Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer's disease)

Abstract

Safety and efficacy pharmacogenetics can be applied successfully to the drug discovery and development pipeline at multiple phases. We review drug-target screening using high throughput SNP associations with complex diseases testing more than 1 800 candidate targets with approximately 7 000 SNPs. Alzheimer's disease data are provided as an example. The supplementation of target-selected screening with genome-wide SNP association, to also define susceptibility genes and relevant disease pathways for human diseases, is discussed. Applications for determining predictive genetic or genomic profiles, or derived biomarkers, for drug efficacy and safety during clinical development are exemplified by several successful experiments at different phases of development. A Phase I–IIA study of side effects using an oral drug for the treatment of breast cancer is used as an example of early pipeline pharmacogenetics to predict side effects and allow optimization of dosing. References are provided for several other recently published genetic association studies of adverse events during drug development. We illustrate the early identification of gene variant candidates related to efficacy in a Phase IIA obesity drug trial to generate hypotheses for testing in subsequent development. How these genetic data generated in Phase IIA are subsequently incorporated as hypotheses into later Phase clinical protocols is discussed. A Phase IIB clinical trial for Alzheimer's disease is described that exemplifies the major pipeline decision between program attrition and further clinical development. In this case, there was no significant improvement in 511 intention-to-treat patients but, applying a confirmed prognostic biomarker (APOE4) to segment the clinical trial population, all three doses of rosiglitazone demonstrated improvement in patients who did not carry the APOE4 allele. The data for the APOE4 carriers demonstrated no significant improvement but suggested that there may be a need for higher doses. Thus, a development program that would have been terminated progressed to Phase III registration trials based on the results of prospective efficacy pharmacogenetic analyses. The implications of using APOE genotype as a biomarker to predict efficacy and possibly dose, as well as supporting the basic neurobiology and pharmacology that provided the original target validation, is discussed. Citations are provided that support a slow neurotoxic effect over many years of a specific fragment of apoE protein (over-produced by apoE4 substrate compared to apoE3) on mitochondria and the use of rosiglitazone to increase mitochondrial biogenesis and improve glucose utilization. Pharmacogenetics is currently being used across the pipeline to prevent attrition and to create safer and more effective medicines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Roses AD . Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004; 5: 645–656.

    CAS  PubMed  Google Scholar 

  2. Roses AD . Pharmacogenetics and the practice of medicine. Nature 2000; 405: 857–865.

    Article  CAS  PubMed  Google Scholar 

  3. Editorial. New England Journal of Politics. Wall Street Journal, 16 January 2006.

  4. Palmer LJ, Cardon LR . Shaking the tree: mapping complex disease genes with linkage disequilibrium. Lancet 2005; 366: 1223–1234.

    CAS  PubMed  Google Scholar 

  5. Risner ME, Saunders AM, Altman JFB, Ormandy GC, Craft S, Foley IM et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. The Pharmacogenomics Journal advance online publication 31 January 2006; doi:10.1038/sj.tpj.6500369.

    CAS  PubMed  Google Scholar 

  6. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial -Alzheimer's disease. Nature 1991; 349: 704–706.

    CAS  PubMed  Google Scholar 

  7. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375: 754–760.

    CAS  PubMed  Google Scholar 

  8. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376: 775–778.

    CAS  PubMed  Google Scholar 

  9. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance MA, Enghild J, Salvesen GS et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, Proc. Natl Acad Sci 1993; 90: 1977–1981.

    CAS  Google Scholar 

  10. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. J Am Med Assoc 1997; 278: 1349–1356.

    CAS  Google Scholar 

  11. Roses AD . Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu Rev Med 1996; 47: 387–400.

    CAS  PubMed  Google Scholar 

  12. Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell Jr PC et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7: 180–184.

    CAS  PubMed  Google Scholar 

  13. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 1993; 261: 921–923.

    CAS  PubMed  Google Scholar 

  14. Roses AD . Alzheimer diseases: a model of gene mutations and susceptibility polymorphisms for complex psychiatric diseases. Am J Med Genet 1998; 81 (1): 49–57.

    CAS  PubMed  Google Scholar 

  15. Alzheimer A . Uber eine eigenartige Erkrankung der Hirnrinde. Allg Zetschr Psychiatr Psychiatr-Gerichtl Med 1907: 146–148.

  16. Wurtman RJ . Alzheimer's disease. Sci Am 1985; 252 (1): 62–66, 71–74.

    CAS  PubMed  Google Scholar 

  17. Terry RD, Katzman R . Senile dementia of the Alzheimer type. Ann Neurol 1983; 14 (5): 497–506.

    CAS  PubMed  Google Scholar 

  18. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34: 939–944.

    CAS  PubMed  Google Scholar 

  19. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al. The Consortium to Establish a Registry for Alzheimer’;s Disease (CERAD). Part II. Standardization of the neuro pathologic assessment of Alzheimer's disease. Neurology 1991; 41: 479–486.

    CAS  PubMed  Google Scholar 

  20. Khachaturian ZS . Diagnosis of Alz heimer's disease. Arch Neurol 1985; 42: 1097–1105.

    CAS  PubMed  Google Scholar 

  21. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Nat Acad Sci USA 1993; 90 (20): 9649–9653.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lippa CF, Zhukareva V, Kawarai T, Uryu K, Shafiq M, Nee LE et al. Frontotemporal dementia with novel tau pathology and a Glu342Val tau mutation. Ann Neurol 2000; 48 (6): 850–858.

    CAS  PubMed  Google Scholar 

  23. Rizzini C, Goedert M, Hodges JR, Smith MJ, Jakes R, Hills R et al. Tau gene mutation K257 T causes a tauopathy similar to Pick's disease. J Neuropathol Exp Neurol 2000; 59 (11): 990–1001.

    CAS  PubMed  Google Scholar 

  24. Yen SH, Hutton M, DeTure M, Ko LW, Nacharaju P . Fibrillogenesis of tau: insights from tau missense mutations in FTDP-17. Brain Pathol 1999; 9 (4): 695–705.

    CAS  PubMed  Google Scholar 

  25. Delisle MB, Murrell JR, Richardson R, Trofatter JA, Rascol O, Soulages X et al. A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropathol 1999; 98 (1): 62–77.

    CAS  PubMed  Google Scholar 

  26. Goedert M, Spillantini MG, Crowther RA, Chen SG, Parchi P, Tabaton M et al. Tau gene mutation in familial progressive subcortical gliosis. Nat Med 1999; 5 (4): 454–457.

    CAS  PubMed  Google Scholar 

  27. Murrell JR, Spillantini MG, Zolo P, Guazzelli M, Smith MJ, Hasegawa M et al. Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J Neuropathol Exp Neurol 1999; 58 (12): 1207–1226.

    CAS  PubMed  Google Scholar 

  28. Tanzi RE, Bertram L . Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 2005; 120 (4): 545–555.

    CAS  PubMed  Google Scholar 

  29. Hardy J . Amyloid double trouble. Nat Genet 2006; 38 (1): 11–12.

    CAS  PubMed  Google Scholar 

  30. Dodart JC, Mathis C, Bales KR, Paul SM, Ungerer A . Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Neurosci Lett 1999; 277 (1): 49–52.

    CAS  PubMed  Google Scholar 

  31. Cullen LM, Arndt GM . Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol 2005; 83 (3): 217–223.

    CAS  PubMed  Google Scholar 

  32. Roses AD, Burns DK, Chissoe S, Middleton L, St Jean P . Disease-specific target selection: a critical first step down the right road. Drug Discovery Today 2005; 10: 177–189.

    PubMed  Google Scholar 

  33. Saunders AM, Trowers MK, Shimkets RA, Blakemore S, Crowther DJ, Mansfield TA et al. The role of apolipoprotein E in Alzheimer's disease: pharmacogenomic target selection. Biochim Biophys Acta 2000; 1502 (1): 85–94.

    CAS  PubMed  Google Scholar 

  34. Roses AD, Pangalos MN . Drug development and Alzheimer disease. Am J Geriatr Psychiatry 2003; 11 (2): 123–130.

    PubMed  Google Scholar 

  35. Roses AD, Saunders AM . Perspective on a pathogenesis and treatment of Alzheimer's disease. Alzheimer's Dementia 2006; 2: 59–70.

    CAS  PubMed  Google Scholar 

  36. Small GW, Ercoli LM, Silverman DHS, Huang S-C, Komo S, Bookheimer SY et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 6037–6042.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 2004; 101: 284–289.

    CAS  PubMed  Google Scholar 

  38. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Correlations between apolipoprotein E ɛ4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad Sci USA 2005; 102: 8299–8302.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scarmeas N, Habeck CG, Hilton J, Anderson KE, Flynn J, Park A et al. APOE related alterations in cerebral activation even at college age. J Neurol Neurosurg Psychiatry 2005; 76: 1440–1444.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Drzezga A, Riemenschneider M, Strassner B, Grimmer T, Peller M, Knoll A et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology 2005; 64: 102–107.

    CAS  PubMed  Google Scholar 

  41. Hirono N, Hashimoto M, Yasuda M, Ishii K, Sakamoto S, Kazui H et al. The effect of APOE ɛ4 allele on cerebral glucose metabolism in AD is a function of age at onset. Neurology 2002; 58: 743–750.

    CAS  PubMed  Google Scholar 

  42. Ulfig N, Braak E, Braak H . Changes within the basal nucleus in Parkinson's disease. Prog Clin Biol Res 1989; 317: 493–500.

    CAS  PubMed  Google Scholar 

  43. Manfredi G, Xu Z . Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 2005; 5: 77–87.

    CAS  PubMed  Google Scholar 

  44. Haeberlein SL . Mitochondrial function in apoptotic neuronal cell death. Neurochem Res 2004; 29 (3): 521–530.

    CAS  PubMed  Google Scholar 

  45. Einstein G, Buranosky R, Crain BJ . Dendritic pathology of granule cells in Alzheimer's disease is unrelated to neuritic plaques. J Neurosci 1994; 14 (8): 5077–5088.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goldstein DB, Tate SK, Sisodiya SM . Pharmacogenetics goes genomic. Nat Rev Genet 2003; 4 (12): 937–947.

    CAS  PubMed  Google Scholar 

  47. Simon R, Wang S-J . Use of genomic signatures in therapeutics development in oncology and other diseases. The Pharmacogenomics Journal advance online publication 17 January 2006; doi: 10.1038/sj.tpj.6500349.

    CAS  PubMed  Google Scholar 

  48. Nathanson KL, Wooster R, Weber BL . Breast cancer genetics: what we know and what we need. Nat Med 2001; 7 (5): 552–556.

    CAS  PubMed  Google Scholar 

  49. Roses AD . Genome-based pharmacogenetics and the pharmaceutical industry. Nature Reviews. Drug Discovery 2002; 1 (7): 541–549.

    CAS  PubMed  Google Scholar 

  50. Xu CF, Lewis KF, Yeo AJ, McCarthy LC, Maguire MF, Anwar Z et al. Identification of a pharmacogenetic effect by linkage disequilibrium mapping. Pharmacogenom J 2004; 4 (6): 374–378.

    CAS  Google Scholar 

  51. Kiang TK, Ensom MH, Chang TK . UDP-glucuronosyltransferases and clinical drug–drug interactions. Pharmacol Therapeut 2005; 106 (1): 97–132.

    CAS  Google Scholar 

  52. Lesko LJ, Woodcock J . Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discovery 2004; 3 (9): 763–769.

    CAS  PubMed  Google Scholar 

  53. Ingelman-Sundberg M, Rodriguez-Antona C . Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philosophical Transactions of the Royal Society of London – Series B. Biol Sci 2005; 360 (1460): 1563–1570.

    CAS  Google Scholar 

  54. Burczynski ME, Oestreicher JL, Cahilly MJ, Mounts DP, Whitley MZ, Speicher LA et al. Clinical pharmacogenomics and transcriptional profiling in early phase oncology clinical trials. Curr Mol Med 2005; 5 (1): 83–102.

    CAS  PubMed  Google Scholar 

  55. Roots I, Gerloff T, Meisel C, Kirchheiner J, Goldammer M, Kaiser R et al. Pharmacogenetics-based new therapeutic concepts. Drug Metabolism Rev 2004; 36 (3–4): 617–638.

    CAS  Google Scholar 

  56. Kirchheiner J, Fuhr U, Brockmoller J . Pharmacogenetics-based therapeutic recommendations – ready for clinical practice?. Nature Reviews. Drug Discovery 2005; 4 (8): 639–647.

    CAS  PubMed  Google Scholar 

  57. Zaks TZ, Akkari A, Briley L, Mosteller M, Stead AG, Koch K et al. Finding a pharmacogenetic basis of diarrhea and skin rash early in clinical development: a Phase I study of Tykerb. Am Soc Clin Oncol 2006; Abstract, in Press.

  58. Mahley RW, Weisgraber KH, Huang Y . Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proc Natl Acad Sci USA 2006; 103: 5644–5651.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mahley RW . Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–630.

    CAS  PubMed  Google Scholar 

  60. Mahley RW, Rall Jr SC . Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000; 1: 507–537.

    CAS  PubMed  Google Scholar 

  61. Weisgraber KH . Apolipoprotein E: structure–function relationships. Adv Protein Chem 1994; 45: 249–302.

    CAS  PubMed  Google Scholar 

  62. Huang Y, Weisgraber KH, Mucke L, Mahley RW . Apolipoprotein E. Diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer's disease. J Mol Neurosci 2004; 23: 189–204.

    CAS  PubMed  Google Scholar 

  63. Horsburgh K, Graham DI, Stewart J, Nicoll JAR . Influence of apolipoprotein E genotype on neuronal damage and apoE immunoreactivity in human hippocampus following global ischemia. J Neuropathol Exp Neurol 1999; 58: 227–234.

    CAS  PubMed  Google Scholar 

  64. Tsuang DW, Dalan AM, Eugenio CJ, Poorkaj P, Limprasert P, La Spada AR et al. Familial dementia with Lewy bodies. A clinical and neuropathological study of 2 families. Arch Neurol 2002; 59: 1622–1630.

    PubMed  Google Scholar 

  65. Chapman J, Vinokurov S, Achiron A, Karussis DM, Mitosek-Szewczyk K, Birnbaum M et al. APOE genotype is a major predictor of long-term progression of disability in MS. Neurology 2001; 56: 312–316.

    CAS  PubMed  Google Scholar 

  66. Fazekas F, Strasser-Fuchs S, Kollegger H, Berger T, Kristoferitsch W, Schmidt H et al. Apolipoprotein E ɛ4 is associated with rapid progression of multiple sclerosis. Neurology 2001; 57: 853–857.

    CAS  PubMed  Google Scholar 

  67. Lacomblez L, Doppler V, Beucler I, Costes G, Salachas F, Raisonnier A et al. APOE: a potential marker of disease progression in ALS. Neurology 2002; 58: 1112–1114.

    CAS  PubMed  Google Scholar 

  68. Malek G, Johnson LV, Mace BE, Saloupis P, Schmechel DE, Rickman DW et al. Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 2005; 102 (33): 11900–11905.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Slooter AJC, Tang M-X, van Duijn CM, Stern Y, Ott A, Bell K et al. Apolipoprotein E ɛ4 and the risk of dementia with stroke. A population-based investigation. J Am Med Assoc 1997; 277: 818–821.

    CAS  Google Scholar 

  70. Nicoll JAR, Roberts GW, Graham DI . Amyloid β-protein, APOE genotype and head injury. Ann NY Acad Sci 1996; 777: 271–275.

    CAS  PubMed  Google Scholar 

  71. Boschert U, Merlo-Pich E, Higgins G, Roses AD, Catsicas S . Apolipoprotein E expression by neurons surviving excitotoxic stress. Neurobiol Disease 1999; 6 (6): 508–514.

    CAS  Google Scholar 

  72. Elshourbagy NA, Liao WS, Mahley RW, Taylor JM . Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci USA 1985; 82: 203–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW . Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 1987; 917: 148–161.

    CAS  PubMed  Google Scholar 

  74. Han SH, Einstein G, Weisgraber KH, Strittmatter WJ, Saunders AM, Pericak-Vance M et al. Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study. J Neuropathol Exp Neurol 1994; 53 (5): 535–544.

    CAS  PubMed  Google Scholar 

  75. Han SH, Hulette C, Saunders AM, Einstein G, Pericak-Vance M, Strittmatter WJ et al. Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer's disease and in age-matched controls. Exp Neurol 1994; 128 (1): 13–26.

    CAS  PubMed  Google Scholar 

  76. Williams KR, Pye V, Saunders AM, Roses AD, Armati PJ . Apolipoprotein E uptake and low-density lipoprotein receptor-related protein expression by the NTera2/D1 cell line: a cell culture model of relevance for late-onset Alzheimer's disease. Neurobiol Disease 1997; 4 (1): 58–67.

    CAS  Google Scholar 

  77. Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA . Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 1991; 252: 1817–1822.

    CAS  PubMed  Google Scholar 

  78. Dong L-M, Weisgraber KH . Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 1996; 271: 19053–19057.

    CAS  PubMed  Google Scholar 

  79. Dong L-M, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH et al. Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 1994; 269: 22358–22365.

    CAS  PubMed  Google Scholar 

  80. Weisgraber KH . Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res 1990; 31: 1503–1511.

    CAS  PubMed  Google Scholar 

  81. Ye S, Huang Y, Müllendorff K, Dong L, Giedt G, Meng EC et al. Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci USA 2005; 102: 18700–18705.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Raffaï RL, Dong L-M, Farese Jr RV, Weisgraber KH . Introduction of human apolipoprotein E4 ‘domain interaction’ into mouse apolipoprotein E. Proc Natl Acad Sci USA 2001; 98: 11587–11591.

    PubMed  PubMed Central  Google Scholar 

  83. Xu Q, Brecht WJ, Weisgraber KH, Mahley RW, Huang Y . Apolipoprotein E4 domain interaction occurs in living neuronal cells as determined by fluorescence resonance energy transfer. J Biol Chem 2004; 279: 25511–25516.

    CAS  PubMed  Google Scholar 

  84. Hatters DM, Budamagunta MS, Voss JC, Weisgraber KH . Modulation of apolipoprotein E structure by domain interaction. Differences in lipid-bound and lipid-free forms. J Biol Chem 2005; 280: 34288–34295.

    CAS  PubMed  Google Scholar 

  85. Müller W, Meske V, Berlin K, Scharnagl H, März W, Ohm TG . Apolipoprotein E isoforms increase intracellular Ca2+ differentially through a ω-Agatoxin IVa-sensitive Ca2+-channel. Brain Pathol 1998; 8: 641–653.

    PubMed  Google Scholar 

  86. Misra UK, Adlakha CL, Gawdi G, McMillian MK, Pizzo SV, Laskowitz DT . Apolipoprotein E and mimetic peptide initiate a calcium-dependent signaling response in macrophages. J Leukoc Biol 2001; 70: 677–683.

    CAS  PubMed  Google Scholar 

  87. Hartmann H, Eckert A, Müller WE . Apolipoprotein E and cholesterol affect neuronal calcium signalling: the possible relationship to β-amyloid neurotoxicity. Biochem Biophys Res Commun 1994; 200: 1185–1192.

    CAS  PubMed  Google Scholar 

  88. Wang X-S, Gruenstein E . Rapid elevation of neuronal cytoplasmic calcium by apolipoprotein E peptide. J Cell Physiol 1997; 173: 73–83.

    CAS  PubMed  Google Scholar 

  89. Tolar M, Keller JN, Chan S, Mattson MP, Marques MA, Crutcher KA . Truncated apolipoprotein E (apoE) causes increased intracellular calcium and may mediate apoE neurotoxicity. J Neurosci 1999; 19: 7100–7110.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Small SA . Age-related memory decline. Current concepts and future directions. Arch Neurol 2001; 58: 360–364.

    CAS  PubMed  Google Scholar 

  91. Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA . Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci USA 2004; 101: 7181–7186.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mosconi L, Herholz K, Prohovnik I, Nacmias B, De Cristofaro MTR, Fayyaz M et al. Metabolic interaction between apoE genotype and onset age in Alzheimer's disease: implications for brain reserve. J Neurol Neurosurg Psychiatry 2005; 76: 15–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mosconi L, Nacmias B, Sorbi S, De Cristofaro MTR, Fayazz M, Tedde A et al. Brain metabolic decreases related to the dose of the apoE e4 allele in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2004; 75: 370–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V et al. MCI conversion to dementia and the APOE genotype. A prediction study with FDG-PET. Neurology 2004; 63: 2332–2340.

    CAS  PubMed  Google Scholar 

  95. Mosconi L, Sorbi S, Nacmias B, De Cristofaro MTR, Fayyaz M, Bracco L et al. Age and apoE genotype interaction in Alzheimer's disease: an FDG-PET study. Psychiatry Res 2004; 130: 141–151.

    CAS  PubMed  Google Scholar 

  96. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ . Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 2003; 23: 7881–7888.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Li Z, Okamoto K-I, Hayashi Y, Sheng M . The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004; 119: 873–887.

    CAS  PubMed  Google Scholar 

  98. Morris RL, Hollenbeck PJ . The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 1993; 104: 917–927.

    PubMed  Google Scholar 

  99. van Rossum D, Hanisch U-K . Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? Trends Neurosci 1999; 22: 290–295.

    CAS  PubMed  Google Scholar 

  100. Shepherd GMG, Harris KM . Three-dimensional structure and composition of CA3ÆCA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 1998; 18: 8300–8310.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Reynolds IJ, Malaiyandi LM, Coash M, Rintoul GL . Mitochondrial trafficking in neurons: a key variable in neurodegeneration? J Bioenerg Biomembrane 2004; 36: 283–286.

    CAS  PubMed  Google Scholar 

  102. Huang Y, Mahley RW . Commentary: ‘Perspective on a pathogenesis and treatment of Alzheimer's disease. Apolipoprotein E and the mitochondrial metabolic hypothesis Alzheimer's & Dementia 2006; 2: 71–73.

    CAS  Google Scholar 

  103. Harris FM, Tesseur I, Brecht WJ, Xu Q, Mullendorff K, Chang S et al. Astroglial regulation of apolipoprotein E expression in neuronal cells. Implications for Alzheimer's disease. J Biol Chem 2004; 279: 3862–3868.

    CAS  PubMed  Google Scholar 

  104. Huang Y . Apolipoprotein E and Alzheimer disease. Neurology 2006; 66 (Suppl 1): S79–S85.

    CAS  PubMed  Google Scholar 

  105. Huang Y, Liu XQ, Wyss-Coray T, Brecht WJ, Sanan DA, Mahley RW . Apolipoprotein E fragments present in Alzheimer's disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc Natl Acad Sci USA 2001; 98: 8838–8843.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T et al. Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer's disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci USA 2003; 100: 10966–10971.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brecht WJ, Harris FM, Chang S, Tesseur I, Yu G-Q, Xu Q et al. Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 2004; 24: 2527–2534.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang S, Ma TR, Miranda RD, Balestra ME, Mahley RW, Huang Y . Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci USA 2005; 102: 18694–18699.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Frankel AD, Pabo CO . Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193.

    CAS  PubMed  Google Scholar 

  110. Green M, Loewenstein PM . Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179–1188.

    CAS  PubMed  Google Scholar 

  111. Mahley RW, Hui DY, Innerarity TL, Beisiegel U . Chylomicron remnant metabolism. Role of hepatic lipoprotein receptors in mediating uptake. Arteriosclerosis 1989; 9: I-14–I-18.

    CAS  Google Scholar 

  112. Beisiegel U, Weber W, Havinga JR, Ihrke G, Hui DY, Wernette-Hammond ME et al. Apolipoprotein E-binding proteins isolated from dog and human liver. Arteriosclerosis 1988; 8: 288–297.

    CAS  PubMed  Google Scholar 

  113. Hamilton RL, Wong JS, Guo LSS, Krisans S, Havel RJ . Apolipoprotein E localization in rat hepatocytes by immunogold labeling of cryothin sections. J Lipid Res 1990; 31: 1589–1603.

    CAS  PubMed  Google Scholar 

  114. Tesseur I, Van Dorpe J, Bruynseels K, Bronfman F, Sciot R, Van Lommel A et al. Prominent axonopathy and disruption of axonal transport in transgenic mice expressing human apolipoprotein E4 in neurons of brain and spinal cord. Am J Pathol 2000; 157: 1495–1510.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M . Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156: 1051–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 2005; 307: 1282–1288.

    CAS  PubMed  Google Scholar 

  117. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E-M et al. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 1998; 143: 777–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Miller KE, Sheetz MP . Axonal mitochondrial transport and potential are correlated. J Cell Sci 2004; 117: 2791–2804.

    CAS  PubMed  Google Scholar 

  119. Verstreken P, Ly CV, Venken KJT, Koh T-W, Zhou Y, Bellen HJ . Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47: 365–378.

    CAS  PubMed  Google Scholar 

  120. Lowell BB, Shulman GI . Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307 (5708): 384–387.

    CAS  PubMed  Google Scholar 

  121. Wallace DC . Mitochondrial diseases in man and mouse. Science 1999; 283 (5407): 1482–1488.

    CAS  PubMed  Google Scholar 

  122. Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics 1993; 17 (1): 171–184.

    CAS  PubMed  Google Scholar 

  123. Hutchin T, Cortopassi G . Mitochondrial DNA haplotype predicts deafness risk. Am J Med Genet 1995; 60 (6): 592.

    CAS  PubMed  Google Scholar 

  124. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE . Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 2005; 57 (5): 695–703.

    CAS  PubMed  Google Scholar 

  125. Bubber P, Tang J, Haroutunian V, Xu H, Davis KL, Blass JP et al. Mitochondrial enzymes in schizophrenia. J Mol Neurosci 2004; 24 (2): 315–321.

    CAS  PubMed  Google Scholar 

  126. Gibson GE, Blass JP, Beal MF, Bunik V . The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 2005; 31 (1–3): 43–63.

    CAS  PubMed  Google Scholar 

  127. Gibson GE, Haroutunian V, Zhang H, Park LC, Shi Q, Lesser M et al. Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype. Ann Neurol 2000; 48 (3): 297–303.

    CAS  PubMed  Google Scholar 

  128. Albers DS, Augood SJ, Park LC, Browne SE, Martin DM, Adamson J et al. Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment. J Neurochem 2000; 74 (2): 878–881.

    CAS  PubMed  Google Scholar 

  129. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH . Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci USA 1999; 96 (20): 11513–11518.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lane N . Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press: New York, 2005.

    Google Scholar 

  131. Wilson-Fritch L, Nicoloro S, Chouinard M, Lazar MA, Chui PC, Leszyk J et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Investig 2004; 114 (9): 1281–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang YL, Frauwirth KA, Rangwala SM, Lazar MA, Thompson CB . Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J Biol Chem 2002; 277 (35): 31781–31788.

    CAS  PubMed  Google Scholar 

  133. Vondra K, Rath R, Bass A, Slabochova Z, Teisinger J, Vitek V . Enzyme activities in quadriceps femoris muscle of obese diabetic male patients. Diabetologia 1977; 13 (5): 527–529.

    CAS  PubMed  Google Scholar 

  134. Kelley DE, He J, Menshikova EV, Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51 (10): 2944–2950.

    CAS  PubMed  Google Scholar 

  135. van den Berg E, Kessels RP, de Haan EH, Kappelle LJ, Biessels GJ . Mild impairments in cognition in patients with type 2 diabetes mellitus: the use of the concepts MCI and CIND. JNeurol, Neurosurg Psychiatry 2005; 76 (10): 1466–1467.

    CAS  Google Scholar 

  136. Craft S, Watson GS . Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 2004; 3 (3): 169–178.

    CAS  PubMed  Google Scholar 

  137. Ryan CM, Freed MI, Rood JA, Cobitz AR, Waterhouse BR, Strachan MW . Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabet Care 2006; 29 (2): 345–351.

    Google Scholar 

  138. Strum JC, Shehee R, Ghosh S, Nock C, Saunders AM, Roses AD . Rosiglitazone induces ApoE isozyme-dependent mitochondrial biogenesis in mouse brain, submitted for publication.

  139. WARBURG O . Oxygen, The Creator of Differentiation, Biochemical Energetics. Academic Press: New York, 1966.

    Google Scholar 

  140. Ramón y Cajal S . Estudios Sobre la Degeneración y Regeneración del Sistema Nervioso (N. Moya, Madrid, 1913). see: Ramón y Cajal, S. The structure and connexions of neurons [online], http://nobelprize.org/medicine/laureates/1906/cajal-lecture.pdf, 1906.

  141. Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G et al. Oxidative imbalance in Alzheimer's disease. Mol Neurobiol 2005; 31 (1–3): 205–217.

    CAS  PubMed  Google Scholar 

  142. Trimmer PA, Borland MK . Differentiated Alzheimer's disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxidants & Redox Signaling 2005; 7 (9–10): 1101–1109.

    CAS  Google Scholar 

  143. Reddy PH, Beal MF . Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res – Brain Res Rev 2005; 49 (3): 618–632.

    CAS  PubMed  Google Scholar 

  144. Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP et al. Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerget Biomembranes 2005; 37 (4): 207–225.

    CAS  Google Scholar 

  145. Wang HQ, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T et al. Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Human Mol Genet 2005; 14 (13): 1889–1902.

    CAS  Google Scholar 

  146. Liu J, Ames BN . Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2005; 8 (2): 67–89.

    CAS  PubMed  Google Scholar 

  147. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P et al. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 2005; 280 (25): 23802–23814.

    CAS  PubMed  Google Scholar 

  148. Takuma K, Yan SS, Stern DM, Yamada K . Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci 97 (3): 312–316.

    CAS  PubMed  Google Scholar 

  149. Sullivan PG, Brown MR . Mitochondrial aging and dysfunction in Alzheimer's disease. Prog Neuro-Psychopharmacol Biol Psychiatry 2005; 29 (3): 407–410.

    CAS  Google Scholar 

  150. Albert von Szent-Gyorgyi, in Irving Good, The Scientist Speculates (1962) US biochemist (1893–1986).

  151. Huang DY, Goedert M, Jakes R, Weisgraber KH, Garner CC, Saunders AM et al. Isoform-specific interactions of apolipoprotein E with the microtubule-associated protein MAP2c: implications for Alzheimer's disease. Neurosci Lett 1994; 182 (1): 55–58.

    CAS  PubMed  Google Scholar 

  152. Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G . Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer's patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett 1998; 425 (2): 225–228.

    CAS  PubMed  Google Scholar 

  153. Chauhan VP, Ray I, Chauhan A, Wisniewski HM . Binding of gelsolin, a secretory protein, to amyloid beta-protein. Biochem Biophys Res Commun 1999; 258 (2): 241–246.

    CAS  PubMed  Google Scholar 

  154. LeVine III H . 125I-labeled ApoE binds competitively to beta(1–40) fibrils with pathological chaperone proteins. Amyloid 2000; 7 (2): 83–89.

    CAS  PubMed  Google Scholar 

  155. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334 (12): 752–758.

    CAS  PubMed  Google Scholar 

  156. Saito H, Dhanasekaran P, Baldwin F, Weisgraber KH, Phillips MC, Lund-Katz S . Effects of polymorphism on the lipid interaction of human apolipoprotein E. J Biol Chem 2003; 278 (42): 40723–40729.

    CAS  PubMed  Google Scholar 

  157. Terwel D, Dewachter I, Van Leuven F . Axonal transport, tau protein, and neurodegeneration in Alzheimer's disease. NeuroMol Med 2002; 2 (2): 151–165.

    CAS  Google Scholar 

  158. Dodart JC, Mathis C, Bales KR, Paul SM, Ungerer A . Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Neurosci Lett 1999; 277 (1): 49–52.

    CAS  PubMed  Google Scholar 

  159. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proc Natl Acad SciUSA 2005; 102 (23): 8299–8302.

    CAS  Google Scholar 

  160. Dodart JC, Marr RA, Koistinaho M, Gregersen BM, Malkani S, Verma IM et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer's disease. ProcNatl Acad SciUSA 2005; 102 (4): 1211–1216.

    CAS  Google Scholar 

  161. Martins CAR, Oulhaj A, de Jager CA, Williams JH . APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology 2005; 65: 1888–1893.

    CAS  PubMed  Google Scholar 

  162. Inouye M, Mio T, Sumino K . Glycated hemoglobin and lipid peroxidation in erythrocytes of diabetic patients. Metabol: Clin Exp 1999; 48 (2): 205–209.

    CAS  Google Scholar 

  163. Fitzgerald GA . Opinion: anticipating change in drug development: the emerging era of translational medicine and therapeutics. Nat Rev Drug Discovery 2005; 4 (10): 815–818.

    CAS  PubMed  Google Scholar 

  164. Humes HD . Translational medicine and the National Institutes of Health road map: steep grades and tortuous curves. J Lab Clin Med 2005; 146 (2): 51–54.

    PubMed  Google Scholar 

  165. Shastry BS . Genetic diversity and new therapeutic concepts. J Human Genet 2005; 50 (7): 321–328.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the efforts of hundreds of scientists, co-workers and collaborators over the past two decades, especially those associated with Duke University, University of California, San Francisco, the J David Gladstone Institutes and GlaxoSmithKline. ADR especially thanks Dr James Niedel, who was R&D Head at Glaxo Wellcome and Dr Tachi Yamada who was R&D Head at GlaxoSmithKline. Both of these physician-scientists supported and encouraged much of the pipeline pharmacogenetic research and the AD research and drug development described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Roses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roses, A., Saunders, A., Huang, Y. et al. Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer's disease). Pharmacogenomics J 7, 10–28 (2007). https://doi.org/10.1038/sj.tpj.6500397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500397

Keywords

This article is cited by

Search

Quick links