Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression profiling in a mouse model for African trypanosomiasis

Abstract

This study aimed to provide the foundation for an integrative approach to the identification of the mechanisms underlying the response to infection with Trypanosoma congolense, and to identify pathways that have previously been overlooked. We undertook a large-scale gene expression analysis study comparing susceptible A/J and more tolerant C57BL/6 mice. In an initial time course experiment, we monitored the development of parasitaemia and anaemia in every individual. Based on the kinetics of disease progression, we extracted total RNA from liver at days 0, 4, 7, 10 and 17 post infection and performed a microarray analysis. We identified 64 genes that were differentially expressed in the two strains in non-infected animals, of which nine genes remained largely unaffected by the disease. Gene expression profiling at stages of low, peak, clearance and recurrence of parasitaemia suggest that susceptibility is associated with high expression of genes coding for chemokines (e.g. Ccl24, Ccl27 and Cxcl13), complement components (C1q and C3) and interferon receptor alpha (Ifnar1). Additionally, susceptible A/J mice expressed higher levels of some potassium channel genes. In contrast, messenger RNA levels of a few immune response, metabolism and protease genes (e.g. Prss7 and Mmp13) were higher in the tolerant C57BL/6 strain as compared to A/J.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Torr SJ, Hargrove JW, Vale GA . Towards a rational policy for dealing with tsetse. Trends Parasitol 2005; 21: 537–541.

    Article  Google Scholar 

  2. Mansfield JM, Paulnock DM . Regulation of innate and acquired immunity in African trypanosomiasis. Parasite Immunol 2005; 27: 361–371.

    Article  CAS  Google Scholar 

  3. Omamo SW, d'Ieteren GD . Managing animal trypanosomosis in Africa: issues and options. Rev Sci Tech 2003; 22: 989–1002.

    Article  CAS  Google Scholar 

  4. Nyame AK, Kawar ZS, Cummings RD . Antigenic glycans in parasitic infections: implications for vaccines and diagnostics. Arch Biochem Biophys 2004; 426: 182–200.

    Article  CAS  Google Scholar 

  5. Hill EW, O'Gorman GM, Agaba M, Gibson JP, Hanotte O, Kemp SJ et al. Understanding bovine trypanosomiasis and trypanotolerance: the promise of functional genomics. Vet Immunol Immunopathol 2005; 105: 247–258.

    Article  CAS  Google Scholar 

  6. Maichomo MW, Ndungu JM, Ngare PM, Ole-Mapenay IM . The performance of Orma Boran and Maasai Zebu crossbreeds in a trypanosomosis endemic area of Nguruman, south western Kenya. Onderstepoort J Vet Res 2005; 72: 87–93.

    Article  CAS  Google Scholar 

  7. Williams DJ, Taylor K, Newson J, Gichuki B, Naessens J . The role of anti-variable surface glycoprotein antibody responses in bovine trypanotolerance. Parasite Immunol 1996; 18: 209–218.

    Article  CAS  Google Scholar 

  8. Clapcott SJ, Teale AJ, Kemp SJ . Evidence for genomic imprinting of the major QTL controlling susceptibility to trypanosomiasis in mice. Parasite Immunol 2000; 22: 259–263.

    Article  CAS  Google Scholar 

  9. Iraqi F, Clapcott SJ, Kumari P, Haley CS, Kemp SJ, Teale AJ . Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 2000; 11: 645–648.

    Article  CAS  Google Scholar 

  10. Baetselier PD, Namangala B, Noel W, Brys L, Pays E, Beschin A . Alternative versus classical macrophage activation during experimental African trypanosomosis. Int J Parasitol 2001; 31: 575–587.

    Article  CAS  Google Scholar 

  11. Buza J, Sileghem M, Gwakisa P, Naessens J . CD5+ B lymphocytes are the main source of antibodies reactive with non-parasite antigens in Trypanosoma congolense-infected cattle. Immunology 1997; 92: 226–233.

    Article  CAS  Google Scholar 

  12. Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, Daulouede S et al. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J Immunol 2004; 172: 6298–6303.

    Article  CAS  Google Scholar 

  13. Hertz CJ, Mansfield JM . IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Cell Immunol 1999; 192: 24–32.

    Article  CAS  Google Scholar 

  14. Nakamura Y, Naessens J, Takata M, Taniguchi T, Sekikawa K, Gibson J et al. Susceptibility of heat shock protein 70.1-deficient C57BL/6 J, wild-type C57BL/6 J and A/J mice to Trypanosoma congolense infection. Parasitol Res 2003; 90: 171–174.

    PubMed  Google Scholar 

  15. Otesile EB, Lee M, Tabel H . Plasma levels of proteins of the alternative complement pathway in inbred mice that differ in resistance to Trypanosoma congolense infections. J Parasitol 1991; 77: 958–964.

    Article  CAS  Google Scholar 

  16. Tabel H, Kaushik RS, Uzonna J . Experimental African trypanosomiasis: differences in cytokine and nitric oxide production by macrophages from resistant and susceptible mice. Pathobiology 1999; 67: 273–276.

    Article  CAS  Google Scholar 

  17. Uzonna JE, Kaushik RS, Gordon JR, Tabel H . Immunoregulation in experimental murine Trypanosoma congolense infection: anti-IL-10 antibodies reverse trypanosome-mediated suppression of lymphocyte proliferation in vitro and moderately prolong the lifespan of genetically susceptible BALB/c mice. Parasite Immunol 1998; 20: 293–302.

    Article  CAS  Google Scholar 

  18. Uzonna JE, Kaushik RS, Gordon JR, Tabel H . Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 1999; 21: 57–71.

    CAS  PubMed  Google Scholar 

  19. Miller CG, Justus DE, Jayaraman S, Kotwal GJ . Severe and prolonged inflammatory response to localized cowpox virus infection in footpads of C5-deficient mice: investigation of the role of host complement in poxvirus pathogenesis. Cell Immunol 1995; 162: 326–332.

    Article  CAS  Google Scholar 

  20. Ooi YM, Colten HR . Genetic defect in secretion of complement C5 in mice. Nature 1979; 282: 207–208.

    Article  CAS  Google Scholar 

  21. Joseph SB, Bradley MN, Castrillo A, Bruhn KW, Mak PA, Pei L et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 2004; 119: 299–309.

    Article  CAS  Google Scholar 

  22. Kay JG, Murray RZ, Pagan JK, Stow JL . Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem 2006; 281: 11949–11954.

    Article  CAS  Google Scholar 

  23. Manley PN, Ancsin JB, Kisilevsky R . Rapid recycling of cholesterol: the joint biologic role of C-reactive protein and serum amyloid A. Med Hypotheses 2006; 66: 784–792.

    Article  CAS  Google Scholar 

  24. Hancock JF . Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 2006; 7: 456–462.

    Article  CAS  Google Scholar 

  25. Machleder D, Ivandic B, Welch C, Castellani L, Reue K, Lusis AJ . Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest 1997; 99: 1406–1419.

    Article  CAS  Google Scholar 

  26. Schwarz M, Davis DL, Vick BR, Russell DW . Genetic analysis of intestinal cholesterol absorption in inbred mice. J Lipid Res 2001; 42: 1801–1811.

    CAS  PubMed  Google Scholar 

  27. Suto J, Takahashi Y, Sekikawa K . Quantitative trait locus analysis of plasma cholesterol and triglyceride levels in C57BL/6J × RR F2 mice. Biochem Genet 2004; 42: 347–363.

    Article  CAS  Google Scholar 

  28. Wang X, Le Roy I, Nicodeme E, Li R, Wagner R, Petros C et al. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res 2003; 13: 1654–1664.

    Article  CAS  Google Scholar 

  29. Wittenburg H, Lyons MA, Li R, Kurtz U, Wang X, Mossner J et al. QTL mapping for genetic determinants of lipoprotein cholesterol levels in independent and combined crosses of inbred mouse strains. J Lipid Res 2006; 47: 1780–1790.

    Article  CAS  Google Scholar 

  30. Naessens J, Kitani H, Nakamura Y, Yagi Y, Sekikawa K, Iraqi F . TNF-alpha mediates the development of anaemia in a murine Trypanosoma brucei rhodesiense infection, but not the anaemia associated with a murine Trypanosoma congolense infection. Clin Exp Immunol 2005; 139: 405–410.

    Article  CAS  Google Scholar 

  31. Authie E, Pobel T . Serum haemolytic complement activity and C3 levels in bovine trypanosomosis under natural conditions of challenge – early indications of individual susceptibility to disease. Vet Parasitol 1990; 35: 43–59.

    Article  CAS  Google Scholar 

  32. Shi M, Pan W, Tabel H . Experimental African trypanosomiasis: IFN-gamma mediates early mortality. Eur J Immunol 2003; 33: 108–118.

    Article  CAS  Google Scholar 

  33. Lakhdar-Ghazal F, Blonski C, Willson M, Michels P, Perie J . Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem 2002; 2: 439–456.

    Article  CAS  Google Scholar 

  34. Nantulya VM, Musoke AJ, Rurangirwa FR, Barbet AF, Ngaira JM, Katende JM . Immune depression in African trypanosomiasis: the role of antigenic competition. Clin Exp Immunol 1982; 47: 234–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lanham SM . Separation of trypanosomes from the blood of infected rats and mice by anion-exchangers. Nature 1968; 218: 1273–1274.

    Article  CAS  Google Scholar 

  36. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  37. Hancock D, Wilson M, Velarde G, Morrison N, Hayes A, Hulme H et al. maxdLoad2 and maxdBrowse: standards-compliant tools for microarray experimental annotation, data management and dissemination. BMC Bioinformatics 2005; 6: 264.

    Article  Google Scholar 

  38. Fang Y, Brass A, Hoyle DC, Hayes A, Bashein A, Oliver SG et al. A model-based analysis of microarray experimental error and normalisation. Nucleic Acids Res 2003; 31: e96.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the expert assistance of Dr Fuad Iraqi, Moses Ogugo, John Wambugu, Bob King and the staff of the ILRI animal facility. We thank Drs Helen Hilton and Peter Underhill from MRC Harwell for their assistance in performing the microarray study. This work was supported by grants from the Wellcome Trust and from Deutsche Forschungsgemeinschaft (DFG) KI-801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kierstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kierstein, S., Noyes, H., Naessens, J. et al. Gene expression profiling in a mouse model for African trypanosomiasis. Genes Immun 7, 667–679 (2006). https://doi.org/10.1038/sj.gene.6364345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364345

Keywords

Search

Quick links