Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interleukin-18 genetics and inflammatory disease susceptibility

Abstract

IL18 was mapped to 11q22.2–22.3 in 1998. Owing to interleukin (IL)-18's important and novel role in immunomodulation, the gene itself has been subject to scrutiny, with the aim of discovering variants that may impact on disease susceptibility and/or progression. Despite being sequenced numerous times in different populations, no non-synonymous variants have been found. However, a number of polymorphisms within the proximal promoter have been verified that may interfere with transcription-factor-binding sites. Much of the subsequent association analyses have centred on these variants, but have yielded no consistent results, despite numerous different study populations being genotyped. IL18 has recently been resequenced in its entirety, enabling the tagging-single-nucleotide polymorphism (tSNP) methodology to be adopted. This approach has yielded interesting results, with genetic variation being shown to affect protein levels, and risk. This review aims to compile and reflect on the association data of interest published to date, with a focus on the diseases related to aberrant inflammatory control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Breslow JL . Cardiovascular disease burden increases, NIH funding decreases. Nat Med 1997; 3: 600–601.

    Article  CAS  PubMed  Google Scholar 

  2. Ross R . Atherosclerosis – an inflammatory disease. N Engl J Med 1999; 340: 115–126.

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK . Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21: 1876–1890.

    Article  CAS  PubMed  Google Scholar 

  4. Stoll G, Bendszus M . Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 2006; 37: 1923–1932.

    Article  CAS  PubMed  Google Scholar 

  5. der Thusen JH, Kuiper J, van Berkel TJ, Biessen EA . Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55: 133–166.

    Article  Google Scholar 

  6. Okamura H, Nagata K, Komatsu T, Tanimoto T, Nukata Y, Tanabe F et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun 1995; 63: 3966–3972.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995; 378: 88–91.

    Article  CAS  PubMed  Google Scholar 

  8. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 1996; 156: 4274–4279.

    CAS  PubMed  Google Scholar 

  9. Tenen DG, Hromas R, Licht JD, Zhang DE . Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519.

    CAS  PubMed  Google Scholar 

  10. Koyama N, Hoelzer D, Ottmann OG . Regulation of human IL-18 gene expression: interaction of PU.1 with GC-box binding protein is involved in human IL-18 expression in myeloid cells. Eur J Immunol 2004; 34: 817–826.

    Article  CAS  PubMed  Google Scholar 

  11. Hoshino K, Tsutsui H, Kawai T, Takeda K, Nakanishi K, Takeda Y et al. Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 1999; 162: 5041–5044.

    CAS  PubMed  Google Scholar 

  12. Torigoe K, Ushio S, Okura T, Kobayashi S, Taniai M, Kunikata T et al. Purification and characterization of the human interleukin-18 receptor. J Biol Chem 1997; 272: 25737–25742.

    Article  CAS  PubMed  Google Scholar 

  13. Wu C, Sakorafas P, Miller R, McCarthy D, Scesney S, Dixon R et al. IL-18 receptor beta-induced changes in the presentation of IL-18 binding sites affect ligand binding and signal transduction. J Immunol 2003; 170: 5571–5577.

    Article  CAS  PubMed  Google Scholar 

  14. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143–150.

    Article  CAS  PubMed  Google Scholar 

  15. Kojima H, Takeuchi M, Ohta T, Nishida Y, Arai N, Ikeda M et al. Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 1998; 244: 183–186.

    Article  CAS  PubMed  Google Scholar 

  16. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H . Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 2001; 19: 423–474.

    Article  CAS  PubMed  Google Scholar 

  17. Kojima H, Aizawa Y, Yanai Y, Nagaoka K, Takeuchi M, Ohta T et al. An essential role for NF-kappa B in IL-18-induced IFN-gamma expression in KG-1 cells. J Immunol 1999; 162: 5063–5069.

    CAS  PubMed  Google Scholar 

  18. Matsumoto S, Tsuji-Takayama K, Aizawa Y, Koide K, Takeuchi M, Ohta T et al. Interleukin-18 activates NF-kappaB in murine T helper type 1 cells. Biochem Biophys Res Commun 1997; 234: 454–457.

    Article  CAS  PubMed  Google Scholar 

  19. Yu JJ, Tripp CS, Russell JH . Regulation and phenotype of an innate Th1 cell: role of cytokines and the p38 kinase pathway. J Immunol 2003; 171: 6112–6118.

    Article  CAS  PubMed  Google Scholar 

  20. Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M . Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 1999; 10: 127–136.

    Article  CAS  PubMed  Google Scholar 

  21. Reznikov LL, Kim SH, Westcott JY, Frishman J, Fantuzzi G, Novick D et al. IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-gamma. Proc Natl Acad Sci USA 2000; 97: 2174–2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M et al. Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 2000; 97: 1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Higa S, Hirano T, Mayumi M, Hiraoka M, Ohshima Y, Nambu M et al. Association between interleukin-18 gene polymorphism 105A/C and asthma. Clin Exp Allergy 2003; 33: 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  24. Arimitsu J, Hirano T, Higa S, Kawai M, Naka T, Ogata A et al. IL-18 gene polymorphisms affect IL-18 production capability by monocytes. Biochem Biophys Res Commun 2006; 342: 1413–1416.

    Article  CAS  PubMed  Google Scholar 

  25. Liang XH, Cheung W, Heng CK, Wang DY . Reduced transcriptional activity in individuals with IL-18 gene variants detected from functional but not association study. Biochem Biophys Res Commun 2005; 338: 736–741.

    Article  CAS  PubMed  Google Scholar 

  26. Giedraitis V, He B, Huang WX, Hillert J . Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol 2001; 112: 146–152.

    Article  CAS  PubMed  Google Scholar 

  27. Tiret L, Godefroy T, Lubos E, Nicaud V, Tregouet DA, Barbaux S et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 2005; 112: 643–650.

    Article  CAS  PubMed  Google Scholar 

  28. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 2002; 106: 24–30.

    Article  CAS  PubMed  Google Scholar 

  29. Blankenberg S, Luc G, Ducimetiere P, Arveiler D, Ferrieres J, Amouyel P et al. Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 2003; 108: 2453–2459.

    Article  CAS  PubMed  Google Scholar 

  30. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 1997; 146: 483–494.

    Article  CAS  PubMed  Google Scholar 

  31. Yamagami H, Kitagawa K, Hoshi T, Furukado S, Hougaku H, Nagai Y et al. Associations of serum IL-18 levels with carotid intima-media thickness. Arterioscler Thromb Vasc Biol 2005; 25: 1458–1462.

    Article  CAS  PubMed  Google Scholar 

  32. Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T et al. Interleukin 18 in acute myocardial infarction. Heart 2000; 84: 668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frigerio S, Hollander GA, Zumsteg U . Functional IL-18 is produced by primary pancreatic mouse islets and NIT-1 beta cells and participates in the progression towards destructive insulitis. Horm Res 2002; 57: 94–104.

    CAS  PubMed  Google Scholar 

  34. Lukic ML, Mensah-Brown E, Wei X, Shahin A, Liew FY . Lack of the mediators of innate immunity attenuate the development of autoimmune diabetes in mice. J Autoimmun 2003; 21: 239–246.

    Article  CAS  PubMed  Google Scholar 

  35. Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K et al. Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia 2001; 44: 309–311.

    Article  CAS  PubMed  Google Scholar 

  36. Nicoletti F, Di Marco R, Papaccio G, Conget I, Gomis R, Bernardini R et al. Essential pathogenic role of endogenous IL-18 in murine diabetes induced by multiple low doses of streptozotocin. Prevention of hyperglycemia and insulitis by a recombinant IL-18-binding protein: Fc construct. Eur J Immunol 2003; 33: 2278–2286.

    Article  CAS  PubMed  Google Scholar 

  37. Rothe H, Jenkins NA, Copeland NG, Kolb H . Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2. J Clin Invest 1997; 99: 469–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kretowski A, Mironczuk K, Karpinska A, Bojaryn U, Kinalski M, Puchalski Z et al. Interleukin-18 promoter polymorphisms in type 1 diabetes. Diabetes 2002; 51: 3347–3349.

    Article  CAS  PubMed  Google Scholar 

  39. Ide A, Kawasaki E, Abiru N, Sun F, Kobayashi M, Fukushima T et al. Association between IL-18 gene promoter polymorphisms and CTLA-4 gene 49A/G polymorphism in Japanese patients with type 1 diabetes. J Autoimmun 2004; 22: 73–78.

    Article  CAS  PubMed  Google Scholar 

  40. Szeszko JS, Howson JM, Cooper JD, Walker NM, Twells RC, Stevens HE et al. Analysis of polymorphisms of the interleukin-18 gene in type 1 diabetes and Hardy–Weinberg equilibrium testing. Diabetes 2006; 55: 559–562.

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Turner A, Little J, Bleecker ER, Meyers DA . Positive results in association studies are associated with departure from Hardy–Weinberg equilibrium: hint for genotyping error? Hum Genet 2002; 111: 573–574.

    Article  PubMed  Google Scholar 

  42. Schaid DJ, Jacobsen SJ . Biased tests of association: comparisons of allele frequencies when departing from Hardy–Weinberg proportions. Am J Epidemiol 1999; 149: 706–711.

    Article  CAS  PubMed  Google Scholar 

  43. Deng HW, Chen WM . Re: ‘Biased tests of association: comparisons of allele frequencies when departing from Hardy–Weinberg proportions’. Am J Epidemiol 2000; 151: 335–337.

    Article  CAS  PubMed  Google Scholar 

  44. Fallin D, Schork NJ . Accuracy of haplotype frequency estimation for biallelic loci, via the expectation–maximization algorithm for unphased diploid genotype data. Am J Hum Genet 2000; 67: 947–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin RJ, Savage DA, Carson DJ, Maxwell AP, Patterson CC . Interleukin 18 promoter polymorphisms are not strongly associated with type I diabetes in a UK population. Genes Immun 2005; 6: 171–174.

    Article  CAS  PubMed  Google Scholar 

  46. Mojtahedi Z, Naeimi S, Farjadian S, Omrani GR, Ghaderi A . Association of IL-18 promoter polymorphisms with predisposition to type 1 diabetes. Diabet Med 2006; 23: 235–239.

    Article  CAS  PubMed  Google Scholar 

  47. Huang WX, Huang P, Hillert J . Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 2004; 10: 482–487.

    Article  CAS  PubMed  Google Scholar 

  48. Karni A, Koldzic DN, Bharanidharan P, Khoury SJ, Weiner HL . IL-18 is linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4(+) T cells via CD40–CD40 ligand interactions. J Neuroimmunol 2002; 125: 134–140.

    Article  CAS  PubMed  Google Scholar 

  49. Losy J, Niezgoda A . IL-18 in patients with multiple sclerosis. Acta Neurol Scand 2001; 104: 171–173.

    Article  CAS  PubMed  Google Scholar 

  50. Nicoletti F, Di Marco R, Mangano K, Patti F, Reggio E, Nicoletti A et al. Increased serum levels of interleukin-18 in patients with multiple sclerosis. Neurology 2001; 57: 342–344.

    Article  CAS  PubMed  Google Scholar 

  51. Yamamura M, Kawashima M, Taniai M, Yamauchi H, Tanimoto T, Kurimoto M et al. Interferon-gamma-inducing activity of interleukin-18 in the joint with rheumatoid arthritis. Arthritis Rheum 2001; 44: 275–285.

    Article  CAS  PubMed  Google Scholar 

  52. Petty RE, Southwood TR, Baum J, Bhettay E, Glass DN, Manners P et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol 1998; 25: 1991–1994.

    CAS  PubMed  Google Scholar 

  53. Maeno N, Takei S, Nomura Y, Imanaka H, Hokonohara M, Miyata K . Highly elevated serum levels of interleukin-18 in systemic juvenile idiopathic arthritis but not in other juvenile idiopathic arthritis subtypes or in Kawasaki disease: comment on the article by Kawashima et al. Arthritis Rheum 2002; 46: 2539–2541.

    Article  PubMed  Google Scholar 

  54. Sivalingam SP, Yoon KH, Koh DR, Fong KY . Single-nucleotide polymorphisms of the interleukin-18 gene promoter region in rheumatoid arthritis patients: protective effect of AA genotype. Tissue Antigens 2003; 62: 498–504.

    Article  CAS  PubMed  Google Scholar 

  55. Gracie JA, Koyama N, Murdoch J, Field M, McGarry F, Crilly A et al. Disease association of two distinct interleukin-18 promoter polymorphisms in Caucasian rheumatoid arthritis patients. Genes Immun 2005; 6: 211–216.

    Article  CAS  PubMed  Google Scholar 

  56. Rueda B, Gonzalez-Gay MA, Mataran L, Lopez-Nevot MA, Martin J . Interleukin-18-promoter polymorphisms are not relevant in rheumatoid arthritis. Tissue Antigens 2005; 65: 544–548.

    Article  CAS  PubMed  Google Scholar 

  57. Pawlik A, Kurzawski M, Czerny B, Gawronska-Szklarz B, Drozdzik M, Herczynska M . Interleukin-18 promoter polymorphism in patients with rheumatoid arthritis. Tissue Antigens 2006; 67: 415–418.

    Article  CAS  PubMed  Google Scholar 

  58. Heinzmann A, Gerhold K, Ganter K, Kurz T, Schuchmann L, Keitzer R et al. Association study of polymorphisms within interleukin-18 in juvenile idiopathic arthritis and bronchial asthma. Allergy 2004; 59: 845–849.

    Article  CAS  PubMed  Google Scholar 

  59. Sugiura T, Maeno N, Kawaguchi Y, Takei S, Imanaka H, Kawano Y et al. A promoter haplotype of the interleukin-18 gene is associated with juvenile idiopathic arthritis in the Japanese population. Arthritis Res Ther 2006; 8: R60.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tanaka H, Miyazaki N, Oashi K, Teramoto S, Shiratori M, Hashimoto M et al. IL-18 might reflect disease activity in mild and moderate asthma exacerbation. J Allergy Clin Immunol 2001; 107: 331–336.

    Article  CAS  PubMed  Google Scholar 

  61. Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 2001; 125: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. El Mezzein RE, Matsumoto T, Nomiyama H, Miike T . Increased secretion of IL-18 in vitro by peripheral blood mononuclear cells of patients with bronchial asthma and atopic dermatitis. Clin Exp Immunol 2001; 126: 193–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanaka T, Tsutsui H, Yoshimoto T, Kotani M, Matsumoto M, Fujita A et al. Interleukin-18 is elevated in the sera from patients with atopic dermatitis and from atopic dermatitis model mice, NC/Nga. Int Arch Allergy Immunol 2001; 125: 236–240.

    Article  CAS  PubMed  Google Scholar 

  64. Higashi N, Gesser B, Kawana S, Thestrup-Pedersen K . Expression of IL-18 mRNA and secretion of IL-18 are reduced in monocytes from patients with atopic dermatitis. J Allergy Clin Immunol 2001; 108: 607–614.

    Article  CAS  PubMed  Google Scholar 

  65. Shin HD, Kim LH, Park BL, Choi YH, Park HS, Hong SJ et al. Association of interleukin 18 (IL18) polymorphisms with specific IgE levels to mite allergens among asthmatic patients. Allergy 2005; 60: 900–906.

    Article  CAS  PubMed  Google Scholar 

  66. Martin BW, Ackermann-Liebrich U, Leuenberger P, Kunzli N, Stutz EZ, Keller R et al. SAPALDIA: methods and participation in the cross-sectional part of the Swiss Study on air pollution and lung diseases in adults. Soz Pravent Med 1997; 42: 67–84.

    Article  CAS  Google Scholar 

  67. Ackermann-Liebrich U, Leuenberger P, Schwartz J, Schindler C, Monn C, Bolognini G et al. Lung function and long term exposure to air pollutants in Switzerland. Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) Team. Am J Resp Crit Care Med 1997; 155: 122–129.

    Article  CAS  PubMed  Google Scholar 

  68. Takeuchi M, Nishizaki Y, Sano O, Ohta T, Ikeda M, Kurimoto M . Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor (‘interleukin-18’) in mouse intestinal epithelial cells. Cell Tissue Res 1997; 289: 499–503.

    Article  CAS  PubMed  Google Scholar 

  69. Tamura K, Fukuda Y, Sashio H, Takeda N, Bamba H, Kosaka T et al. IL18 polymorphism is associated with an increased risk of Crohn's disease. J Gastroenterol 2002; 37 (Suppl 14): 111–116.

    Article  CAS  PubMed  Google Scholar 

  70. Glas J, Torok HP, Tonenchi L, Kapser J, Schiemann U, Muller-Myhsok B et al. Association of polymorphisms in the interleukin-18 gene in patients with Crohn's disease depending on the CARD15/NOD2 genotype. Inflamm Bowel Dis 2005; 11: 1031–1037.

    Article  PubMed  Google Scholar 

  71. Ferrara JL, Cooke KR, Pan L, Krenger W . The immunopathophysiology of acute graft-versus-host-disease. Stem Cells 1996; 14: 473–489.

    Article  CAS  PubMed  Google Scholar 

  72. Hu HZ, Li GL, Lim YK, Chan SH, Yap EH . Kinetics of interferon-gamma secretion and its regulatory factors in the early phase of acute graft-versus-host disease. Immunology 1999; 98: 379–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fujimori Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K et al. Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol 2000; 109: 652–657.

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura H, Komatsu K, Ayaki M, Kawamoto S, Murakami M, Uoshima N et al. Serum levels of soluble IL-2 receptor, IL-12, IL-18, and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation. J Allergy Clin Immunol 2000; 106: S45–S50.

    Article  CAS  PubMed  Google Scholar 

  75. Reddy P, Teshima T, Kukuruga M, Ordemann R, Liu C, Lowler K et al. Interleukin-18 regulates acute graft-versus-host disease by enhancing Fas-mediated donor T cell apoptosis. J Exp Med 2001; 194: 1433–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Reddy P, Teshima T, Hildebrandt G, Williams DL, Liu C, Cooke KR et al. Pretreatment of donors with interleukin-18 attenuates acute graft-versus-host disease via STAT6 and preserves graft-versus-leukemia effects. Blood 2003; 101: 2877–2885.

    Article  CAS  PubMed  Google Scholar 

  77. Cardoso SM, DeFor TE, Tilley LA, Bidwell JL, Weisdorf DJ, MacMillan ML . Patient interleukin-18 GCG haplotype associates with improved survival and decreased transplant-related mortality after unrelated-donor bone marrow transplantation. Br J Haematol 2004; 126: 704–710.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ST was supported by a British Heart Foundation (BHF) studentship FS/04/039, and SEH by a BHF programme Grant 2000/015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Humphries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, S., Humphries, S. Interleukin-18 genetics and inflammatory disease susceptibility. Genes Immun 8, 91–99 (2007). https://doi.org/10.1038/sj.gene.6364366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364366

Keywords

This article is cited by

Search

Quick links