Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a pharmacogenetic effect by linkage disequilibrium mapping

ABSTRACT

A practical limitation to the identification of genetic profiles predictive of drug-induced adverse events is the number of patients with the adverse event that can be tolerated before the drug is withdrawn. Whole genome screening for regions of linkage disequilibrium (LD) associated with a particular phenotype may provide the mechanism to rapidly discover specific and sensitive profiles. We have used data from a large phase III clinical trial of tranilast and typed 76 SNPs over a 2.7 megabase region flanking the uridine diphosphate glucuronosyltranserferase 1A1 gene. Three SNPs within one LD block showed strong association with tranilast-induced hyperbilirubinemia (P<10−13). Our data illustrated that a genome-wide LD scan of 100 000–200 000 SNPs is sufficient to identify a pharmacogenetic association with a drug-induced adverse event.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AE:

adverse event

LD:

linkage disequilibrium

SNP:

single-nucleotide polymorphism

UGT1A1:

uridine diphosphate glucuronosyltranserferase 1A1

References

  1. Carlson CS, Newman TL, Nickerson DA . SNPing in the human genome. Curr Opin Chem Biol 2001; 5: 78–85.

    Article  CAS  PubMed  Google Scholar 

  2. Dawson E, Abecasis GR, Bumpstead S, Chen Y, Hunt S, Beare DM et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002; 418: 544–548.

    Article  CAS  PubMed  Google Scholar 

  3. Kruglyak L . Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22: 139–144.

    Article  CAS  PubMed  Google Scholar 

  4. Lai E, Bowman C, Bansal A, Hughes A, Mosteller M, Roses AD . Medical applications of haplotype-based SNP maps: learning to walk before we run. Nat Genet 2002; 32: 353.

    Article  CAS  PubMed  Google Scholar 

  5. Goldstein DB, Ahmadi KR, Weale ME, Wood NW . Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet 2003; 19: 615–622.

    Article  CAS  PubMed  Google Scholar 

  6. Lai E, Riley J, Purvis I, Roses A . A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics 1998; 54: 31–38.

    Article  CAS  PubMed  Google Scholar 

  7. Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 2003; 33: 382–387.

    Article  CAS  PubMed  Google Scholar 

  8. Couzin J . Human genome. HapMap launched with pledges of $100 million. Science 2002; 298: 941–942.

    Article  CAS  PubMed  Google Scholar 

  9. Cardon LR, Abecasis GR . Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19: 135–140.

    Article  CAS  PubMed  Google Scholar 

  10. Danoff TM, Campbell DA, McCarthy LC, Lewis KF, Repasch MH, Saunders AM et al. A Gilbert's syndrome UGT1A1 variant confers susceptibility to tranilast-induced hyperbilirubinemia. Pharmacogenomics J 2004; 4: 49–53.

    Article  CAS  PubMed  Google Scholar 

  11. Holmes Jr DR, Savage M, LaBlanche JM, Grip L, Serruys PW, Fitzgerald P et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation 2002; 106: 1243–1250.

    Article  PubMed  Google Scholar 

  12. Roses AD . Genome-based pharmacogenetics and the pharmaceutical industry. Nat Rev 2002; Drug Discov. 1: 541–549.

    CAS  Google Scholar 

  13. Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002; 359: 1121–1122.

    Article  CAS  PubMed  Google Scholar 

  14. Arranz MJ, Collier DA, Munro J, Sham P, Kirov G, Sodhi M et al. Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine. Neurosci Lett 1996; 217: 177–178.

    Article  CAS  PubMed  Google Scholar 

  15. Goldstein DB, Tate SK, Sisodiya SM . Pharmacogenetics goes genomic. Nat Rev Genet 2003; 4: 937–947.

    Article  CAS  PubMed  Google Scholar 

  16. Masellis M, Basile V, Meltzer HY, Lieberman JA, Sevy S, Macciardi FM et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 1998; 19: 123–132.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF . Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–1835.

    Article  PubMed  Google Scholar 

  18. Meng Z, Zaykin DV, Xu CF, Wagner M, Ehm MG . Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. Am J Hum Genet 2003; 73: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schork NJ, Nath SK, Fallin D, Chakravarti A . Linkage disequilibrium analysis of biallelic DNA markers, human quantitative trait loci, and threshold-defined case and control subjects. Am J Hum Genet 2000; 67: 1208–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bowman C, Classification Using SNP Profiles Royal Statistical Society: Leuven, Belgium 2003; Statistical Genetics and Bioinformatics, July 14–17.

  21. Holmes D, Fitzgerald P, Goldberg S, LaBlanche J, Lincoff AM, Savage M et al. The PRESTO (Prevention of restenosis with tranilast and its outcomes) protocol: a double-blind, placebo-controlled trial. Am Heart J 2000; 139: 23–31.

    Article  CAS  PubMed  Google Scholar 

  22. SAS. SAS Release 8. SAS Institute: Cary, NC 2000.

  23. Mehta C, Patel N . A network algorithm for performing Fisher's exact test in r × c contingency tables. J Am Stat Assoc 1983; 78: 427–434.

    Google Scholar 

  24. Lewontin R . The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 1964; 49: 49–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Weir BS . Disequilibrium. Genetic Data Analysis II. Sinauer Associates Inc.: Sunderland, MA 1996: 137.

    Google Scholar 

Download references

Acknowledgements

We thank all the scientists within Discovery Genetics, GlaxoSmithKline for their scientific contributions. In addition, we would like to thank Pete Boyd and Aruna Basal for statistical advice and critical reading of the manuscript, and Mike Barnes for SNP mapping assistance. This study is wholly funded by GSK Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-F Xu.

Additional information

DUALITY OF INTEREST

None declared.

Supplementary Information

Supplementary Information accompanies the paper on The Pharmacogenomics Journal website http://www.nature.com/tpj)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, CF., Lewis, K., Yeo, A. et al. Identification of a pharmacogenetic effect by linkage disequilibrium mapping. Pharmacogenomics J 4, 374–378 (2004). https://doi.org/10.1038/sj.tpj.6500268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500268

Keywords

This article is cited by

Search

Quick links