Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGFβ-dependent gene expression profile during maturation of dendritic cells

Abstract

Primary immune response to pathogens involves the maturation of antigen-presenting dendritic cells (DC). Bacterial lipopolysacharride (LPS) is a potent inducer of DC maturation, whereas the transforming growth factor β (TGFβ) attenuates much of this process. Here, we analyzed the global gene expression pattern in LPS-treated bone marrow derived DC during inhibition of their maturation process by TGFβ. Exposure of DC to LPS induces a pronounced cell response, manifested in altered expression of a large number of genes. Interestingly, TGFβ did not affect most of the LPS responding genes. Nevertheless, analysis identified a subset of genes that did respond to TGFβ, among them the two inflammatory cytokines interleukin (IL)-12 and IL-18. Expression of IL-12, the major proinflammatory cytokine secreted by mature DC, was downregulated by TGFβ, whereas the expression level of the proinflammatory cytokine IL-18, known to potentiate the IL-12 effect, was upregulated. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) increased in response to TGFβ, concomitantly with reduced expression of chemokine receptor 7 (CCR7). This finding supports the possibility that TGFβ-dependent inhibition of CCR7 expression in DC is mediated by PPARγ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  2. Steinman RM . Dendritic cells. In: Paul WE (ed). Fundamental Immunology, 4th edn. Lipnicott-Raven: Philadelphia, 1999.

    Google Scholar 

  3. Nathan C . Points of control in inflammation. Nature 2002; 420: 846–852.

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi M, Alard P, Streilein JW . TGF-beta promotes immune deviation by altering accessory signals of antigen-presenting cells. J Immunol 1998; 160: 1589–1597.

    CAS  PubMed  Google Scholar 

  5. Soltys J, Bonfield T, Chmiel J, Berger M . Functional IL-10 deficiency in the lung of cystic fibrosis (cftr(-/-)) and IL-10 knockout mice causes increased expression and function of B7 costimulatory molecules on alveolar macrophages. J Immunol 2002; 168: 1903–1910.

    Article  CAS  PubMed  Google Scholar 

  6. Chelen CJ, Fang Y, Freeman GJ, Secrist H, Marshall JD, Hwang PT et al. Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 1995; 95: 1415–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Letterio JJ, Roberts AB . Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137–161.

    Article  CAS  PubMed  Google Scholar 

  8. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90: 770–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Riedl E, Strobl H, Majdic O, Knapp W . TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J Immunol 1997; 158: 1591–1597.

    CAS  PubMed  Google Scholar 

  10. Yamaguchi Y, Tsumura H, Miwa M, Inaba K . Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells 1997; 15: 144–153.

    Article  CAS  PubMed  Google Scholar 

  11. Dufter C, Watzlik A, Christ C, Jung M, Wirzbach A, Opelz G et al. Suppression of T-cell alloreactivity by gene-therapeutic modulation of human dendritic stimulator cells with TGF-beta adenoviral vectors. Transplant Proc 2001; 33: 190–191.

    Article  CAS  PubMed  Google Scholar 

  12. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N . Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yarilin D, Duan R, Huang YM, Xiao BG . Dendritic cells exposed in vitro to TGF-beta1 ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 2002; 127: 214–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber F, Byrne SN, Le S, Brown DA, Breit SN, Scolyer RA et al. Transforming growth factor-beta(1) immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol Immunother 2005; 54: 898–906.

    Article  CAS  PubMed  Google Scholar 

  15. Beck C, Schreiber H, Rowley D . Role of TGF-beta in immune-evasion of cancer. Microsc Res Tech 2001; 52: 387–395.

    Article  CAS  PubMed  Google Scholar 

  16. Blatt M, Wiseman S, Domany E . Superparamagnetic clustering of data. Phys Rev Let 1996; 76: 3251–3254.

    Article  CAS  Google Scholar 

  17. Levine E, Domany E . Resampling method for unsupervised estimation of cluster validity. Neural Comp 2001; 13: 2573–2593.

    Article  CAS  Google Scholar 

  18. Perrier P, Martinez FO, Locati M, Bianchi G, Nebuloni M, Vago G et al. Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J Immunol 2004; 172: 7031–7042.

    Article  CAS  PubMed  Google Scholar 

  19. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA et al. The plasticity of dendritic cell responses to pathogens and their components. Science 2001; 294: 870–875.

    Article  CAS  PubMed  Google Scholar 

  20. Fainaru O, Shseyov D, Hantisteanu S, Groner Y . Accelerated chemokine receptor 7-mediated dendritic cell migration in Runx3 knockout mice and the spontaneous development of asthma-like disease. Proc Natl Acad Sci USA 2005; 102: 10598–10603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy P . Interleukin-18: recent advances. Curr Opin Hematol 2004; 11: 405–410.

    Article  CAS  PubMed  Google Scholar 

  22. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441: 231–234.

    Article  CAS  PubMed  Google Scholar 

  23. Han J, Hajjar DP, Tauras JM, Feng J, Gotto Jr AM, Nicholson AC . Transforming growth factor-beta1 (TGF-beta1) and TGF-beta2 decrease expression of CD36, the type B scavenger receptor, through mitogen-activated protein kinase phosphorylation of peroxisome proliferator-activated receptor-gamma. J Biol Chem 2000; 275: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  24. Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC et al. Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 2004; 164: 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Upham JW, Stumbles PA . Why are dendritic cells important in allergic diseases of the respiratory tract? Pharmacol Ther 2003; 100: 75–87.

    Article  CAS  PubMed  Google Scholar 

  26. Ogata M, Zhang Y, Wang Y, Itakura M, Zhang YY, Harada A et al. Chemotactic response toward chemokines and its regulation by transforming growth factor-beta1 of murine bone marrow hematopoietic progenitor cell-derived different subset of dendritic cells. Blood 1999; 93: 3225–3232.

    CAS  PubMed  Google Scholar 

  27. Lutz MB, Suri RM, Niimi M, Ogilvie AL, Kukutsch NA, Rossner S et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30: 1813–1822.

    Article  CAS  PubMed  Google Scholar 

  28. Kendziorski C, Irizarry RA, Chen K-S, Haag JD, Gould MN . On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci USA 2005; 102: 4252–4257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, Goldenberg D et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J 2004; 23: 969–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Judith Chermesh and Rafi Saka for help in animal husbandry, Dr Ditsa Levanon and Dr Joseph Lotem for insightful comments. This work was supported by grants from the Philip Morris External Research Program, the Israel Science Foundation, the Commission of the European Union FP6 program and the Wolfson Family Charitable Trust, London, on Tumour Cell Diversity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Groner.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fainaru, O., Shay, T., Hantisteanu, S. et al. TGFβ-dependent gene expression profile during maturation of dendritic cells. Genes Immun 8, 239–244 (2007). https://doi.org/10.1038/sj.gene.6364380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364380

Keywords

This article is cited by

Search

Quick links