between groups,
and then identify the genes which show the most statistically signif-
icant differences. In the present application, since there are two
groups with paired specimens, an appropriate univariate analysis
is a paired t-test. One could naively perform 8029 paired t-tests,
and then identify the genes whose P-values were 50.05. There
are two problems with this approach. The first is that one would
expect 401=0.0568029 genes to show statistically significant
(P50.05) mean group differences even if the expression data were
random numbers. The phenomenon of increasing numbers of ‘false
positives’ with increasing numbers of hypothesis tests is known as a
‘multiple comparisons problem.’ The second problem with this
approach is that standard parametric t-tests assume that data are
normally distributed. This is not usually a problem in applications
with large numbers of samples, but in the present application with
small numbers of specimens and where interest is in very small
(unadjusted) P-values, the normality assumption can be important
(Ringland, 1983). We deal with both problems simultaneously by
using a step-down permutation approach (Westfall and Young,
1993), an approach that has been used previously to identify differ-
entially expressed genes (Callow et al, 2000). This approach does
not require normal distributions and controls for the multiple
comparisons. In fact, it is less conservative than the frequently used
Bonferroni adjustment (Miller, 1981) for multiple comparisons.

Note that the proposed statistical analysis involving 20 pairs of
data points for each gene automatically accounts for any noise in
the data (e.g., due to mRNA extraction, labelling, hybridisation,
and spot-to-spot variations within a microarray). Therefore, it is
not necessary to perform replicate microarrays on specimens, repli-
cate clones on each microarray, or provide data on intra- and inter-
assay variability measurements; all the data required are the 20
pairs of data points for each gene available on the website.
However, the extent to which the sources of random variation
are controlled or minimised will affect the power to detect true
differential effects. Thus, the quality of the data on the website will
affect our ability to detect interesting findings, but the reported
statistical significance of findings are accurate regardless of this
quality. (This is in contrast to an experiment involving two cell
lines, in which one would need data on replicate assays or inter-
assay variability to be able to conduct statistical inference.)
However, if there are replicate clones or genes spotted on the

microarrays, it is of obvious interest to see if they yield similar
results. We address this question by examining the differential
expression of any genes which have the same name as genes found
to have differential expression that is statistically significant.

RESULTS

Table 1 and Figure 1 show the genes identified as being differen-
tially expressed at an adjusted significance level of P50.05 by the
step-down permutation paired t-test. The P-values are adjusted
for the multiple comparisons, so that by chance we would expect
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Table 2 Names of genes given in Table 1

Accession no.a Gene nameb

AA478553 dopachrome tautomerase (dopachrome delta-isomerase, tyrosine-related protein 2)
N23941 cyclin-dependant kinase inhibitor 1A (p21, Cip1)
W96134 v-jun avian sarcoma virus 17 oncogene homologue
N95402 cyclin-dependant kinase inhibitor 1A (p21, Cip1)c

AA040944 v-fos FBJ murine osteosarcoma viral oncogene homologue
AA442853 cyclin-dependant kinase 5, regulatory subunit 1 (p35)
AA134757 fibulin 1
AA418077 GTP-binding protein overexpressed in skeletal muscle
R12840 v-fos FBJ murine osteosarcoma viral oncogene homologue
AI831083 dihydropyrimidinase-like 3
AA044993 connective tissue growth factor
AA031596 secreted protein, acidic, cysteine-rich (osteonectin)
AA454868 platelet-derived growth factor receptor-like
AA598794 connective tissue growth factor
T74141 Duffy blood group
H21041 activating transcription factor 3
AA133129 transcription elongation factor B (5III), polypeptide 3 (110 kD, elongin A)

aAccession number as given in Perou et al (2000) database. bGene names associated with accession
numbers as given by 5http://www.ncbi.nlm.nih.gov/UniGene/4. cThe gene name is given as ‘copine V’ in
the Perou et al (2000) database.

Table 3 Gene expression of genes with names matching those given in
Table 2 (original cDNA microarray data from Perou et al (2000)

Gene expression

(geometric mean)

No. Pre- Post- Ratio of Unadjusted

Accession no.a patients chemo chemo Post/Pre P valueb

N23941c 20 1.27 2.18 1.72 50.001
N95402c 20 1.19 2.07 1.74 50.001

W96134c 20 1.66 3.08 1.85 50.001
AA293362 20 1.71 2.94 1.72 50.001

AA040944c 20 0.42 1.79 4.21 50.001
R12840c 20 0.50 1.77 3.55 50.001
N36944 20 0.81 1.58 1.95 50.001
AA485377 20 0.52 1.33 2.55 50.001

AA134757c 20 2.32 4.69 2.02 50.001
AA614680 20 11.22 16.58 1.48 0.006
AA035156 18 2.04 3.52 1.72 50.001

AA044993c 20 0.65 1.37 2.09 50.001
AA598794c 20 0.72 1.52 2.10 50.001

AA031596c 20 1.19 2.06 1.73 50.001
H95959 20 2.08 3.10 1.49 50.001
AA045463 20 1.78 2.64 1.48 0.002
N66035 20 1.58 2.22 1.41 50.001

AA454868c 18 2.95 5.05 1.71 50.001
AA461197 20 1.62 2.54 1.56 0.002

aThe names of the genes are given in Table 2. bTwo-sided paired t-test, unadjusted
for multipule comparisons. cAppears in Table 2.
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to identify incorrectly any of the genes as differentially expressed
(at adjusted P50.05) less than once in 20. The average expression
for each of the 17 identified genes increased after chemotherapy,
and all of the specimens for four of the genes showed more expres-
sion after the chemotherapy. The names of the genes are given in
Table 2; more information can be found by searching on the acces-
sion numbers at 5http://www.ncbi.nlm.nih.gov/UniGene/4.

There were no spots in the data base with the same accession
number as any of the 17 genes identified in Table 2; we would have
expected very close agreement on all gene expression values for
such spots. There were nine spots with replicate gene names
besides the three pairs of replicate gene names in the identified
17 genes. Gene expressions for all the replicates are displayed in
Table 3, along with univariate P-values representing the strength
of evidence that the clone is differentially expressed (unadjusted
for multiple comparisons). The results suggest that the ratio of
post/pre gene expression are roughly similar for replicate gene
names, and definitely in the same direction (i.e., greater than
1.0). Interestingly, the individual pre and post gene expressions
do not always agree well, e.g., AA614680 is expressed at 4 – 5 times
higher levels as compared to the reference sample than the other
two clones associated with fibulin 1.

DISCUSSION

An appropriate statistical analysis has identified genes differentially
expressed between pre and post chemotherapy specimens, a task

for which cluster analysis is not well suited. The genes identified
by this approach reveal important biological insights into the
response of breast cancer tumours to doxorubicin treatment. The
transcriptional up-regulation of the cyclin-dependent kinase inhibi-
tor p21 reflects the p53-dependent response to doxorubicin
induced DNA damage and leads to cell cycle arrest (Vousden,
2000). The up-regulation of c-fos and c-jun as well as higher
expression of genes involved in the stromal reaction and extracel-
lular matrix composition (fibulin 1, connective tissue growth
factor, osteonectin) might explain, at least in part, the incomplete
response to cytotoxic chemotherapy in some of the tumour cells.
In particular, elevated mRNA levels of c-jun and c-fos have been
observed in MCF-7 human breast cancer cells with resistance to
doxorubicin as compared to drug-sensitive MCF-7 wild type cells
(Daschner et al, 1999). Moreover, the adhesion of tumour cells
to extracellular matrix proteins may provide a survival signal and
confer resistance to chemotherapy-induced apoptosis. In small cell
lung cancer, this effect was recently shown to be mediated by the
integrin family of receptors (Sethi et al, 1999). Therefore, it appears
plausible that similar mechanisms might exist in breast cancer.

This communication demonstrates the benefits of providing
published microarray data on a website for possible reanalysis by
other investigators using different methods or seeking to address
different questions.
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