Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CCL3L1 and CCL4L1: variable gene copy number in adolescents with and without human immunodeficiency virus type 1 (HIV-1) infection

Abstract

As members of the chemokine family, macrophage inflammatory protein 1 alpha (MIP-1α) and MIP-1β are unique in that they both consist of non-allelic isoforms encoded by different genes, namely chemokine (C-C motif) ligand 3 (CCL3), CCL4, CCL3-like 1 (CCL3L1) and CCL4L1. The products of these genes and of CCL5 (encoding RANTES, i.e., regulated on activation, normal T expressed and secreted) can block or interfere with human immunodeficiency virus type 1 (HIV-1) infection through competitive binding to chemokine (C-C motif) receptor 5 (CCR5). Our analyses of 411 adolescents confirmed that CCL3 and CCL4 genes occurred invariably as single copies (two per diploid genome), whereas the copy numbers of CCL3L1 and CCL4L1 varied extensively (0–11 and 1–6 copies, respectively). Neither CCL3L1 nor CCL4L1 gene copy number variation showed appreciable impact on susceptibility to or control of HIV-1 infection. Within individuals, linear correlation between CCL3L1 and CCL4L1 copy numbers was moderate regardless of ethnicity (Pearson correlation coefficients=0.63–0.65, P<0.0001), suggesting that the two loci are not always within the same segmental duplication unit. Persistently low serum MIP-1α and MIP-1β (in the pg/ml range) compared with high CCL5 concentration (ng/ml range) implied that multi-copy genes CCL3L1 and CCL4L1 conferred little advantage in the intensity of expression among uninfected or infected adolescents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Baggiolini M . Chemokines and leukocyte traffic. Nature 1998; 392: 565–568.

    Article  CAS  Google Scholar 

  2. Ward SG, Westwick J . Chemokines: understanding their role in T-lymphocyte biology. Biochem J 1998; 333: 457–470.

    Article  CAS  Google Scholar 

  3. Murphy PM . International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002; 54: 227–229.

    Article  CAS  Google Scholar 

  4. Berger EA, Murphy PM, Farber JM . Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657–700.

    Article  CAS  Google Scholar 

  5. Gerard C, Rollins BJ . Chemokines and disease. Nat Immunol 2001; 2: 108–115.

    Article  CAS  Google Scholar 

  6. Tang J, Kaslow RA . Polymorphic chemokine receptor and ligand genes in HIV infection. In: Bellamy R (ed). Susceptibility to Infectious Diseases: The Importance of Host Genetics, 1st edn. Cambridge University Press: Cambridge, 2004, pp 185–220.

    Google Scholar 

  7. Lederman MM, Penn-Nicholson A, Cho M, Mosier D . Biology of CCR5 and its role in HIV infection and treatment. JAMA 2006; 296: 815–826.

    Article  CAS  Google Scholar 

  8. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P . Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–1815.

    Article  CAS  Google Scholar 

  9. Mackay CR . CCL3L1 dose and HIV-1 susceptibility. Trends Mol Med 2005; 11: 203–206.

    Article  CAS  Google Scholar 

  10. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN . Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006; 440: 890–895.

    Article  CAS  Google Scholar 

  11. Meddows-Taylor S, Donninger SL, Paximadis M, Schramm DB, Anthony FS, Gray GE et al. Reduced ability of newborns to produce CCL3 is associated with increased susceptibility to perinatal human immunodeficiency virus 1 transmission. J Gen Virol 2006; 87: 2055–2065.

    Article  CAS  Google Scholar 

  12. Menten P, Wuyts A, Van Damme J . Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 2002; 13: 455–481.

    Article  CAS  Google Scholar 

  13. Miyakawa T, Obaru K, Maeda K, Harada S, Mitsuya H . Identification of amino acid residues critical for LD78beta, a variant of human macrophage inflammatory protein-1alpha, binding to CCR5 and inhibition of R5 human immunodeficiency virus type 1 replication. J Biol Chem 2002; 277: 4649–4655.

    Article  CAS  Google Scholar 

  14. Townson JR, Barcellos LF, Nibbs RJ . Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol 2002; 32: 3016–3026.

    Article  CAS  Google Scholar 

  15. Howard OM, Turpin JA, Goldman R, Modi WS . Functional redundancy of the human CCL4 and CCL4L1 chemokine genes. Biochem Biophys Res Commun 2004; 320: 927–931.

    Article  CAS  Google Scholar 

  16. Modi WS . CCL3L1 and CCL4L1 chemokine genes are located in a segmental duplication at chromosome 17q12. Genomics 2004; 83: 735–738.

    Article  CAS  Google Scholar 

  17. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307: 1434–1440.

    Article  CAS  Google Scholar 

  18. Gallo RC, Garzino-Demo A, DeVico AL . HIV infection and pathogenesis: what about chemokines? J Clin Immunol 1999; 19: 293–299.

    Article  CAS  Google Scholar 

  19. Gonzalez E, Dhanda R, Bamshad M, Mummidi S, Geevarghese R, Catano G et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1α: impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci USA 2001; 98: 5199–5204.

    Article  CAS  Google Scholar 

  20. Tang J, Shelton B, Makhatadze NJ, Zhang Y, Schaen M, Louie LG et al. Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression. J Virol 2002; 76: 662–672.

    Article  CAS  Google Scholar 

  21. Tang J, Wilson CM, Meleth S, Myracle A, Lobashevsky E, Mulligan MJ et al. Host genetic profiles predict virological and immunological control of HIV-1 infection in adolescents. AIDS 2002; 16: 2275–2284.

    Article  Google Scholar 

  22. Kostrikis LG, Neumann AU, Thomson B, Korber BT, McHardy P, Karanicolas R et al. A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J Virol 1999; 73: 10264–10271.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonzalez E, Bamshad M, Sato N, Mummidi S, Dhanda R, Catano G et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci USA 1999; 96: 12004–12009.

    Article  CAS  Google Scholar 

  24. Tang J, Wilson CM, Schaen M, Myracle A, Douglas SD, Kaslow RA . CCR2 and CCR5 genotypes in HIV type 1-infected adolescents: limited contributions to variability in plasma HIV type 1 RNA concentration in the absence of antiretroviral therapy. AIDS Res Hum Retroviruses 2002; 18: 403–412.

    Article  CAS  Google Scholar 

  25. Ioannidis JP, Contopoulos-Ioannidis DG, Rosenberg PS, Goedert JJ, De Rossi A, Espanol T et al. Effects of CCR5-Δ32 and CCR2-64I alleles on disease progression of perinatally HIV-1-infected children: an international meta-analysis. AIDS 2003; 17: 1631–1638.

    Article  CAS  Google Scholar 

  26. Tang J, Kaslow RA . The impact of host genetics on HIV infection and disease progression in the era of highly active antiretroviral therapy. AIDS 2003; 17 (Suppl 4): S51–S60.

    Article  Google Scholar 

  27. Nolan D, Gaudieri S, John M, Mallal S . Impact of host genetics on HIV disease progression and treatment: new conflicts on an ancient battleground. AIDS 2004; 18: 1231–1240.

    Article  CAS  Google Scholar 

  28. O'Brien SJ, Nelson GW . Human genes that limit AIDS. Nat Genet 2004; 36: 565–574.

    Article  CAS  Google Scholar 

  29. Silverberg MJ, Smith MW, Chmiel JS, Detels R, Margolick JB, Rinaldo CR et al. Fraction of cases of acquired immunodeficiency syndrome prevented by the interactions of identified restriction gene variants. Am J Epidemiol 2004; 159: 232–241.

    Article  CAS  Google Scholar 

  30. Telenti A, Ioannidis JP . Susceptibility to HIV infection – disentangling host genetics and host behavior. J Infect Dis 2006; 193: 4–6.

    Article  Google Scholar 

  31. Modi WS, Lautenberger J, An P, Scott K, Goedert JJ, Kirk GD et al. Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV type 1 transmission and AIDS disease progression. Am J Hum Genet 2006; 79: 120–128.

    Article  CAS  Google Scholar 

  32. Oravecz T, Pall M, Norcross MA . Beta-chemokine inhibition of monocytotropic HIV-1 infection. Interference with a postbinding fusion step. J Immunol 1996; 157: 1329–1332.

    CAS  PubMed  Google Scholar 

  33. Yang AG, Bai X, Huang XF, Yao C, Chen S . Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc Natl Acad Sci USA 1997; 94: 11567–11572.

    Article  CAS  Google Scholar 

  34. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–673.

    Article  CAS  Google Scholar 

  35. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–1958.

    Article  CAS  Google Scholar 

  36. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  Google Scholar 

  37. Polo S, Veglia F, Malnati MS, Gobbi C, Farci P, Raiteri R et al. Longitudinal analysis of serum chemokine levels in the course of HIV-1 infection. AIDS 1999; 13: 447–454.

    Article  CAS  Google Scholar 

  38. Bubel S, Wilhelm D, Entelmann M, Kirchner H, Kluter H . Chemokines in stored platelet concentrates. Transfusion 1996; 36: 445–449.

    Article  CAS  Google Scholar 

  39. Baltus T, von Hundelshausen P, Mause SF, Buhre W, Rossaint R, Weber C . Differential and additive effects of platelet-derived chemokines on monocyte arrest on inflamed endothelium under flow conditions. J Leukoc Biol 2005; 78: 435–441.

    Article  CAS  Google Scholar 

  40. Aukrust P, Muller F, Froland SS . Circulating levels of RANTES in human immunodeficiency virus type 1 infection: effect of potent antiretroviral therapy. J Infect Dis 1998; 177: 1091–1096.

    Article  CAS  Google Scholar 

  41. Malnati MS, Tambussi G, Fischetti L, Algeri M, Veglia F, Capiluppi B et al. Analysis of serum and plasma beta chemokines in primary HIV infection (PHI). J Biol Regul Homeost Agents 2000; 14: 75–78.

    CAS  PubMed  Google Scholar 

  42. Montano M, Rarick M, Sebastiani P, Brinkmann P, Russell M, Navis A et al. Gene-expression profiling of HIV-1 infection and perinatal transmission in Botswana. Genes Immun 2006; 7: 298–309.

    Article  CAS  Google Scholar 

  43. Bugeja MJ, Booth DR, Bennetts BH, Guerin J, Kaldor JM, Stewart GJ . Analysis of the CCL3-L1 gene for association with HIV-1 susceptibility and disease progression. AIDS 2004; 18: 1069–1071.

    Article  CAS  Google Scholar 

  44. Pilotti E, Eviri L, Vicenzi E, Bertazzoni U, Re MC, Allibardi S et al. Post-genomic upregulation of CCL3L1 expression in HTLV-2 infected individuals curtails HIV-1 replication. Blood 2007, in press.

  45. Abbott CA, Yu DM, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD . Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem 2000; 267: 6140–6150.

    Article  CAS  Google Scholar 

  46. Chiravuri M, Agarraberes F, Mathieu SL, Lee H, Huber BT . Vesicular localization and characterization of a novel post-proline-cleaving aminodipeptidase, quiescent cell proline dipeptidase. J Immunol 2000; 165: 5695–5702.

    Article  CAS  Google Scholar 

  47. Rogers AS, Futterman DK, Moscicki AB, Wilson CM, Ellenberg J, Vermund SH . The REACH Project of the Adolescent Medicine HIV/AIDS Research Network: design, methods, and selected characteristics of participants. J Adolesc Health 1998; 22: 300–311.

    Article  CAS  Google Scholar 

  48. Wilson CM, Houser J, Partlow C, Rudy BJ, Futterman DC, Friedman LB . The REACH (Reaching for Excellence in Adolescent Care and Health) project: study design, methods, and population profile. J Adolesc Health 2001; 29: 8–18.

    Article  CAS  Google Scholar 

  49. Fernandez S, Wassmuth R, Knerr I, Frank C, Haas JP . Relative quantification of HLA-DRA1 and -DQA1 expression by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Eur J Immunogenet 2003; 30: 141–148.

    Article  CAS  Google Scholar 

  50. Adur J, Uchide T, Takizawa S, Quan J, Saida K . Real-time polymerase chain reaction quantification of gene expression levels of murine endothelin-A and endothelin-B receptors: gene expression profiles by the standard curve method. J Cardiovasc Pharmacol 2004; 44: S321–S328.

    Article  CAS  Google Scholar 

  51. McDermott DH, Zimmerman PA, Guignard F, Kleeberger CA, Leitman SF, Murphy PM . CCR5 promoter polymorphism and HIV-1 disease progression. Lancet 1998; 352: 866–870.

    Article  CAS  Google Scholar 

  52. Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 1998; 282: 1907–1911.

    Article  CAS  Google Scholar 

  53. Mangano A, Gonzalez E, Dhanda R, Catano G, Bamshad M, Bock A et al. Concordance between the CC chemokine receptor 5 genetic determinants that alter risks of transmission and disease progression in children exposed perinatally to human immunodeficiency virus. J Infect Dis 2001; 183: 1574–1585.

    Article  CAS  Google Scholar 

  54. Song W, Wilson CM, Allen S, Wang C, Li Y, Kaslow RA et al. Interleukin 18 and human immunodeficiency virus type I infection in adolescents and adults. Clin Exp Immunol 2006; 144: 117–124.

    Article  CAS  Google Scholar 

  55. Wang C, Tang J, Geisler WM, Crowley-Nowick PA, Wilson CM, Kaslow RA . Human leukocyte antigen and cytokine gene variants as predictors of recurrent Chlamydia trachomatis infection in high-risk adolescents. J Infect Dis 2005; 191: 1084–1092.

    Article  CAS  Google Scholar 

  56. Wang C, Tang J, Crowley-Nowick PA, Wilson CM, Kaslow RA, Geisler WM . Interleukin (IL)-2 and IL-12 responses to Chlamydia trachomatis infection in adolescents. Clin Exp Immunol 2005; 142: 548–554.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants AI41951 (to RAK) and AI51173 (to JT) from National Institute of Allergy and Infectious Diseases. The parental study (REACH) was supported by the National Institute of Child Health and Human Development (U01 HD32830), with supplemental funding from the National Institutes on Drug Abuse, Allergy and Infectious Diseases, and Mental Health. Investigators and staff of the Adolescent Medicine HIV/AIDS Research Network (1994–2001) are listed in J Adolesc Health 2001; 29 (suppl): 5–6. We are grateful to all participants in the REACH cohort for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Tang or R A Kaslow.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, W., Tang, J., Song, W. et al. CCL3L1 and CCL4L1: variable gene copy number in adolescents with and without human immunodeficiency virus type 1 (HIV-1) infection. Genes Immun 8, 224–231 (2007). https://doi.org/10.1038/sj.gene.6364378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364378

Keywords

This article is cited by

Search

Quick links