Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic factors influencing Pyrimidine-antagonist chemotherapy

Abstract

Pyrimidine antagonists, for example, 5-fluorouracil (5-FU), cytarabine (ara-C) and gemcitabine (dFdC), are widely used in chemotherapy regimes for colorectal, breast, head and neck, non-small-cell lung cancer, pancreatic cancer and leukaemias. Extensive metabolism is a prerequisite for conversion of these pyrimidine prodrugs into active compounds. Interindividual variation in the activity of metabolising enzymes can affect the extent of prodrug activation and, as a result, act on the efficacy of chemotherapy treatment. Genetic factors at least partly explain interindividual variation in antitumour efficacy and toxicity of pyrimidine antagonists. In this review, proteins relevant for the efficacy and toxicity of pyrimidine antagonists will be summarised. In addition, the role of germline polymorphisms, tumour-specific somatic mutations and protein expression levels in the metabolic pathways and clinical pharmacology of these drugs are described. Germline polymorphisms of uridine monophosphate kinase (UMPK), orotate phosphoribosyl transferase (OPRT), thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD) and methylene tetrahydrofolate reductase (MTHFR) and gene expression levels of OPRT, UMPK, TS, DPD, uridine phosphorylase, uridine kinase, thymidine phosphorylase, thymidine kinase, deoxyuridine triphosphate nucleotide hydrolase are discussed in relation to 5-FU efficacy. Cytidine deaminase (CDD) and 5′-nucleotidase (5NT) gene polymorphisms and CDD, 5NT, deoxycytidine kinase and MRP5 gene expression levels and their potential relation to dFdC and ara-C cytotoxicity are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukaemia

ara-C:

cytarabine

ara-CMP:

cytarabine monophosphate

ara-U:

uracil-arabinoside

BSA:

body surface area

BUP1:

β-ureidopropionase

CDD:

cytidine deaminase

CMF:

cyclophosphamide, methotrexate and 5-fluorouracil

CMP:

deoxycytidine monophosphate

CYP450:

cytochrome P450

CYP1A2:

cytochrome P450 1A2

CYP2A6:

cytochrome P450 2A6

CYP2C8:

cytochrome P450 2C8

dCDP:

deoxycytidine diphosphate

dCK:

deoxycytidine kinase

dCTP:

deoxycytidine triphosphate

dFCR:

5′-deoxy-5-fluorocytidine

dFdC:

gemcitabine

dFdCDP:

gemcitabine diphosphate

dFdCMP:

gemcitabine monophosphate

dFdCTP:

gemcitabine triphosphate

dFdU:

2′-deoxy-2′, 2′-difluorouridine

dFdUMP:

2′-deoxy-2′, 2′-difluorouridine monophosphate

dFUR:

5′-deoxy-5-fluorouridine

DPD:

dihydropyrimidine dehydrogenase

DPYD:

dihydropyrimidine dehydrogenase gene

DPYS:

dihydropyrimidinase

dTMP:

deoxy-thymidine monophosphate

dUMP:

deoxyuridine monophosphate

dUTP:

deoxy-uridine triphosphate

dUTPase:

dUTP nucleotidohydrolase

ECGF:

endothelial cell growth factor

FdUDP:

5-fluoro-deoxy-uridine-diphosphate

FdUMP:

5-fluoro-deoxy-uridine monophosphate

FdUTP:

5-fluoro-deoxy-uridine-triphosphate

5-FU:

5-fluorouracil

FUDP:

5-fluoro-uridine-diphosphate

FUDR:

5-fluoro-deoxy-uridine

FUMP:

5-fluoro-uridine-monophosphate

FUTP:

5-fluoro-uridine-triphosphate

IFN:

interferon

IHC:

immunohistochemistry

LV:

leucovorin

MITO:

mitomycine

MITOX:

mitoxantrone

MRP:

multi-drug resistance protein

MTHFR:

methylene tetrahydrofolate reductase

MTX:

methotrexate

5NT:

5′-nucleotidase

OPRT:

orotate phosphoribosyl transferase

RNR:

ribonucleotide reductase

SNP:

single-nucleotide polymorphism

TK:

thymidine kinase

TP:

thymidine phosphorylase

TS:

thymidine synthase

UDPK:

uridine diphosphate kinase

UK:

uridine kinase

UMPK:

uridine monophosphate kinase

UP:

uridine phosphorylase

USF:

upstream stimulatory factor

References

  1. Harari PM . Why has induction chemotherapy of advanced head and neck cancer become a United States community standard of practice? J Clin Oncol 1997; 15: 2050–2055.

    CAS  PubMed  Google Scholar 

  2. Macdonald JS, Astrow AB . Adjuvant therapy of colon cancer. Semin Oncol 2001; 28: 30–40.

    CAS  PubMed  Google Scholar 

  3. Cochrane Review. Multi-agent chemotherapy for early breast cancer. Cochrane Database Syst Rev 2002; CD000487.

  4. Wiernik PH . Current status of and future prospects for the medical management of adenocarcinoma of the exocrine pancreas. J Clin Gastroenterol 2000; 30: 357–363.

    CAS  PubMed  Google Scholar 

  5. Sorenson S, Glimelius B, Nygren P, SBU group. Swedish Council of Technology Assessment in Health Care. A systematic overview of chemotherapy effects in non-small cell lung cancer. Acta Oncol 2001; 40: 327–339.

    CAS  PubMed  Google Scholar 

  6. Bishop JF . Approaches to induction therapy with adult acute myeloid leukaemia. Acta Haematol 1998; 99: 133–137.

    CAS  PubMed  Google Scholar 

  7. Pinedo HM, Peters GF . Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988; 6: 1653–1664.

    CAS  PubMed  Google Scholar 

  8. Diasio RB, Johnson MR . The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with fluorouracil. Pharmacology 2000; 61: 199–203.

    CAS  PubMed  Google Scholar 

  9. Ho DH, Townsend L, Luna MA, Bodey GP . Distribution and inhibition of dihydrouracil dehydrogenase activities in human tissues using 5-fluorouracil as a substrate. Anticancer Res 1986; 6: 781–784.

    CAS  PubMed  Google Scholar 

  10. Kuhn JG . Fluorouracil and the new oral fluorinated pyrimidines. Ann Pharmacother 2001; 35: 217–227.

    CAS  PubMed  Google Scholar 

  11. Kufe DW, Spriggs DR . Biochemical and cellular pharmacology of cytosine arabinoside. Semin Oncol 1985; 12: 34–48.

    CAS  PubMed  Google Scholar 

  12. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V . DFdC: metabolism, mechanisms of action, and self-potentiation. Sem Oncol 1995; 22: 3–10.

    CAS  Google Scholar 

  13. Plunkett W, Huang P, Gandhi V . Preclinical characteristics of dFdC. Anticancer Drugs 1995; 6: 7–13.

    CAS  PubMed  Google Scholar 

  14. Giblett ER, Anderson JE, Chen SH, Teng YS, Cohen F . Uridine monophosphate kinase: a new genetic polymorphism with possible clinical implications. Am J Hum Genet 1974; 26: 627–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Komatsu N, Kimura Y, Kido A, Oya M . Polymorphism of uridine monophosphate kinase: population study in Japanese and phenotyping in blood stains. Int J Legal Med 1990; 104: 13–16.

    CAS  PubMed  Google Scholar 

  16. Halasa J, Schlesinger D, Manczak M . UMPK polymorphism in the Polish population. Arch Immunol Ther Exp 1985; 33: 621–624.

    CAS  Google Scholar 

  17. Gallango ML, Suinaga R . Uridine monophosphate polymorphism in two Venezuelan populations. Am J Hum Genet 1978; 30: 215–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suchi M, Mizuno H, Kawai Y, Tsuboi T, Sumi S, Okajima K et al. Molecular cloning of the human UMP synthase gene and characterization of point mutations in two hereditary orotic aciduria families. Am J Hum Genet 1997; 60: 525–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marsh S, McLeod HL . Thymidylate synthase pharmacogenetics in colorectal cancer. Clin Colorect Cancer 2001; 1: 175–178.

    CAS  Google Scholar 

  20. Kawakami K, Omura K, Kanehira E, Watanabe Y . Polymorphic tandem repeats in the thymidylate synthase gene is associated with its protein expression in human gastrointestinal cancers. Anticancer Res 1999; 19: 3249–3252.

    CAS  PubMed  Google Scholar 

  21. Marsh S, McKay JA, Cassidy J, McLeod HL . Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol 2001; 19: 383–386.

    CAS  PubMed  Google Scholar 

  22. Kawakami K, Salonga D, Park JM, Danenberg KD, Uetake H, Brabender J et al. Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res 2001; 7: 4096–4101.

    CAS  PubMed  Google Scholar 

  23. Merkelbach-Bruse S, Hans V, Mathiak M, Sanguedolce R, Alessandro R, Ruschoff J et al. Associations between polymorphisms in the thymidylate synthase gene, the expression of thymidylate synthase mRNA and the microsatellite instability phenotype of colorectal cancer. Oncol Rep 2004; 11: 839–843.

    CAS  PubMed  Google Scholar 

  24. Marsh S, Colli-Duguid ES, Li T, Liu X, McLeod HL . Ethnic variation in the thymidylate synthase enhancer region polymorphism among Caucasians and Asian populations. Genomics 1999; 58: 310–312.

    CAS  PubMed  Google Scholar 

  25. Marsh S, Ameyaw MM, Githang’a J, Indalo A, Ofori-Adjei D, McLeod HL . Novel thymidylate synthase enhancer region alleles in African populations. Hum Mutat 2000; 16: 528.

    CAS  PubMed  Google Scholar 

  26. Etienne MC, Ilc K, Formento JL, Laurent-Puig P, Formento P, Cheradame S et al. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br J Cancer 2004; 90: 526–534.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mauritz R, Beumer IJ, Marsh S, McLeod HL, Smid K, van Groeningen CJ et al. Polymorphism of the thymidylate synthase gene and thymidylate synthase levels in colon cancer cell lines and different tissues of colorectal cancer patients. Nucleosides Nucleotides Nucleic Acids 2004; 23: 1381–1384.

    CAS  PubMed  Google Scholar 

  28. Villafranca E, Okruzhnov Y, Dominguez MA, Garcia-Foncillas J, Azinovic I, Martinez E et al. Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol 2001; 19: 1779–1786.

    CAS  PubMed  Google Scholar 

  29. Park DJ, Stoehlmacher J, Zhang W, Tsao-Wei D, Groschen S, Lenz HJ . Thymidylate synthase gene polymorphism predicts response to capecitabine in advanced colorectal cancer. Int J Colorectal Dis 2002; 17: 46–49.

    PubMed  Google Scholar 

  30. Iacopetta B, Grieu F, Joseph D, Elsaleh H . A polymorphism in the enhancer region of the thymidylate synthase promoter influences the survival of colorectal cancer patients treated with 5-fluorouracil. Br J Cancer 2001; 85: 827–830.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsuji T, Hidaka S, Sawai T, Nakagoe T, Yano H, Haseba M et al. Polymorphism in the thymidylate synthase promoter enhancer region is not an efficacious marker for tumor sensitivity to 5-fluorouracil-based oral adjuvant chemotherapy in colorectal cancer. Clin Cancer Res 2003; 9: 3700–3704.

    CAS  PubMed  Google Scholar 

  32. Jonker DJ, Maroun JA, Le Francois B, Dahrouge S, Birnboim HC . Correlation between 2 thymidylate synthase gene polymorphisms and clinical outcomes in colorectal cancer patients receiving adjuvant chemotherapy. Proc Am Soc Clin Oncol 2002; (abstract 638); 21: 160a.

    Google Scholar 

  33. Kawakami K, Watanabe G . Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 2003; 63: 6004–6007.

    CAS  PubMed  Google Scholar 

  34. Mandola MV, Stoehlmacher J, Muller-Weeks S, Cesarone G, Yu MC, Lenz HJ et al. A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res 2003; 63: 2898–2904.

    CAS  PubMed  Google Scholar 

  35. Ulrich CM, Bigler J, Velicer CM, Greene EA, Farin FM, Potter JD . Searching expressed sequence tag databases: discovery and confirmation of a common polymorphism in the thymidylate synthase gene. Cancer Epidemiol Biomarkers Prev 2000; 9: 1381–1385.

    CAS  PubMed  Google Scholar 

  36. Mandola MV, Stoehlmacher J, Zhang W, Groshen S, Yu MC, Iqbal S et al. A 6 bp polymorphism in the thymidylate synthase gene causes message instability and is associated with decreased intratumoral TS mRNA levels. Pharmacogenetics 2004; 14: 319–327.

    CAS  PubMed  Google Scholar 

  37. Kawakami K, Ishida Y, Danenberg KD, Omura K, Watanabe G, Danenberg PV . Functional polymorphism of the thymidylate synthase gene in colorectal cancer accompanied by frequent loss of heterozygosity. Jpn J Cancer Res 2002; 93: 1221–1229.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Uchida K, Hayashi K, Kawakami K, Schneider S, Yochim JM, Kuramochi H et al. Loss of heterozygosity at the thymidylate synthase (TS) locus on chromosome 18 affects tumor response and survival in individuals heterozygous for a 28-bp polymorphism in the TS gene. Clin Cancer Res 2004; 10: 433–439.

    CAS  PubMed  Google Scholar 

  39. Danenberg PV, Danenberg KD . Effect of 5, 10-methylenetetrahydrofolate on the dissociation of 5-fluoro-2′-deoxyuridylate from thymidylate synthetase: evidence for an ordered mechanism. Biochemistry 1978; 17: 4018–4024.

    CAS  PubMed  Google Scholar 

  40. Stern LL, Bagley PJ, Rosenberg IH, Selhub J . Conversion of 5-formylhydrofolic acid to 5-methylhydrofolic acid in unimpaired folate-adequate persons homozygous for the C677T mutation in the methylene tetrahydrofolate reductase gene. J Nutr 2000; 130: 2238–2242.

    CAS  PubMed  Google Scholar 

  41. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R . A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169–172.

    CAS  PubMed  Google Scholar 

  42. Sohn KJ, Croxford R, Yates Z, Lucock M, Kim YI . Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst 2004; 96: 134–144.

    CAS  PubMed  Google Scholar 

  43. Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Redlund M, Stoll C et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 2003; 40: 619–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wisotzkey JD, Toman J, Bell T, Monk JS, Jones D . Polymorphisms and stage III colon cancer: response to therapy. Mol Diagn 2000; 5: 5–6.

    Google Scholar 

  45. Kawakami K, Omura K, Kanehira E, Watanabe G . Methylene tetrahydrofolate reductase polymorphism is associated with folate pool in gastrointestinal tissue. Anticancer Res 2001; 21: 285–289.

    CAS  PubMed  Google Scholar 

  46. Cohen V, Panet-Raymond V, Sabbaghian N, Morin I, Batist G, Rozen R . Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin Cancer Res 2003; 9: 1611–1615.

    CAS  PubMed  Google Scholar 

  47. Etienne MC, Formento JL, Chazal M, Francoual M, Magne N, Formento P et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics 2004; 14: 785–792.

    CAS  PubMed  Google Scholar 

  48. Van Kuilenburg ABP, Haasjes J, Richel DJ, Zoetekouw L, Van Lenthe H, Waterham HR et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil associated toxicity. Identification of new mutations in the DPD gene. Clin Cancer Res 2000; 6: 4705–4712.

    CAS  PubMed  Google Scholar 

  49. Collie-Duguid ES, Etienne MC, Milano G, McLeod HL . Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics 2000; 10: 217–223.

    CAS  PubMed  Google Scholar 

  50. Van Kuilenburg ABP, De Abreu RA, Van Gennip AH . Pharmacogenetic and clinical aspects of dihydropyrimidine dehydrogenase deficiency. Ann Clin Biochem 2003; 40: 41–45.

    CAS  PubMed  Google Scholar 

  51. Diasio RB, Beavers TL, Carpenter JT . Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest 1988; 81: 47–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Maring JG, van Kuilenburg ABP, Haasjes J, Piersma H, Groen HJM, Uges DRA et al. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer 2002; 86: 1028–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu Z, Zhang R, Diasio RB . Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res 1993; 53: 5433–5438.

    CAS  PubMed  Google Scholar 

  54. Etienne MC, Lagrange JL, Dassonville O, Fleming R, Thyss A, Renee N et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol 1994; 12: 2248–2253.

    CAS  PubMed  Google Scholar 

  55. Mattison LK, Ezzeldin H, Carpenter M, Modak A, Johnson MR, Diasio RB . Rapid identification of dihydropyrimidine dehydrogenase deficiency by using a novel 2-13C-uracil breath test. Clin Cancer Res 2004; 10: 2652–2658.

    CAS  PubMed  Google Scholar 

  56. Maring JG, Oonk BN, De Vries EGE, Hospers GAP . Plasma pharmacokinetics of uracil after an oral uracil challenge dose for dihydropyrimidine dehydrogenase (DPD) phenotyping. Proc Am Soc Clin Oncol 2004 (abstract 2120); 23: 157.

    Google Scholar 

  57. Van Kuilenburg ABP, Meinsma R, Zonnenberg BA, Zoetekouw L, Baas F, Madsuda K et al. Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 2003; 9: 4363–4367.

    CAS  PubMed  Google Scholar 

  58. Hamajima N, Kouwaki M, Vreken P, Matsuda K, Sumi S, Imaeda M et al. Dihydropyrimidinase deficiency: structural organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene. Am J Hum Genet 1998; 63: 717–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Daigo S, Takahashi Y, Fujieda M, Ariyoshi N, Yamazaki H, Koizumi W et al. A novel mutant allele of the CYP2A6 gene (CYP2A6*11) found in a cancer patient who showed poor metabolic phenotype towards tegafur. Pharmacogenetics 2002; 12: 299–306.

    CAS  PubMed  Google Scholar 

  60. Kirch HC, Schroder JK, Hoppe H, Esche H, Seeber S, Schutte J . Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro. Exp Hematol 1998; 26: 421–425.

    CAS  PubMed  Google Scholar 

  61. Morita T, Matsuzaki A, Kurokawa S, Tokue A . Forced expression of cytidine deaminase confers sensitivity to capecitabine. Oncology 2003; 65: 267–274.

    CAS  PubMed  Google Scholar 

  62. Marinaki AM, Escuredo E, Duley JA, Simmonds HA, Amici A, Naponelli V et al. Genetic basis of hemolytic anemia caused by 5′-nucleotidase deficiency. Blood 2001; 97: 3327–3332.

    CAS  PubMed  Google Scholar 

  63. Banerjee D, Gorlick R, Sowers R, Miles JS, Rode W, Kemeny N et al. Lack of uridine monophosphate kinase (UMPK) expression in tumour samples from colorectal cancer patients clinically resistant to 5-fluorouracil. Proc Am Soc Clin Oncol 2002 (abstract 350); 21: 88a.

    Google Scholar 

  64. Inaba M, Mitsuhashi J, Sawada H, Miike N, Naoe Y, Daimon A et al. Reduced activity of anabolizing enzymes in 5-fluorouracil-resistant human stomach cancer cells. Jpn J Cancer Res 1996; 87: 212–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Inaba M, Naoe Y, Mitsuhashi J . Mechanisms of 5-fluorouracil resistance in human colon cancer DLD-1 cells. Biol Pharm Bull 1998; 21: 569–573.

    CAS  PubMed  Google Scholar 

  66. Chung YM, Park SH, Park JK, Kim YT, Kang YK, Yoo YD . Establishment and characterization of 5-fluorouracil-resistant gastric cancer cells. Cancer Lett 2000; 159: 95–101.

    CAS  PubMed  Google Scholar 

  67. Murakami Y, Kazuno H, Emura T, Tsujimoto H, Suzuki N, Fukushima M . Different mechanisms of acquired resistance to fluorinated pyrimidines in human colorectal cancer cells. Int J Oncol 2000; 17: 277–283.

    CAS  PubMed  Google Scholar 

  68. Fujii R, Seshimo A, Kameoka S . Relationships between the expression of thymidylate synthase, dihydropyrimidine dehydrogenase, and orotate phosphoribosyltransferase and cell proliferative activity and 5-fluorouracil sensitivity in colorectal carcinoma. Int J Clin Oncol 2003; 8: 72–78.

    CAS  PubMed  Google Scholar 

  69. Isshi K, Sakuyama T, Gen T, Nakamura Y, Kuroda T, Katuyama T et al. Predicting 5-FU sensitivity using human colorectal cancer specimens: comparison of tumor dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activities with in vitro chemosensitivity to 5-FU. Int J Clin Oncol 2002; 7: 335–342.

    CAS  PubMed  Google Scholar 

  70. Ichikawa W, Uetake H, Shirota Y, Yamada H, Takahashi T, Nihei Z et al. Both gene expression for orotate phosphoribosyltransferase and its ratio to dihydropyrimidine dehydrogenase influence outcome following fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Br J Cancer 2003; 89: 1486–1492.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cuq P, Rouquet C, Evrard A, Ciccolini J, Vian L, Cano JP . Fluoropyrimidine sensitivity of human MCF-7 breast cancer cells stably transfected with human uridine phosphorylase. Br J Cancer 2001; 84: 1677–1680.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fox SB, Engels K, Comley M, Whitehouse RM, Turley H, Gatter KC et al. Relationship of elevated tumour thymidine phosphorylase in node-positive breast carcinomas to the effects of adjuvant CMF. Ann Oncol 1997; 8: 271–275.

    CAS  PubMed  Google Scholar 

  73. Metzger R, Danenberg K, Leichman CG, Salonga D, Schwartz EL, Wadler S et al. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonreponse to 5-fluorouracil. Clin Cancer Res 1998; 4: 2371–2376.

    CAS  PubMed  Google Scholar 

  74. Kikuyama S, Inada T, Shimizu K, Miyakita M, Ogata Y . P53, bcl-2 and thymidine phosphorylase as predictive markers of chemotherapy in patients with advanced and recurrent gastric cancer. Anticancer Res 2001; 21: 2149–2153.

    CAS  PubMed  Google Scholar 

  75. Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M et al. The expression of thymidine phosphorylase correlates with angiogenesis and the efficacy of chemotherapy using fluorouracil derivatives in advanced gastric carcinoma. Br J Cancer 1999; 81: 484–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marchetti S, Chazal M, Dubreuil A, Fischel JL, Etienne MC, Milano G . Impact of thymidine phosphorylase surexpression on fluoropyrimidine activity and on tumour angiogenesis. Br J Cancer 2001; 85: 439–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Morita T, Matsuzaki A, Tokue A . Enhancement of sensitivity to capecitabine in human renal carcinoma cells transfected with thymidine phosphorylase cDNA. Int J Cancer 2001; 92: 451–456.

    CAS  PubMed  Google Scholar 

  78. de Bruin M, van Capel T, Van der Born K, Kruyt FA, Fukushima M, Hoekman K et al. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity. Br J Cancer 2003; 88: 957–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Evrard A, Cuq P, Robert B, Vian L, Pelegrin A, Cano JP . Enhancement of 5-fluorouracil cytotoxicity by human thymidine-phosphorylase expression in cancer cells: in vitro and in vivo study. Int J Cancer 1999; 80: 465–470.

    CAS  PubMed  Google Scholar 

  80. Evrard A, Cuq P, Ciccolini J, Vian L, Cano JP . Increased cytotoxicity and bystander effect of 5-fluorouracil and 5-deoxy-5-fluorouridine in human colorectal cancer cells transfected with thymidine phosphorylase. Br J Cancer 1999; 80: 1726–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwartz EL, Baptiste N, Wadler S, Makower D . Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil. J Biol Chem 1995; 270: 19073–19077.

    CAS  PubMed  Google Scholar 

  82. van Triest B, Pinedo HM, Blaauwgeers JL, van Diest PJ, Schoenmakers PS, Voorn DA et al. Prognostic role of thymidylate synthase, thymidine phosphorylase/platelet-derived endothelial cell growth factor, and proliferation markers in colorectal cancer. Clin Cancer Res 2000; 6: 1063–1072.

    CAS  PubMed  Google Scholar 

  83. Radparvar S, Houghton PJ, Germain G, Pennington J, Rahman A, Houghton JA . Cellular pharmacology of 5-fluorouracil in a human colon adenocarcinoma cell line selected for thymidine kinase deficiency. Biochem Pharmacol 1990; 39: 1759–1765.

    CAS  PubMed  Google Scholar 

  84. Foekens JA, Romain S, Look MP, Martin PM, Klijn JG . Thymidine kinase and thymidine synthase in advanced breast cancer: response to tamoxifen and chemotherapy. Cancer Res 2001; 61: 1421–1425.

    CAS  PubMed  Google Scholar 

  85. Beck A, Etienne MC, Cheradame S, Fischel JL, Formento P, Renee N et al. A role for dihydropyrimidine dehydrogenase and thymidylate synthase in tumour sensitivity to fluorouracil. Eur J Cancer 1994; 30A: 1517–1522.

    CAS  PubMed  Google Scholar 

  86. Kirihara Y, Yamamoto W, Toge T, Nishiyama M . Dihydropyrimidine dehydrogenase, multidrug resistance-associated protein, and thymidylate synthase gene expression levels can predict 5-fluorouracil resistance in human gastrointestinal cancer cells. Int J Oncol 1999; 14: 551–556.

    CAS  PubMed  Google Scholar 

  87. Ishikawa Y, Kubota T, Otani Y, Watanabe M, Teramoto T, Kumai K et al. Dihydropyrimidine dehydrogenase activity and messenger RNA level may be related to the antitumor effect of 5-fluorouracil on human tumor xenografts in nude mice. Clin Cancer Res 1999; 5: 883–889.

    CAS  PubMed  Google Scholar 

  88. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322–1327.

    CAS  PubMed  Google Scholar 

  89. Ikeguchi M, Makino M, Kaibara N . Thymidine phosphorylase and dihydropyrimidine dehydrogenase activity in colorectal carcinoma and patients prognosis. Langenbecks Arch Surg 2002; 387: 240–245.

    PubMed  Google Scholar 

  90. Kornmann M, Link KH, Galuba I, Ott K, Schwabe W, Hausler P et al. Association of time to recurrence with thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression in stage II and III colorectal cancer. J Gastrointest Surg 2002; 6: 331–337.

    PubMed  Google Scholar 

  91. Kornmann M, Schwabe W, Sander S, Kron M, Strater J, Polat S et al. Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression levels: predictors for survival in colorectal cancer patients receiving adjuvant 5-fluorouracil. Clin Cancer Res 2003; 9: 4116–4124.

    CAS  PubMed  Google Scholar 

  92. Terashima M, Irinoda T, Fujiwara H, Nakaya T, Takagane A, Abe K et al. Roles of thymidylate synthase and dihydropyrimidine dehydrogenase in tumor progression and sensitivity to 5-fluorouracil in human gastric cancer. Anticancer Res 2002; 22: 761–768.

    CAS  PubMed  Google Scholar 

  93. Terashima M, Fujiwara H, Takagane A, Abe K, Araya M, Irinoda T et al. Role of thymidine phosphorylase and dihydropyrimidine dehydrogenase in tumour progression and sensitivity to doxifluridine in gastric cancer patients. Eur J Cancer 2002; 38: 2375–2381.

    CAS  PubMed  Google Scholar 

  94. Tahara M, Ochiai A, Fujimoto J, Boku N, Yasui W, Ohtsu A et al. Expression of thymidylate synthase, thymidine phosphorylase, dihydropyrimidine dehydrogenase, E2F-1, Bak, Bcl-X, and Bcl-2, and clinical outcomes for gastric cancer patients treated with bolus 5-fluorouracil. Oncol Rep 2004; 11: 9–15.

    CAS  PubMed  Google Scholar 

  95. Etienne MC, Cheradame S, Fischel JL, Formento P, Dassonville O, Renee N et al. Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 1995; 13: 1663–1670.

    CAS  PubMed  Google Scholar 

  96. Etienne MC, Pivot X, Formento JL, Bensadoun RJ, Formento P, Dassonville O et al. A multifactorial approach including tumoural epidermal growth factor receptor, p53, thymidylate synthase and dihydropyrimidine dehydrogenase to predict treatment outcome in head and neck cancer patients receiving 5-fluorouracil. Br J Cancer 1999; 79: 1864–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kawasaki G, Yoshitomi I, Yanamoto S, Mizuno A . Thymidylate synthase and dihydropyrimidine dehydrogenase expression in oral squamous cell carcinoma: an immunohistochemical and clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94: 717–723.

    PubMed  Google Scholar 

  98. Nakagawa T, Tanaka F, Takata T, Matsuoka K, Miyahara R, Otake Y et al. Predictive value of dihydropyrimidine dehydrogenase expression in tumor tissue, regarding the efficacy of postoperatively administered UFT (Tegafur + Uracil) in patients with p-stage I nonsmall-cell lung cancer. J Surg Oncol 2002; 81: 87–92.

    CAS  PubMed  Google Scholar 

  99. Huang CL, Yokomise H, Kobayashi S, Fukushima M, Hitomi S, Wada H . Intratumoral expression of thymidylate synthase and dihydropyrimidine dehydrogenase in non-small cell lung cancer patients treated with 5-FU based chemotherapy. Int J Oncol 2000; 17: 47–54.

    CAS  PubMed  Google Scholar 

  100. Higashiyama M, Kodama K, Yokouchi H, Takami K, Fukushima M, Minamigawa K et al. Thymidylate synthase and dihydropyrimidine dehydrogenase activities in non-small cell lung cancer tissues: relationship with in vitro sensitivity to 5-fluorouracil. Lung Cancer 2001; 34: 407–416.

    CAS  PubMed  Google Scholar 

  101. Horiguchi J, Yoshida T, Koibuchi Y, Iijima K, Ninomiya J, Takei H et al. DPD activity and immunohistochemical DPD expression in human breast cancer. Oncol Rep 2004; 11: 65–72.

    CAS  PubMed  Google Scholar 

  102. Mizutani Y, Wada H, Fukushima M, Yoshida O, Ukimura O, Kawauchi A et al. The significance of dihydropyrimidine dehydrogenase (DPD) activity in bladder cancer. Eur J Cancer 2001; 37: 569–575.

    CAS  PubMed  Google Scholar 

  103. Uetake H, Ichikawa W, Takechi T, Fukushima M, Nihei Z, Sugihara K . Relationship between intratumoral dihydropyrimidine dehydrogenase activity and gene expression in human colorectal cancer. Clin Cancer Res 1999; 5: 2836–2839.

    CAS  PubMed  Google Scholar 

  104. Ishikawa Y, Kubota T, Otani Y, Watanabe M, Teramoto T, Kumai K et al. Thymidylate synthetase and dihydropyrimidine dehydrogenase levels in gastric cancer. Anticancer Res 1999; 19: 5635–5640.

    CAS  PubMed  Google Scholar 

  105. Johnston SJ, Ridge SA, Cassidy J, McLeod HL . Regulation of dihydropyrimidine dehydrogenase in colorectal cancer. Clin Cancer Res 1999; 5: 2566–2570.

    CAS  PubMed  Google Scholar 

  106. Collie-Duguid ES, Johnston SJ, Boyce L, Smith N, Cowieson A, Cassidy J et al. Thymidine phosphorylase and dihydropyrimidine dehydrogenase protein expression in colorectal cancer. Int J Cancer 2001; 94: 297–301.

    CAS  PubMed  Google Scholar 

  107. Hiroyasu S, Shiraishi M, Samura H, Tokashiki H, Shimoji H, Isa T et al. Clinical relevance of the concentrations of both pyrimidine nucleoside phosphorylase (PyNPase) and dihydropyrimidine dehydrogenase (DPD) in colorectal cancer. Jpn J Clin Oncol 2001; 31: 65–68.

    CAS  PubMed  Google Scholar 

  108. Miyamoto S, Ochiai A, Boku N, Ohtsu A, Tahara M, Yoshida S et al. Discrepancies between the gene expression, protein expression, and enzymatic activity of thymidylate synthase and dihydropyrimidine dehydrogenase in human gastrointestinal cancers and adjacent normal mucosa. Int J Oncol 2001; 18: 705–713.

    CAS  PubMed  Google Scholar 

  109. Hotta T, Taniguchi K, Kobayashi Y, Johata K, Sahara M, Naka T et al. Comparative analysis of thymidine phosphorylase and dihydropyrimidine dehydrogenase expression in gastric and colorectal cancers. Oncol Rep 2004; 11: 1045–1051.

    CAS  PubMed  Google Scholar 

  110. Tanaka-Nozaki M, Onda M, Tanaka N, Kato S . Variations in 5-fluorouracil concentrations of colorectal tissues as compared with dihydropyrimidine dehydrogenase (DPD) enzyme activities and DPD messenger RNA levels. Clin Cancer Res 2001; 7: 2783–2787.

    CAS  PubMed  Google Scholar 

  111. Fujiwaki R, Hata K, Nakayama K, Fukumoto M, Miyazaki K . Gene expression for dihydropyrimidine dehydrogenase and thymidine phosphorylase influences outcome in epithelial ovarian cancer. J Clin Oncol 2000; 18: 3946–3951.

    CAS  PubMed  Google Scholar 

  112. Anan K, Mitsuyama S, Tamae K, Suehara N, Nishihara K, Ogawa Y et al. Increased dihydropyrimidine dehydrogenase activity in breast cancer. J Surg Oncol 2003; 82: 174–179.

    CAS  PubMed  Google Scholar 

  113. Ishikawa T, Sekiguchi F, Fukase Y, Sawada N, Ishitsuka H . Positive correlation between the efficacy of capecitabine and doxifluridine and the ratio of thymidine phosphorylase to dihydropyrimidine dehydrogenase activities in tumors in human cancer xenografts. Cancer Res 1998; 58: 685–690.

    CAS  PubMed  Google Scholar 

  114. Nishimura G, Terada I, Kobayashi T, Ninomiya I, Katigawa H, Fushida S et al. Thymidine phosphorylase and dihydropyrimidine dehydrogenase levels in primary colorectal cancer show a relationship to clinical effects of 5′-deoxy-5-fluorouridine as adjuvant chemotherapy. Oncol Rep 2002; 9: 479–482.

    CAS  PubMed  Google Scholar 

  115. Nishina T, Hyodo I, Moriwaki T, Endo S, Hirasaki S, Doi T et al. The ratio of thymidine phosphorylase (TP) to dihydropyrimidine dehydrogenase (DPD) levels in tumour tissues is predictive of response to 5′-deoxy-5-fluorouridine (an intermediate metabolite of capecitabine): a prospective study in patients with metastatic gastric cancer. Proc Am Soc Clin Oncol 2002 (abstract 602); 21: 151a.

    Google Scholar 

  116. Tominaga T, Toi M, Ohashi Y, Abe O, on behalf of the 5 ′ -BC study group. Prognostic and predictive value of thymidine phosphorylase activity in early-stage breast cancer patients. Clin Breast Cancer 2002; 3: 55–64.

    CAS  PubMed  Google Scholar 

  117. Komatsu T, Yamazaki H, Shimada N, Nakajima M, Yokoi T . Roles of cytochromes P450 1A2, 2A6 and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos 2000; 28: 1457–1463.

    CAS  PubMed  Google Scholar 

  118. van Triest B, Pinedo HM, van Hensbergen Y, Smid K, Telleman F, Schoenmakers PS et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 1999; 5: 643–654.

    CAS  PubMed  Google Scholar 

  119. Fukushima M, Fujioka A, Uchida J, Nakagawa F, Takechi T . Thymidylate synthase (TS) and ribonucleotide reductase (RNR) may be involved in acquired resistance to 5-fluorouracil (5-FU) in human cancer xenografts in vivo. Eur J Cancer 2001; 37: 1681–1687.

    CAS  PubMed  Google Scholar 

  120. Copur S, Aiba K, Drake JC, Allegra CJ, Chu E . Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharmacol 1995; 49: 1419–1426.

    CAS  PubMed  Google Scholar 

  121. Matsuoka K, Tsukuda K, Suda M, Kobayashi K, Ota T, Okita A et al. The transfection of thymidylate synthase antisense suppresses oncogenic properties of a human colon cancer cell line and augments the antitumor effect of fluorouracil. Int J Oncol 2004; 24: 217–222.

    CAS  PubMed  Google Scholar 

  122. Peters GJ, Van der Wilt CL, Van Groeningen CJ, Smid K, Meijer S, Pinedo HM . Thymidylate synthase inhibition after administration of fluorouracil with or without leucovorin in colon cancer patients: implications for treatment with fluorouracil. J Clin Oncol 1994; 12: 2035–2042.

    CAS  PubMed  Google Scholar 

  123. Leichman CG, Lenz HJ, Leichman L, Danenberg K, Baranda J, Groshen S et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997; 15: 3223–3229.

    CAS  PubMed  Google Scholar 

  124. Lenz HJ, Hayashi K, Salonga D, Danenberg KD, Danenberg PV, Metzger R et al. P53 point mutations and thymidylate synthase messenger RNA levels in disseminated colorectal cancer: an analysis of response and survival. Clin Cancer Res 1998; 4: 1243–1250.

    CAS  PubMed  Google Scholar 

  125. Cascinu S, Aschele C, Barni S, Debernardis D, Baldo C, Tunesi G et al. Thymidylate synthase protein expression in advanced colon cancer: correlation with the site of metastasis and the clinical response to leucovorin-modulated bolus 5-fluorouracil. Clin Cancer Res 1999; 5: 1996–1999.

    CAS  PubMed  Google Scholar 

  126. Wong NACS, Brett L, Stewart M, Leitch A, Longley DB, Dunlop MG et al. Nuclear thymidylate synthase expression, p53 expression and 5FU response in colorectal carcinoma. Br J Cancer 2001; 85: 1937–1943.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Aschele C, Debernardis D, Casazza S, Antonelli G, Tunesi G, Baldo C et al. Immunohistochemical quantitation of thymidylate synthase expression in colorectal cancer metastases predicts for clinical outcome to fluorouracil based chemotherapy. J Clin Oncol 1999; 17: 1760–1770.

    CAS  PubMed  Google Scholar 

  128. Paradiso A, Simone G, Petroni S, Leone B, Vallejo C, Lacava J et al. Thymidylate synthase and p53 primary tumour expression as predictive factors for advanced colorectal cancer patients. Br J Cancer 2000; 82: 560–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Aschele C, Debernardis D, Tunesi G, Maley F, Sobrero A . Thymidylate synthase protein expression in primary colorectal cancer compared with the corresponding distant metastases and relationship with clinical response to 5-fluorouracil. Clin Cancer Res 2000; 6: 4797–4802.

    CAS  PubMed  Google Scholar 

  130. Kornmann M, Link KH, Lenz HJ, Pillasch J, Metzger R, Butzer U et al. Thymidylate synthase is a predictor for response and resistance in hepatic artery infusion therapy. Cancer Lett 1997; 118: 29–35.

    CAS  PubMed  Google Scholar 

  131. Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD et al. EECC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001; 19: 4298–4304.

    CAS  PubMed  Google Scholar 

  132. Findley MP, Cunningham D, Morgan G, Clinton S, Hardcastle A, Aherne GW . Lack of correlation between thymidylate synthase levels in primary colorectal tumours and subsequent response to chemotherapy. Br J Cancer 1997; 75: 903–909.

    Google Scholar 

  133. Aschele C, Debernardis D, Bandelloni R, Cascinu S, Catalano V, Giordani P et al. Thymidylate synthase protein expression in colorectal cancer metastases predicts for clinical outcome to leucovorin-modulated bolus or infusional 5-fluorouracil but not methotrexate-modulated bolus 5-fluorouracil. Ann Oncol 2002; 13: 1882–1892.

    CAS  PubMed  Google Scholar 

  134. Noordhuis P, Holwerda U, Van Der Wilt CL, Van Groeningen CJ, Smid K, Meijer S et al. 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 2004; 15: 1025–1032.

    CAS  PubMed  Google Scholar 

  135. Lenz HJ, Leichman CG, Danenberg KD, Danenberg PV, Groshen S, Cohen H et al. Thymidylate synthase mRNA level in adenocarcinoma of the stomach: a predictor for primary tumour response and overall survival. J Clin Oncol 1996; 14: 176–178.

    CAS  PubMed  Google Scholar 

  136. Metzger R, Leichman CG, Danenberg KD, Danenberg PV, Lenz HJ, Hayashi K et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998; 16: 309–316.

    CAS  PubMed  Google Scholar 

  137. Yeh KH, Shun CT, Chen CL, Lin JT, Lee WJ, Lee PH et al. High expression of thymidylate synthase is associated with the drug resistance of gastric carcinoma to high dose 5-fluorouracil-based systemic chemotherapy. Cancer 1998; 82: 1626–1631.

    CAS  PubMed  Google Scholar 

  138. Boku N, Chin K, Hosokawa K, Ohtsu A, Tajiri H, Yoshida S et al. Biological markers as a predictor for response and prognosis of unresectable gastric cancer patients treated with 5-fluorouracil and cis-platinum. Clin Cancer Res 1998; 4: 1469–1474.

    CAS  PubMed  Google Scholar 

  139. Johnston PG, Mick R, Recant W, Behan KA, Dolan ME, Ratain MJ et al. Thymidylate synthase expression and response to neoadjuvant chemotherapy in patients with advanced head and neck cancer. J Natl Cancer Inst 1997; 89: 308–313.

    CAS  PubMed  Google Scholar 

  140. Lizard-Nacol S, Genne P, Coudert B, Riedinger JM, Arnal M, Sancy C et al. MRD1 and thymidylate synthase (TS) gene expressions in advanced breast cancer: relationship to drug exposure, p53 mutations, and clinical outcome in the patients. Anticancer Res 1999; 19: 3575–3582.

    CAS  PubMed  Google Scholar 

  141. Hu YC, Komorowski RA, Graewin S, Hostetter G, Kallioniemi OP, Pitt HA et al. Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res 2003; 9: 4165–4171.

    CAS  PubMed  Google Scholar 

  142. Peters GJ, Backus HH, Freemantle S, van Triest B, Codacci-Pisanelli G, van der Wilt CL et al. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta 2002; 1587: 194–205.

    CAS  PubMed  Google Scholar 

  143. Van Triest B, Pinedo HM, Giaccone G, Peters GJ . Downstream molecular determinants of response to 5-fluorouracil and antifolate thymidylate synthase inhibitors. Ann Oncol 2000; 11: 385–391.

    CAS  PubMed  Google Scholar 

  144. Canman CE, Tang HY, Normolle DP, Lawrence TS, Maybaum J . Variations in patterns of DNA damage induced in human colorectal tumour cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotoxicity. Proc Natl Acad Sci USA 1992; 89: 10474–10478.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Canman CE, Radany EH, Parsels LA, Davis MA, Lawrence TS, Maybaum J . Induction of resistance to fluorodeoxyuridine cytotoxicity and DNA damage in human tumour cells by expression of Escherichia coli deoxyuridinetriphosphatase. Cancer Res 1994; 54: 2296–2298.

    CAS  PubMed  Google Scholar 

  146. Ladner RD, Lynch FJ, Groshen S, Xiong YP, Sherrod A, Caradonna SJ et al. dUPT nucleotidohydrolase isoform expression in normal and neoplasmic tissues: association with survival and response to 5-fluorouracil in colorectal cancer. Cancer Res 2000; 60: 3493–3503.

    CAS  PubMed  Google Scholar 

  147. Schroder JK, Kirch C, Flasshove M, Kalweit H, Seidelmann M, Hilger R et al. Constitutive overexpression of the cytidine deaminase gene confers resistance to cytosine arabinoside in vitro. Leukemia 1996; 10: 1919–1924.

    CAS  PubMed  Google Scholar 

  148. Jahns-streubel G, Reuter C, Auf der Landwehr U, Unterhalt M, Schleyer E, Wormann B et al. Activity of thymidine kinase and of polymerase alpha as well as activity and gene expression of deoxycytidine deaminase in leukemic blasts are correlated with clinical response in the setting of granulocyte-macrophage colony-stimulating factor-based priming before and during TAD-9 induction therapy in acute myeloid leukemia. Blood 1998; 90: 1968–1976.

    Google Scholar 

  149. Schroder JK, Kirch C, Seeber S, Schutte J . Structural and functional analysis of the cytidine deaminase gene in patients with acute myeloid leukaemia. Br J Haematol 1998; 103: 1096–1103.

    CAS  PubMed  Google Scholar 

  150. Owens JK, Shewach DS, Ullman B, Mitchell BS . Resistance to 1-beta-D-arabinofuranosylcytosine in human T-lymphoblasts mediated by mutations within the deoxycytidine kinase gene. Cancer Res 1992; 52: 2389–2393.

    CAS  PubMed  Google Scholar 

  151. Kobayashi T, Kakihara T, Uchiyama M, Fukuda T, Kishi K, Shibata A . Low expression of the deoxycytidine kinase (dCK) gene in a 1-beta-D-arabinofuranosylcytosine-resistant human leukemic cell line KY-Ra. Leuk Lymphoma 1994; 15: 503–505.

    CAS  PubMed  Google Scholar 

  152. Colly LP, Peters WG, Richel D, Arentsen-Honders MW, Starrenburg CW, Willemze R . Deoxycytidine kinase and deoxycytidine deaminase values correspond closely to clinical response to cytosine arabinoside remission induction therapy in patients with acute myelogenous leukemia. Semin Oncol 1987; 14: 257–261.

    CAS  PubMed  Google Scholar 

  153. Flasshove M, Strumberg D, Ayscue L, Mitchell BS, Tirier C, Heit W et al. Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia 1994; 8: 780–785.

    CAS  PubMed  Google Scholar 

  154. Van den Heuvel-Eibrink MM, Wiemer EAC, Kuijpers M, Pieters R, Sonneveld P . Absence of mutations in the deoxycytidine kinase (dCK) gene in patients with relapsed and/or refractory acute myeloid leukemia (AML). Leukemia 2001; 15: 855–867.

    CAS  PubMed  Google Scholar 

  155. Veuger MJ, Honders MW, Landegent JE, Willemze R, Barge RM . High incidence of alternatively spliced forms of deoxycytidine kinase in patients with resistant acute myeloid leukemia. Blood 2000; 96: 1517–1524.

    CAS  PubMed  Google Scholar 

  156. Veuger MJT, Heemskerk MHM, Honders W, Willemze R, Berge RMY . Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood 2002; 99: 1373–1380.

    CAS  PubMed  Google Scholar 

  157. Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A et al. Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 2001; 98: 1922–1926.

    CAS  PubMed  Google Scholar 

  158. Dumontet C, Fabianowska-Majewska K, Mantincic D, Callet Bauchu E, Tigaud I, Gandhi V et al. Common resistance mechanisms to deoxynucleoside analogues in variants of the human erythroleukaemic line K562. Br J Haematol 1999; 106: 78–85.

    CAS  PubMed  Google Scholar 

  159. Davidson JD, Ma L, Iverson PW, Lesoon A, Jin S, Horwitz L et al. Human multidrug resistance protein 5 (MRP5) confers resistance to dFdC. Proc AACR 2002 (abstract 3868); 43: 780.

    Google Scholar 

  160. Mirjolet JF, Barberi-Heyob M, Didelot C, Peyrat JP, Abecassis J, Millon R et al. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status. Br J Cancer 2000; 83: 1380–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang QF, Sakurai T, Yoshimura G, Shan L, Suzuma T, Tamaki T et al. Expression of Bcl-2 but not Bax or p53 correlates with in vitro resistance to a series of anticancer drugs in breast carcinoma. Breast Cancer Res Treat 2000; 61: 211–216.

    CAS  PubMed  Google Scholar 

  162. Keith FJ, Bradbury DA, Zhu YM, Russell NH . Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 1995; 9: 131–138.

    CAS  PubMed  Google Scholar 

  163. Ahmed N, Sammons J, Hassan HT . Bcl-2 protein in human myeloid leukaemia cells and its down-regulation during chemotherapy-induced apoptosis. Oncol Rep 1999; 6: 403–407.

    CAS  PubMed  Google Scholar 

  164. Balkham SE, Sargent JM, Elgie AW, Williamson CJ, Taylor CG . Comparison of BCL-2 and BAX protein expression with in vitro sensitivity to ARA-C and 6TG in AML. Adv Exp Med Biol 1999; 457: 335–340.

    CAS  PubMed  Google Scholar 

  165. Bold RJ, Chandra J, McConkey DJ . DFdC-induced programmed cell death (apoptosis) of human pancreatic carcinoma is determined by Bcl-2 content. Ann Surg Oncol 1999; 6: 279–285.

    CAS  PubMed  Google Scholar 

  166. Van Slooten HJ, Clahsen PC, van Dierendonck JH, Duval C, Pallud C, Mandard AM et al. Expression of Bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer 1996; 74: 78–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Schneider HJ, Sampson SA, Cunningham D, Norman AR, Andreyev HJ, Tilsed JV et al. Bcl-2 expression and response to chemotherapy in colorectal adenocarcinomas. Br J Cancer 1997; 75: 427–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nabeya Y, Loganzo Jr F, Maslak P, Lai L, de Oliveira AR, Schwartz GK et al. The mutational status of p53 protein in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int J Cancer 1995; 64: 37–46.

    CAS  PubMed  Google Scholar 

  169. Zheng M, Wang H, Zhang H, Ou Q, Shen B, Li N et al. The influence of the p53 gene on the in vitro chemosensitivity of colorectal cancer cells. J Cancer Res Clin Oncol 1999; 125: 357–360.

    CAS  PubMed  Google Scholar 

  170. Petak I, Tillman DM, Houghton JA . P53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines. Clin Cancer Res 2000; 6: 4432–4441.

    CAS  PubMed  Google Scholar 

  171. Benhattar J, Cerottini JP, Saraga E, Metthez G, Givel JC . P53 mutations as a possible predictor of response to chemotherapy in metastatic colorectal carcinomas. Int J Cancer 1996; 69: 190–192.

    CAS  PubMed  Google Scholar 

  172. Ahnen DJ, Feigl P, Quan G, Fenoglio-Preiser C, Lovato LC, Bunn PA et al. Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group Study. Cancer Res 1998; 58: 1149–1158.

    CAS  PubMed  Google Scholar 

  173. Backus HHJ, Van Riel JMGH, Van Groeningen CJ, Vos W, Dukers DF, Bloemena E et al. Rb, mcl-1 and p53 expression correlate with clinical outcome in patients with liver metastases from colorectal cancer. Ann Oncol 2001; 12: 779–785.

    CAS  PubMed  Google Scholar 

  174. Liang JT, Huang KC, Cheng YM, Hsu HC, Cheng AL, Hsu CH et al. P53 overexpression predicts poor chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV colorectal cancers after palliative bowel resection. Int J Cancer 2002; 97: 451–457.

    CAS  PubMed  Google Scholar 

  175. Cabelguenne A, Blons H, de Waziers I, Carnot F, Houllier AM, Soussi T et al. P53 alterations predict tumour response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol 2000; 18: 1465–1473.

    CAS  PubMed  Google Scholar 

  176. Temam S, Flahault A, Perie S, Monceaux G, Coulet F, Callard P et al. P53 gene status as a predictor of tumour response to induction chemotherapy of patients with locoregionally advanced squamous cell carcinomas of the head and neck. J Clin Oncol 2000; 18: 385–394.

    CAS  PubMed  Google Scholar 

  177. Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res 2000; 6: 50–56.

    CAS  PubMed  Google Scholar 

  178. Elsaleh H, Powell B, Soontrapornchai P, Joseph D, Goria F, Spry N et al. P53 gene mutation, microsatellite instability and adjuvant chemotherapy: impact on survival of 388 patients with Dukes C carcinoma. Oncology 2000; 58: 52–59.

    CAS  PubMed  Google Scholar 

  179. Rosty C, Chazal M, Etienne MC, Letoublon C, Bourgeon A, Delpero JR et al. Determination of microsatellite instability, p53 and K-RAS mutations in hepatic metastases from patients with colorectal cancer: relationship with response to 5-fluorouracil and survival. Int J Cancer 2001; 95: 162–167.

    CAS  PubMed  Google Scholar 

  180. Arango D, Corner GA, Wadler S, Catalano PJ Augenlicht LH . C-myc/p53 interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo. Cancer Res 2001; 61: 4910–4915.

    CAS  PubMed  Google Scholar 

  181. Lenz HJ, Danenberg KD, Leichman CG, Florentine B, Johnston PG, Groshen S et al. P53 and thymidylate synthase expression in untreated stage II colon cancer: association with recurrence, survival and site. Clin Cancer Res 1998; 4: 1227–1234.

    CAS  PubMed  Google Scholar 

  182. Peters GJ, Van Triest B, Backus HHJ, Kuiper CM, Van der Wilt CL, Pinedo HM . Molecular downstream events and induction of thymidylate synthase in mutant and wild-type p53 colon cancer cell lines after treatment with 5-fluorouracil and the thymidylate synthase inhibitor raltitrexed. Eur J Cancer 2000; 36: 916–924.

    CAS  PubMed  Google Scholar 

  183. McKay RA, Lloret C, Murray GI, Johnston PG, Bicknell R, Ahmed FY et al. Application of the enrichment approach to identify putative markers of reponse to 5-fluorouracil therapy in advanced colorectal carcinomas. Int J Oncol 2000; 17: 153–158.

    CAS  PubMed  Google Scholar 

  184. Ichikawa W, Uetake H, Shirota Y, Yamada H, Nishi N, Nihei Z et al. Combination of dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions in primary tumors as predictive parameters for the efficacy of fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Clin Cancer Res 2003; 9: 786–791.

    CAS  PubMed  Google Scholar 

  185. Ichikawa W, Takahashi T, Suto K, Hirayama R . Gene expressions for thymidylate synthase (TS), orotate phosphoribosyl transferase (OPRT), and thymidine phosphorylase (TP), not dihydropyridimine dehydrogenase (DPD), influence outcome of patients treated with S-1 for gastric cancer. Proc Am Soc Clin Oncol 2004 (abstract 4050); 23: 325.

    Google Scholar 

  186. Smorenburg CH, Peters GJ, Van Groeningen CJ, Noordhuis P, Van Riel JM, Pinedo HM et al. First line tailored chemotherapy in advanced colorectal cancer with 5-fluorouracil/leucovorin or oxaliplatin/irinotecan chosen by the expression of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD). Proc Am Soc Clin Oncol 2004 (abstract 3624); 23: 276.

    Google Scholar 

  187. Raida M, Schwabe W, Hausler P, Van Kuilenburg ABP, Van Gennip AH, Behnke D et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 2001; 7: 2832–2839.

    CAS  PubMed  Google Scholar 

  188. Innocenti F, Ratain MJ . Correspondence regarding: Raida M et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 2002; 8: 1314.

    PubMed  Google Scholar 

  189. Behnke D, Raida M, Kliche KO, Pichlmeier U . Reply to the letter by Innocenti and Ratain. Clin Cancer Res 2002; 8: 1315–1316.

    Google Scholar 

  190. Leichman CG, Lyman GH, Remedios P, Leichman L, Litwin A, Loud P et al. Molecular biologic correlates with continuous infusion 5-FU (CIFU) or capecitabine (C) in disseminated colorectal cancer (CRC). Proc Am Soc Clin Oncol 2002 (abstract 1720); 21: 431a.

    Google Scholar 

  191. Johnston PG, Liang CM, Henry S, Chabner BA, Allegra CJ . Production and characterization of monoclonal antibodies that localize human thymidylate synthase in the cytoplasm of human cells and tissue. Cancer Res 1991; 51: 6668–6676.

    CAS  PubMed  Google Scholar 

  192. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y et al. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer Res 2002; 62: 518–527.

    CAS  PubMed  Google Scholar 

  193. Maxwell PJ, Longley DB, Latif T, Boyer J, Allen W, Lynch M et al. Identification of 5-fluorouracil-inducible target genes using cDNA microarray profiling. Cancer Res 2003; 63: 4602–4606.

    CAS  PubMed  Google Scholar 

  194. Mariadason JM, Arango D, Shi Q, Wilson AJ, Corner GA, Nicholas C et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003; 63: 8791–8812.

    CAS  PubMed  Google Scholar 

  195. Wang W, Cassidy J, O’Brien V, Ryan KM, Collie-Duguid E . Mechanistic and predictive profiling of 5-fluorouracil resistance in human cancer cells. Cancer Res 2004; 64: 8167–8176.

    CAS  PubMed  Google Scholar 

  196. Website: http://www.pharmacogenetics.org.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J G Maring.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maring, J., Groen, H., Wachters, F. et al. Genetic factors influencing Pyrimidine-antagonist chemotherapy. Pharmacogenomics J 5, 226–243 (2005). https://doi.org/10.1038/sj.tpj.6500320

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500320

Keywords

This article is cited by

Search

Quick links