Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common VKORC1 and GGCX polymorphisms associated with warfarin dose

Abstract

We report a novel combination of factors that explains almost 60% of variable response to warfarin. Warfarin is a widely used anticoagulant, which acts through interference with vitamin K epoxide reductase that is encoded by VKORC1. In the next step of the vitamin K cycle, gamma-glutamyl carboxylase encoded by GGCX uses reduced vitamin K to activate clotting factors. We genotyped 201 warfarin-treated patients for common polymorphisms in VKORC1 and GGCX. All the five VKORC1 single-nucleotide polymorphisms covary significantly with warfarin dose, and explain 29–30% of variance in dose. Thus, VKORC1 has a larger impact than cytochrome P450 2C9, which explains 12% of variance in dose. In addition, one GGCX SNP showed a small but significant effect on warfarin dose. Incorrect dosage, especially during the initial phase of treatment, carries a high risk of either severe bleeding or failure to prevent thromboembolism. Genotype-based dose predictions may in future enable personalised drug treatment from the start of warfarin therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CYP2C9:

cytochrome P450 2C9

ddNTP:

dideoxynucleotide triphosphate

dNTP:

deoxynucleotide triphosphate

GGCX:

gamma-glutamyl carboxylase

LD:

linkage disequilibrium

PCR:

polymerase chain reaction

PT INR:

prothrombin time international normalised ratio

UTR:

untranslated region

VKOR:

vitamin K epoxide reductase

VKORC1:

vitamin K epoxide reductase complex subunit 1

References

  1. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R . Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72: 702–710.

    Article  CAS  Google Scholar 

  2. Aithal G, Day C, Kesteven P, Daly A . Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 689–717.

    Article  Google Scholar 

  3. Wadelius M, Sörlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PK et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 2004; 4: 40–48.

    Article  CAS  Google Scholar 

  4. van den Besselaar AM . Standardization of the prothrombin time in oral anticoagulant control. Haemostasis 1985; 15: 271–277.

    CAS  PubMed  Google Scholar 

  5. Takahashi H, Echizen H . Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 2003; 3: 202–214.

    Article  CAS  Google Scholar 

  6. Landefeld C, Beyth R . Anticoagulant-related bleeding: clinical epidemiology, prediction and prevention. Am J Med 1993; 95: 315–328.

    Article  CAS  Google Scholar 

  7. Mathiesen T, Benediktsdottir K, Johnsson H, Lindqvist M, von Holst H . Intracranial traumatic and non-traumatic haemorrhagic complications of warfarin treatment. Acta Neurol Scand 1995; 91: 208–214.

    Article  CAS  Google Scholar 

  8. Levine M, Raskob G, Landefeld S, Kearon C . Hemorrhagic complications of anticoagulant treatment. Chest 1998; 114: 511S–523S.

    Article  CAS  Google Scholar 

  9. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004; 329: 15–19.

    Article  Google Scholar 

  10. Runciman WB, Roughead EE, Semple SJ, Adams RJ . Adverse drug events and medication errors in Australia. Int J Qual Health Care 2003; 15 (Suppl 1): i49–59.

    Article  Google Scholar 

  11. Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A et al. Interindividual variability in sensitivity to warfarin—nature or nurture? Clin Pharmacol Ther 2001; 70: 159–164.

    Article  CAS  Google Scholar 

  12. Gage BF, Eby CS . Pharmacogenetics and anticoagulant therapy. J Thromb Thrombolysis 2003; 16: 73–78.

    Article  CAS  Google Scholar 

  13. Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 2004; 75: 204–212.

    Article  CAS  Google Scholar 

  14. Hillman MA, Wilke RA, Caldwell MD, Berg RL, Glurich I, Burmester JK . Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 2004; 14: 539–547.

    Article  CAS  Google Scholar 

  15. Daly AK, King BP . Pharmacogenetics of oral anticoagulants. Pharmacogenetics 2003; 13: 247–252.

    Article  CAS  Google Scholar 

  16. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin–drug interactions. Chem Res Toxicol 1992; 5: 54–59.

    Article  CAS  Google Scholar 

  17. Takahashi H, Echizen H . Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40: 587–603.

    Article  CAS  Google Scholar 

  18. Kaminsky L, Zhang Z . Human P450 metabolism of warfarin. Pharmacol Ther 1997; 73: 67–74.

    Article  CAS  Google Scholar 

  19. Xie HG, Prasad HC, Kim RB, Stein CM . CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002; 54: 1257–1270.

    Article  CAS  Google Scholar 

  20. Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5: 389–392.

    Article  CAS  Google Scholar 

  21. Margaglione M, Colaizzo D, D'Andrea G, Brancaccio V, Ciampa A, Grandone E et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000; 84: 775–778.

    Article  CAS  Google Scholar 

  22. Tabrizi AR, Zehnbauer BA, Borecki IB, McGrath SD, Buchman TG, Freeman BD . The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin. J Am Coll Surg 2002; 194: 267–273.

    Article  Google Scholar 

  23. Taube J, Halsall D, Baglin T . Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000; 96: 1816–1819.

    CAS  Google Scholar 

  24. Higashi M, Veenstra D, Kondo L, Wittkowsky A, Srinouanprachanh S, Farin F et al. Association between CYP 2C9 genetic variants and anticoagulation-related outcomes during warfarin treatment. JAMA 2002; 287: 1690–1698.

    Article  CAS  Google Scholar 

  25. Sadler JE . Medicine: K is for koagulation. Nature 2004; 427: 493–494.

    Article  CAS  Google Scholar 

  26. Linder MW . Genetic mechanisms for hypersensitivity and resistance to the anticoagulant Warfarin. Clin Chim Acta 2001; 308: 9–15.

    Article  CAS  Google Scholar 

  27. Bell RG . Metabolism of vitamin K and prothrombin synthesis: anticoagulants and the vitamin K–epoxide cycle. Fed Proc 1978; 37: 2599–2604.

    CAS  PubMed  Google Scholar 

  28. Bell RG, Sadowski JA, Matschiner JT . Mechanism of action of warfarin. Warfarin and metabolism of vitamin K 1. Biochemistry 1972; 11: 1959–1961.

    Article  CAS  Google Scholar 

  29. Begent LA, Hill AP, Steventon GB, Hutt AJ, Pallister CJ, Cowell DC . Characterization and purification of the vitamin K1 2,3 epoxide reductases system from rat liver. J Pharm Pharmacol 2001; 53: 481–486.

    Article  CAS  Google Scholar 

  30. Fregin A, Rost S, Wolz W, Krebsova A, Muller CR, Oldenburg J . Homozygosity mapping of a second gene locus for hereditary combined deficiency of vitamin K-dependent clotting factors to the centromeric region of chromosome 16. Blood 2002; 100: 3229–3232.

    Article  CAS  Google Scholar 

  31. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537–541.

    Article  CAS  Google Scholar 

  32. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW . Identification of the gene for vitamin K epoxide reductase. Nature 2004; 427: 541–544.

    Article  CAS  Google Scholar 

  33. Harrington DJ, Underwood S, Morse C, Shearer MJ, Tuddenham EG, Mumford AD . Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005; 93: 23–26.

    Article  CAS  Google Scholar 

  34. Rost S, Fregin A, Koch D, Compes M, Muller CR, Oldenburg J . Compound heterozygous mutations in the gamma-glutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004; 126: 546–549.

    Article  CAS  Google Scholar 

  35. Suttie JW, Canfield LM, Shah DV . Microsomal vitamin K-dependent carboxylase. Methods Enzymol 1980; 67: 180–185.

    Article  CAS  Google Scholar 

  36. Berkner KL, McNally BA . Purification of vitamin K-dependent carboxylase from cultured cells. Methods Enzymol 1997; 282: 313–333.

    Article  CAS  Google Scholar 

  37. Lingenfelter SE, Berkner KL . Isolation of the human gamma-carboxylase and a gamma-carboxylase-associated protein from factor IX-expressing mammalian cells. Biochemistry 1996; 35: 8234–8243.

    Article  CAS  Google Scholar 

  38. Kuo WL, Stafford DW, Cruces J, Gray J, Solera J . Chromosomal localization of the gamma-glutamyl carboxylase gene at 2p12. Genomics 1995; 25: 746–748.

    Article  CAS  Google Scholar 

  39. Wu SM, Stafford DW, Frazier LD, Fu YY, High KA, Chu K et al. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase. Blood 1997; 89: 4058–4062.

    CAS  Google Scholar 

  40. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  Google Scholar 

  41. D'Andrea G, D'Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005; 105: 645–649.

    Article  CAS  Google Scholar 

  42. Yasar U, Elisson E, Dahl M, Johansson I, Ingelman-Sundberg M, Sjökvist F . Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254: 628–631.

    Article  CAS  Google Scholar 

  43. Shikata E, Ieiri I, Ishiguro S, Aono H, Inoue K, Koide T et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood 2004; 103: 2630–2635.

    Article  CAS  Google Scholar 

  44. Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL . Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 2004; 91: 87–94.

    Article  CAS  Google Scholar 

  45. Whittaker P, Bumpstead S, Downes K, Ghori J, Deloukas P . SNP analysis by MALDI-TOF mass spectrometry. In: Celis J, Carter N, Simons K, Small JV, Hunter T, Shotton D (eds). 3rd ed. Cell Biology: A Laboratory Handbook. Amsterdam: Elsevier, 2005.

    Google Scholar 

  46. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

  47. Pritchard JK, Przeworski M . Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001; 69: 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all nurses, doctors and patients who took part in the study. We thank Kristina Sörlin for going through medical records, Liz Sheridan for gene annotation, Suzannah Bumpstead for technical assistance, David Vetrie for introduction to databases and Ralph McGinnis for critical reading of the manuscript. This study was funded by the Wellcome Trust, and the Swedish Society of Medicine, Swedish Research Council (M521-2003-5730, NT621-2003-5592), Foundation for Strategic Research, Heart and Lung Foundation, Tore Nilson foundation, Federation of County Councils and Clinical Research Support (ALF) at Uppsala University. The sponsors had no role in study design, data collection, data analysis, data interpretation or writing of the report. Ethical approval: Uppsala Research Ethics Committee approved the study, no. 00-119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wadelius.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadelius, M., Chen, L., Downes, K. et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5, 262–270 (2005). https://doi.org/10.1038/sj.tpj.6500313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500313

Keywords

This article is cited by

Search

Quick links