Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Experimental Therapeutics
  • Published:

17β-Oestradiol treatment modulates nitric oxide synthase activity in MDA231 tumour with implications on growth and radiation response

Abstract

The putative oestrogen receptor negative human breast cancer cell line MDA231, when grown as tumours in mice continually receiving 17β-oestradiol, showed substantially increased growth rate when compared to control animals. Further, we observed that 17β-oestradiol treatment could both increase the growth rate of established MDA231 tumours as well as decreasing the time taken for initiating tumour growth. We have also demonstrated that this increase in growth rate is accompanied by a four-fold increase in nitric oxide synthase activity, which was predominantly the inducible form. Inducible-nitric oxide synthase expression in these tumours was confirmed by immunohistochemical analysis and appeared localized primarily in areas between viable and necrotic regions of the tumour (an area that is presumably hypoxic). Prophylactic treatment with the nitric oxide synthase inhibitor nitro-L-arginine methyl ester resulted in significant reduction in this apparent 17β-oestradiol-mediated growth promoting effect. Tumours derived from mice receiving 17β-oestradiol-treatment were characterized by a significantly lower fraction of perfused blood vessels and an indication of an increased hypoxic fraction. Consistent with these observations, 17β-oestradiol-treated tumours were less radio-responsive compared to control tumours when treated with a single radiation dose of 15 Gy. Our data suggests that long-term treatment with oestrogen could significantly alter the tumour oxygenation status during breast tumour progression, thus affecting response to radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Andrade SP, Hart IR, Piper PJ (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumour-associated neovasculature. Br J Pharmacol 107: 1092–1097

    Article  CAS  Google Scholar 

  • Bailey MJ, Gazet JC, Smith IE, Steel GG (1980) Chemotherapy of human breast carcinoma xenografts. Br J Cancer 42: 530–536

    Article  CAS  Google Scholar 

  • Bussink J, Kaanders JH, Rijken PF, Martindale CA, van der Kogel AJ (1998) Multiparameter analysis of vasculature, perfusion and proliferation in human tumour xenografts. Br J Cancer 77: 57–64

    Article  CAS  Google Scholar 

  • Carson DA, Ribeiro JM (1993) Apoptosis and disease. Lancet 341: 1251–1254

    Article  CAS  Google Scholar 

  • Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA (1995) Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 55: 727–730

    CAS  PubMed  Google Scholar 

  • Dechering K, Boersma C, Mosselman S (2000) Estrogen receptors alpha and beta: Two receptors of a kind? Curr Med Chem 7: 561–576

    Article  CAS  Google Scholar 

  • Dickson RB, Lippman ME (1987) Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrine Rev 8: 29–43

    Article  CAS  Google Scholar 

  • Fodstad Ø, Hansen CT, Cannon GB, Statham CN, Lichtenstein GR, Boyd MR (1984) Lack of correlation between natural killer cell activity and tumor growth control in nude mice with different immune defects. Cancer Res 44: 4403–4408

    CAS  PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1: 27–30

    Article  CAS  Google Scholar 

  • Friedl A, Gottardis MM, Pink J, Buchler DA, Jordan VC (1989) Enhanced growth of an estrogen receptor-negative endometrial adenocarcinoma by estradiol in athymic mice. Cancer Res 49: 4758–4764

    CAS  PubMed  Google Scholar 

  • Friedl A, Jordan VC (1994) Oestradiol stimulates growth of oestrogen receptor-negative MDA-MB-231 breast cancer cells in immunodeficient mice by reducing cell loss. Eur J Cancer 30A: 1559–1564

    Article  CAS  Google Scholar 

  • Fuqua SAW, Schiff R, Parra I, Friedrichs WE, Su J, Mckee DD, Slentz-Kesler K, Moore LB, Wilson TM, Moore JT (1999) Expression of wild-type estrogen receptor β and variant isoforms in human breast cancer. Cancer Res 59: 5425–5428

    CAS  PubMed  Google Scholar 

  • Gleiber WE, Schiffman E (1984) Identification of a chemoattractant for fibroblasts produced by human breast carcinoma cell lines. Cancer Res 44: 3398–3402

    CAS  PubMed  Google Scholar 

  • Heberman RB, Holden HT (1979) Natural killer cells as antitumor effector cells. J Natl Cancer Inst 62: 441–445

    Article  Google Scholar 

  • Howard-Flanders P (1957) Effect of nitric oxide on the radiosensitivity of bacteria. Nature 180: 1191–1192

    Article  CAS  Google Scholar 

  • Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumour growth. Proc Natl Acad Sci USA 92: 4392–4396

    Article  CAS  Google Scholar 

  • Kim YM, Bergonia H, Lancaster Jr JR (1995) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett 374: 228–232

    Article  CAS  Google Scholar 

  • Kopper L, Steel GG (1975) The therapeutic response of three human tumour lines maintained in immuno-suppressed mice. Cancer Res 35: 2704–2713

    CAS  PubMed  Google Scholar 

  • Kozlowski JM, Fidler IJ, Campbell D, Xu ZL, Kaighn ME, Hart IR (1984) Metastatic behaviour of human tumor cell lines grown in the nude mouse. Cancer Res 44: 3522–3529

    CAS  PubMed  Google Scholar 

  • Leygue E, Dotzlaw H, Watson PH, Murphy LC (1998) Altered estrogen receptor α and β messenger RNA expression during human breast tumorigenesis. Cancer Res 58: 3197–3201

    CAS  PubMed  Google Scholar 

  • Leygue E, Dotzlaw H, Watson PH, Murphy LC (1999) Expression of estrogen receptor β1, β2, and β5 messenger RNAs in human breast tissue. Cancer Res 59: 1175–1179

    CAS  PubMed  Google Scholar 

  • Lopez-Farre A, Rodrguez-Feo JA, Sanchez de Miguel L, Rico L, Casado S (1998) Role of nitric oxide in the control of apoptosis in the microvasculature. Int J Biochem Cell Biol 30: 1095–1106

    Article  CAS  Google Scholar 

  • McGuire WL, Carbone PP, Vollmer EP (1975) Estrogen receptors in human breast cancer. New York: Raven Press

    Google Scholar 

  • Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Veresio L (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182: 1683–1693

    Article  CAS  Google Scholar 

  • Mikulski SM (1994) Pathogenesis of cancer in view of mutually opposing apoptotic and anti-apoptotic growth signals. Intl J Oncol 4: 1257–1263

    CAS  Google Scholar 

  • Minchenko A, Bauer T, Salceda S, Caro J (1994) Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71: 374–379

    CAS  PubMed  Google Scholar 

  • Mitchell JB, Wink DA, DeGraff W, Gamson J, Keefer LK, Krishna MC (1993) Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res 53: 5845–5848

    CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064

    Article  CAS  Google Scholar 

  • Nenci I, Marchetti E, Querzoli P (1988) Commentary on human mammary preneoplasia. The estrogen receptor-promotion hypothesis. J Steriod Biochem 30: 105–106

    Article  CAS  Google Scholar 

  • O'Rourke JF, Dachs GU, Gleadle JM, Maxwell PH, Pugh CW, Stratford IJ, Wood SM, Ratcliffe PJ (1997) Hypoxia response elements. Oncol Res 9: 327–332

    CAS  PubMed  Google Scholar 

  • Pujol P, Jey J, Nirde P, Roger P, Gastaldi M, Laffargue F, Rochefort H, Maudelonde T (1998) Differential expression of estrogen receptor-α and -β messenger RNAs as a potential marker of ovarian carcinogenesis. Cancer Res 58: 5367–5373

    CAS  PubMed  Google Scholar 

  • Seaman WE, Blackman MA, Gindhart TD, Roubinian JR, Loeb JM, Talal N (1978) Beta-estradiol reduces natural killer cells in mice. J Immunol 121: 2193–2198

    CAS  PubMed  Google Scholar 

  • Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67: 51–56

    CAS  PubMed  Google Scholar 

  • Shakhar G, Ben-Eliyahu S (1998) In vivo beta-adrenergic stimulation suppresses natural killer activity and compromise resistance to tumor metastasis in rats. J Immunol 160: 3251–3258

    CAS  PubMed  Google Scholar 

  • Sutherland RM, Rasey JS, Hill RP (1988) Tumor biology. Am J Clin Oncol 11: 253–274

    Article  CAS  Google Scholar 

  • Talmadge JE, Meyers KM, Prieur DJ, Starkey JR (1980) Role of NK cells in tumour growth and metastasis in beige mice. Nature (Lond) 284: 622–624

    Article  CAS  Google Scholar 

  • Thomsen LL, Lawton FG, Knowles RG, Beesley JF, Riveros-Moreno V, Moncada S (1994) Nitric oxide synthase activity in human gynaecological cancer. Cancer Res 54: 1352–1354

    CAS  PubMed  Google Scholar 

  • Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72: 41–44

    Article  CAS  Google Scholar 

  • Thomsen LL, Scott JMJ, Topley P, Knowles RG, Keerie A, Frend AJ (1997) Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: Studies with 1400W, a novel inhibitor. Cancer Res 57: 3300–3304

    CAS  PubMed  Google Scholar 

  • Topper J, Freedman C (1980) Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 60: 1049–1060

    Article  CAS  Google Scholar 

  • Van der Burg B, Isbrueker L, Van Selm-Miltenburg AJP, De Laat SW, Van Zoelen EJJ (1990) Role of estrogen-induced insulin-like growth factors in the proliferation of human breast cancer cells. Cancer Res 50: 7770–7774

    CAS  PubMed  Google Scholar 

  • Vladusic EA, Hornby EA, Guerra-Vladusic FK, Lakins J, Lapu R (1998) Expression of estrogen receptor β messenger RNA variant in breast cancer. Cancer Res 58: 210–214

    CAS  PubMed  Google Scholar 

  • Vladusic EA, Hornby EA, Guerra-Vladusic FK, Lakins J, Lapu R (2000) Expression and regulation of estrogen receptor beta in human breast tumors and cell lines. Oncol Reports 7: 157–167

    CAS  Google Scholar 

  • Weigel RJ, deConnick EC (1993) Transcriptional control of estrogen receptor in estrogen receptor-negative breast carcinoma. Cancer Res 53: 3472–3474

    CAS  PubMed  Google Scholar 

  • Weiner CP, Lizasoain I, Baylis SA, Knowles RG, Charles IG, Moncada S (1994) Induction of calcium-dependent nitric oxide by sex hormones. Proc Natl Acad Sci USA 91: 5212–5216

    Article  CAS  Google Scholar 

  • Wood PJ, Sansom JM, Butler SA, Stratford IJ, Cole SM, Szabo C, Thiemermann C, Adams GE (1994a) Induction of hypoxia in experimental murine tumors by the nitric oxide synthase inhibitor, Ng-nitro-L-arginine. Cancer Res 54: 6458–6463

    CAS  PubMed  Google Scholar 

  • Wood PJ, Sansom J, Stratford IJ, Adams GE, Szabo C, Thiemermann C, Vane JR (1994b) Modification of energy metabolism in transplantable and spontaneous tumors by the nitric oxide synthase inhibitor nitro-L-arginine. Int J Radiat Oncol Biol Phys 29: 443–447

    Article  CAS  Google Scholar 

  • Yee D, Paik S, Lebovic GS, Marcus RR, Favoni RE, Cullen RJ, Lippman ME, Rosen N (1989) Analysis of insulin-like growth factor gene expression in malignancy: evidence for a paracrine role in human breast cancer. Mol Endocrinol 3: 509–517

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Mr Terry Hacker of the MRC Radiation and Genome Stability Unit, Harwell, Didcot, for carrying out NOS immunohistology on tumour sections. This study was jointly supported by grants from the Association for International Cancer Research (AICR) and the Medical Research Council (MRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E C Chinje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinje, E., Williams, K., Telfer, B. et al. 17β-Oestradiol treatment modulates nitric oxide synthase activity in MDA231 tumour with implications on growth and radiation response. Br J Cancer 86, 136–142 (2002). https://doi.org/10.1038/sj.bjc.6600032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bjc.6600032

Keywords

This article is cited by

Search

Quick links