Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Accuracy of two-dimensional electrophoresis for target discovery in human colorectal cancer

Abstract

Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is increasingly used for target discovery in human disease to complement genomic studies. We have assessed the possibilities and limits of 2-D PAGE applied to human colorectal cancer. Up to 108 epithelial cells were purified from paired normal and pathological biopsies using Ber-EP4 coated magnetic beads, allowing the elimination of cellular and fluid contaminations. The mean coefficient of variation (CVAR) of repeated 2-D PAGE analysis with silver staining was lying between 20 and 28%. However, only 47% (interrun) to 76% (intrarun) of spots could be matched within a triplicate experiment. Interindividual phenotypic variability was high. Intratumoral phenotypic variability was not found to be significant. When method and tumor variability were added, 90% of CVAR were inferior to 48%. Thus, two-fold up- or down-regulation of protein expression reveals biological significance. Serial paired comparison of 923 proteins in 10 patients showed highly reproducible differences between normal and cancer tissues. Under well defined experimental conditions and after the high variability of the technique has been considered, 2-D PAGE parallel analysis of paired colorectal samples allows patient-specific tumor profiling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2A
Figure 2B
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bauer KH . [The Mutational Theory of Carcinogenesis] Springer Verlag: Berlin 1927

  2. Kinzler KW, Vogelstein B . Lessons from hereditary colorectal cancer Cell 1996 87: 159–170

    Article  CAS  PubMed  Google Scholar 

  3. Liu B, Parsons R, Papadopoulos N et al . Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients Nature Med 1996 2: 169–174

    Article  CAS  PubMed  Google Scholar 

  4. Morin PJ, Sparks AB, Korinek V et al . Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-Catenin or APC Science 1997 275: 1787–1789

    Article  CAS  PubMed  Google Scholar 

  5. Vogelstein B, Fearon ER, Hamilton SR . Genetic alterations during colorectal tumor development N Engl J Med 1988 319: 525–532

    Article  CAS  PubMed  Google Scholar 

  6. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers Nature 1998 396: 643–648

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi K, Yamaguchi A, Urano T, Goi T, Nakagawara G, Shiku H . Expression of CD44 variant exons 8–10 in colorectal cancer and its relationship to metastasis Jpn J Cancer Res 1995 86: 292–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson MA, Flegg R, Westin EH, Ramsay RG . Microsatellite deletions in the c-myb transcriptional attenuator region associated with over-expression in colon tumor cell lines Oncogene 1997 14: 1715–1723

    Article  CAS  PubMed  Google Scholar 

  9. Bresalier RS, Ho SB, Schoeppner HL et al . Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis Gastroenterology 1996 110: 1354–1367

    Article  CAS  PubMed  Google Scholar 

  10. Gorina S, Pavletich NP . Structure of the p53 suppressor bound to the ankyrin and SH3 domains of 53BP2 Science 1996 274: 1001–1005

    Article  CAS  PubMed  Google Scholar 

  11. Ogata S, Ho I, Chen A et al . Tumor-associated sialylated antigens are constitutively expressed in normal human colonic mucosa Cancer Res 1995 55: 1869–1874

    CAS  PubMed  Google Scholar 

  12. Wielenga V et al . Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression Cancer Res 1993 53: 4754–4756

    CAS  PubMed  Google Scholar 

  13. Anderson L, Seilhamer J . A comparison of selected mRNA and protein abundances in human liver Electrophoresis 1997 18: 533–537

    Article  CAS  PubMed  Google Scholar 

  14. Parekh R . Proteomics and molecular medicine Nature Biotech 1999 17: BV19–BV20

    Article  Google Scholar 

  15. Giometti CS, Williams K, Tollaksen SL . A two-dimensional elcetrophoresis database of human breast epithelial cell proteins Electrophoresis 1997 18: 573–581

    Article  CAS  PubMed  Google Scholar 

  16. Sarto C, Marocchi A, Sanchez JC et al . Renal cell carcinoma and normal kidney protein expression Electrophoresis 1997 18: 599–604

    Article  CAS  PubMed  Google Scholar 

  17. Kovarova H, Stulik J, Hochstrasser DF, Bures J, Melichar B, Jandik P . Two-dimensional electrophoretic study of normal colon mucosa and colorectal cancer Appl Theor Electrophor 1994 4: 103–106

    CAS  PubMed  Google Scholar 

  18. Stulik J, Bures J, Jandik P, Langr F, Kovarova H, Macela A . The different expression of proteins recognized by monoclonal anti-heat shock protein 70 (hsp 70) antibody in human colonic diseases Electrophoresis 1997 18: 625–628

    Article  CAS  PubMed  Google Scholar 

  19. Okuzawa K, Franzen B, Lindholm J et al . Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis Electrophoresis 1994 15: 382–390

    Article  CAS  PubMed  Google Scholar 

  20. Appel RD, Palagi PM, Walther D et al . Melanie II — a third-generation software package for analysis of two-dimensional electrophoresis images Electrophoresis 1997 18: 2724–2734

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Zhou W, Velculescu VE et al . Gene expression profiles in normal and cancer cells Science 1997 276: 1268–1272

    Article  CAS  PubMed  Google Scholar 

  22. Hishiki T, Kawamoto S, Morishita S, Okubo K . Body map: a human and gene expression database Nucleic Acids Res 2000 28: 136–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada T, Takaoka AS, Naishiro Y et al . Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis Cancer Res 2000 60: 4761–4766

    CAS  PubMed  Google Scholar 

  24. Tortola S, Narcuillo E, Capella G et al . Analysis of differential gene expression in human colorectal tumor tissues by RNA arbitrarily-primed-PCR: a technical assessment Lab Invest 1998 78: 309–317

    CAS  PubMed  Google Scholar 

  25. Banks RE, Dunn MJ, Hochstrasser DF et al . Proteomics: new perspectives, new biomedical opportunities Lancet 2000 18: 1749–1756

    Article  Google Scholar 

  26. Reymond MA, Sanchez JC, Schneider C et al . Specific sample preparation in colorectal cancer Electrophoresis 1997 18: 622–624

    Article  CAS  PubMed  Google Scholar 

  27. Emmert-Buck MR, Bonner RF, Smith PD et al . Laser capture microdissection Science 1996 274: 998–1001

    Article  CAS  PubMed  Google Scholar 

  28. Pappalardo PA, Bonner R, Krizman DB, Emmert-Buck MR, Liotta LA . Microdissection, microchip arrays, and molecular analysis of tumor cells (primary and metastases) Semin Radiat Oncol 1998 8: 217–223

    Article  CAS  PubMed  Google Scholar 

  29. Banks RE, Dunn MJ, Forbes MA et al . The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomics analysis — preliminary findings Electrophoresis 1999 20: 689–700

    Article  CAS  PubMed  Google Scholar 

  30. Franzen B, Auer G, Alaiya AA et al . Assessment of homogeneity in polypeptide expression in breast carcinomas shows highly variable expression in highly malignant tumors Int J Cancer 1996 69: 408–414

    Article  CAS  PubMed  Google Scholar 

  31. Franzén B, Hiroshi I, Harabumi H, Lindhlom J, Auer G . Two-dimensional polyacrylamide gel electrophoresis of human lung cancer: qualitative aspects of tissue preparation in relation to histopathology Electrophoresis 1991 12: 509–515

    Article  PubMed  Google Scholar 

  32. Franzén B, Linder S, Uryu K et al . Expression of tropomyosin isoforms in benign and malignant human breast lesions Br J Cancer 1996 73: 909–913

    Article  PubMed  PubMed Central  Google Scholar 

  33. Franzén B, Linder S, Okuzawa K, Kato H, Auer G . Nonenzymatic extraction of cells from clinical tumor material for analysis of gene expression by two-dimensional polyacrylamide gel electrophoresis Electrophoresis 1993 14: 1045–1053

    Article  PubMed  Google Scholar 

  34. Latza U, Niedobitek G, Schwarting R, Nekarda H, Stein H . Ber-EP4: new monoclonal antibody which distinguishes epithelia from mesothelial J Clin Pathol 1990 43: 213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reymond MA, Sanchez JC, Appel R et al . Standardized characterization of gene expression in colorectal epithelium by two-dimensional electrophoresis Electrophoresis 1997 18: 2842–2848

    Article  CAS  PubMed  Google Scholar 

  36. Dix BR, Robbins PD, Spagnolo DV, Padovan GL, House AK, Iacopetta BJ . Clonal analysis of colorectal tumors using K-ras and p53 gene mutations as markers Diagn Mol Pathol 1995 4: 261–265

    Article  CAS  PubMed  Google Scholar 

  37. Fearon ER, Hamilton SR, Vogelstein B . Clonal analysis of human colorectal tumors Science 1987 238: 193–197

    Article  CAS  PubMed  Google Scholar 

  38. Kuwabara A, Watanabe H, Ajioka Y et al . Alteration of p53 clonality accompanying colorectal cancer progression Jpn J Cancer Res 1998 89: 40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Szallazi Z . Gene expression patterns and cancer Nature Biotech 1997 16: 1292–1293

    Article  Google Scholar 

  40. Binz PA, Müller M, Walther D et al . A molecular scanner to automate proteomic research and to display proteome images Anal Chem 1999 71: 4981–4988

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez JC, Appel RD, Golaz O et al . Inside Swiss-2DPAGE database Electrophoresis 1995 16: 1131–1151

    Article  CAS  PubMed  Google Scholar 

  42. Chan C, Warlow WS, Chapuis PH, Newland RC, Bokey EL . Immobiline-based two-dimensional gel electrophoresis: an optimised protocol for resolution of human colonic mucosal proteins Electrophoresis 1999 20: 3467–3471

    Article  CAS  PubMed  Google Scholar 

  43. Ward LD, Hong J, Whitehead RH, Simpson RJ . Development of a database of amino acide sequences for human colon carcinoma proteins separated by two-dimensional polyacrylamide gel electrophoresis Electrophoresis 1990 11: 883–891

    Article  CAS  PubMed  Google Scholar 

  44. Szymczyk P, Krajewska WM, Jakubik J et al . Molecular characterization of cellular proteins from colorectal tumors Tumori 1996 82: 376–381

    Article  CAS  PubMed  Google Scholar 

  45. Ji H, Reid GE, Moritz RL, Eddes JS, Burgess AW, Simpson RJ . A two-dimensional gel database of human colon carcinoma proteins Electrophoresis 1997 18: 605–613

    Article  CAS  PubMed  Google Scholar 

  46. Bradford MM . A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding Anal Biochem 1976 22: 248–254

    Article  Google Scholar 

  47. Bjellkvist B, Pasquali Ch, Ravier F, Sanchez JCh, Hochstrasser D . A non-linear wide-range immobilized pH gradient for two-dimensional eletrophoresis and its definition in a relevant pH scale Electrophoresis 1993 14: 1357–1365

    Article  Google Scholar 

  48. Hochstrasser DF, Merril CR . ‘Catalysts’ for polyacrylamide gel polymerization and detection of proteins by silver-staining Appl Theor Electrophor 1988 1: 35–40

    CAS  PubMed  Google Scholar 

  49. Hochstrasser DF, Patchornik A, Merril CR . Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining Anal Biochem 1988 173: 412–423

    Article  CAS  PubMed  Google Scholar 

  50. Rabilloud T . A comparison between low background silver diamine and silver nitrate protein stains Electrophoresis 1992 13: 429–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I Demalte, JC Sanchez and DF Hochstrasser for significant contributions to this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, V., Guenther, K., Steinert, R. et al. Accuracy of two-dimensional electrophoresis for target discovery in human colorectal cancer. Pharmacogenomics J 1, 142–151 (2001). https://doi.org/10.1038/sj.tpj.6500024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500024

Keywords

Search

Quick links