Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: association with antisocial alcohol dependence

Abstract

To identify sequence variants in genes that may have roles in neuronal responses to alcohol, we resequenced the 5′ region of tyrosine kinase B neurotrophin receptor gene (NTRK2) and determined linkage disequilibrium (LD) values, haplotype structure, and performed association analyses using 43 single nucleotide polymorphisms (SNPs) covering the entire NTRK2 region in a Finnish Caucasian sample of 229 alcohol-dependent subjects with antisocial personality disorder (ASPD) and 287 healthy controls. Individually, three SNPs were associated with alcohol dependence and alcohol abuse (AD) (P-value from 0.0019 to 0.0059, significance level was set at P0.01 corrected for multiple testing), whereas a common 18 locus haplotype within the largest LD block of NTRK2, a 119-kb region containing the 5′ flanking region and exons 1–15, was marginally overrepresented in control subjects compared to AD individuals (global P=0.057). Taken together, these results support a role for the NTRK2 gene in addiction in a Caucasian population with AD and a subtype of ASPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P et al. Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 1998; 81: 207–215.

    Article  CAS  Google Scholar 

  2. Li T-K, Hewitt BG, Grant BF . Alcohol use disorders and mood disorders: a National Institute on Alcohol Abuse and Alcoholism perspective. Biol Psychiatry 2004; 56: 718–720.

    Article  Google Scholar 

  3. True WR, Xian H, Scherrer JF, Madden PAF, Bucholz KK, Heath AC et al. Common genetic vulnerability for nicotine and alcohol dependence in men. Arch Gen Psychiatry 1999; 56: 655–661.

    Article  CAS  Google Scholar 

  4. Liu Q-R, Drgon T, Walther D, Johnson C, Poleskaya O, Hess J et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc Natl Acad Sci USA 2005; 102: 11864–11869.

    Article  CAS  Google Scholar 

  5. Bergen A, Yang X, Bai Y, Beerman M, Goldstein A, Goldin L . Genomic regions linked to alcohol consumption in the Framingham Heart Study. BMC Genet 2003; 4: S101.

    Article  Google Scholar 

  6. Gelernter J, Liu X, Hesselbrock V, Page GP, Goddard A, Zhang H . Results of a genomewide linkage scan: support for chromosomes 9 and 11 loci increasing risk for cigarette smoking. Am J Med Genet Part B: Neuropsychiatr Genet 2004; 128B: 94–101.

    Article  Google Scholar 

  7. Long JC, Knowler WC, Hanson RL, Robin RW, Urbanek M, Moore E et al. Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am J Med Genet 1998; 81: 216–221.

    Article  CAS  Google Scholar 

  8. Uhl GR, Liu QR, Walther D, Hess J, Naiman D . Polysubstance abuse-vulnerability genes: genome scans for association, using 1,004 subjects and 1,494 single-nucleotide polymorphisms. Am J Hum Genet 2001; 69: 1290–1300.

    Article  CAS  Google Scholar 

  9. Ma J, Zhang D, Dupont R, Dockter M, Elston R, Li M . Mapping susceptibility loci for alcohol consumption using number of grams of alcohol consumed per day as a phenotype measure. BMC Genet 2003; 4: S104.

    Article  Google Scholar 

  10. Greene LA, Kaplan DR . Early events in neurotrophin signalling via Trk and p75 receptors. Curr Opin Neurobiol 1995; 5: 579–587.

    Article  CAS  Google Scholar 

  11. Saarelainen T, Vaittinen S, Castren E . TrkB-receptor activation contributes to the kainate-induced increase in BDNF mRNA synthesis. Cell Mol Neurobiol 2001; 21: 429–435.

    Article  CAS  Google Scholar 

  12. Stoilov P, Castren E, Stamm S . Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun 2002; 290: 1054–1065.

    Article  CAS  Google Scholar 

  13. Eide FF, Vining ER, Eide BL, Zang K, Wang X-Y, Reichardt LF . Naturally occurring truncated TrkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 1996; 16: 3123–3129.

    Article  CAS  Google Scholar 

  14. Haapasalo A, Koponen E, Hoppe E, Wong G, Castren E . Truncated trkB.T1 is dominant negative inhibitor of trkB. TK+-mediated cell survival. Biochem Biophys Res Commun 2001; 280: 1352–1358.

    Article  CAS  Google Scholar 

  15. Hartmann M, Brigadski T, Erdmann KS, Holtmann B, Sendtner M, Narz F et al. Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor. J Cell Sci 2004; 117: 5803–5814.

    Article  CAS  Google Scholar 

  16. Ninkina NAJ, Fischer A, Pinon LF, Buchman VL, Davies AM . Expression and function of TrkB variants in developing sensory neurons. EMBO J 1996; 15: 6385–6393.

    Article  CAS  Google Scholar 

  17. Baxter GT, Radeke MJ, Kuo RC, Makrides V, Hinkle B, Hoang R et al. Signal transduction mediated by the truncated TrkB receptor isoforms, trkB.T1 and trkB.T2. J Neurosci 1997; 17: 2683–2690.

    Article  CAS  Google Scholar 

  18. Steinbeck JAMA . Translational downregulation of the noncatalytic growth factor receptor TrkB.T1 by ischemic preconditioning of primary neurons. Gene Expression 2005; 12: 99–106.

    Article  Google Scholar 

  19. McGough NNH, He D-Y, Logrip ML, Jeanblanc J, Phamluong K, Luong K et al. RACK1 and brain-derived neurotrophic factor: a homeostatic pathway that regulates alcohol addiction. J Neurosci 2004; 24: 10542–10552.

    Article  CAS  Google Scholar 

  20. Berhow MT, Hiroi N, Nestler EJ . Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 1996; 16: 4707–4715.

    Article  CAS  Google Scholar 

  21. Dorsey SG, Bambrick LL, Balice-Gordon RJ, Krueger BK . Failure of brain-derived neurotrophic factor-dependent neuron survival in mouse Trisomy 16. J Neurosci 2002; 22: 2571–2578.

    Article  CAS  Google Scholar 

  22. The International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

  23. Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA . Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003; 33: 382–387.

    Article  CAS  Google Scholar 

  24. Nestler EJ . Is there a common molecular pathway for addiction? Nat Neurosci 2005; 8: 1445–1449.

    Article  CAS  Google Scholar 

  25. Tapia-Arancibia L, Rage F, Givalois L, Dingeon P, Arancibia S, Beaugé F . Effects of alcohol on brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus and hypothalamus. J Neurosci Res 2001; 63: 200–208.

    Article  CAS  Google Scholar 

  26. Miller R, King MA, Heaton MB, Walker DW . The effects of chronic ethanol consumption on neurotrophins and their receptors in the rat hippocampus and basal forebrain. Brain Res 2002; 950: 137–147.

    Article  CAS  Google Scholar 

  27. Kernie SG, Liebl DJ, Parada LF . BDNF regulates eating behavior and locomotor activity in mice. EMBO J 2000; 19: 1290–1300.

    Article  CAS  Google Scholar 

  28. Ribases M, Gratacos M, Badia A, Jimenez L, Solano R, Vallejo J et al. Contribution of NTRK2 to the genetic susceptibility to anorexia nervosa, Harm avoidance and minimum body mass index. Mol Psychiatry 2005; 10: 851–860.

    Article  CAS  Google Scholar 

  29. Matsushita S, Kimura M, Miyakawa T, Yoshino A, Murayama M, Masaki T et al. Association study of brain-derived neurotrophic factor gene polymorphism and alcoholism. Alcohol Clin Exp Res 2004; 28: 1609–1612.

    Article  CAS  Google Scholar 

  30. Tsai S-J, Liao D-L, Yu YW-Y, Chen T-J, Wu H-C, Lin C-H et al. A study of the association of (Val66Met) polymorphism in the brain-derived neurotrophic factor gene with alcohol dependence and extreme violence in Chinese males. Neurosci Lett 2005; 381: 340–343.

    Article  CAS  Google Scholar 

  31. Rudolph JG, White S, Sokolsky C, Bozak D, Mazzanti C, Lipsky RH, Goldman D . Determination of melting temperature for variant detection using dHPLC: a comparison between an empirical approach and DNA melting prediction software. Genet Test 2002; 6: 169–176.

    Article  CAS  Google Scholar 

  32. Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL et al. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 1998; 55: 989–994.

    Article  CAS  Google Scholar 

  33. Spitzer RL, Williams JB, Gibbon M, First MB . Structured Clinical Interview for DSM-III-R–Non-patient Edition (SCID-NP, Version 10). American Psychiatric Press; Washington, DC, 1990.

    Google Scholar 

  34. Cloninger C . Neurogenetic adaptive mechanisms in alcoholism. Science 1987; 236: 410–416.

    Article  CAS  Google Scholar 

  35. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  36. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The Structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  37. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by intramural research grant Z01-AA00325 from the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (RHL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Lipsky.

Additional information

Web Resources

The URLs for data presented herein are as follows:

dbSNP, http://www.ncbi.nlm.nih.gov/SNP

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim

HapMap Project, http://www.hapmap.org

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Anderson, T., Neyer, K. et al. Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: association with antisocial alcohol dependence. Pharmacogenomics J 7, 368–379 (2007). https://doi.org/10.1038/sj.tpj.6500430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500430

Keywords

This article is cited by

Search

Quick links