Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multifactor dimensionality reduction reveals gene–gene interactions associated with multiple sclerosis susceptibility in African Americans

Abstract

Multiple sclerosis (MS) is a common disease of the central nervous system characterized by inflammation, myelin loss, gliosis, varying degrees of axonal pathology, and progressive neurological dysfunction. Multiple sclerosis exhibits many of the characteristics that distinguish complex genetic disorders including polygenic inheritance and environmental exposure risks. Here, we used a highly efficient multilocus genotyping assay representing variation in 34 genes associated with inflammatory pathways to explore gene–gene interactions and disease susceptibility in a well-characterized African-American case–control MS data set. We applied the multifactor dimensionality reduction (MDR) test to detect epistasis, and identified single-IL4R(Q576R)- and three-IL4R(Q576R), IL5RA(-80), CD14(-260)- locus association models that predict MS risk with 75–76% accuracy (P<0.01). These results demonstrate the importance of exploring both main effects and gene–gene interactions in the study of complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Hauser SL, Goodin DS . Multiple sclerosis and other demyelinating diseases. In: Kasper DL, Braunwald E, Fauci AD, Hauser SL, Longo DL, Jameson JL (eds). Harrison's Principle of Internal Medicine, 16th edn, McGraw Hill: New York, 2005.

    Google Scholar 

  2. Oksenberg JR, Barcellos LF . Multiple sclerosis genetics: leaving no stone unturned. Genes Immun 2005; 6: 375–387.

    Article  CAS  Google Scholar 

  3. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nat Genet 1996; 13: 469–471.

    Article  CAS  Google Scholar 

  4. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  Google Scholar 

  5. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A et al. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 2005; 77: 454–467.

    Article  Google Scholar 

  6. Oksenberg JR, Barcellos LF, Cree BA, Baranzini SE, Bugawan TL, Khan O et al. Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 2004; 74: 160–167.

    Article  CAS  Google Scholar 

  7. Wallin MT, Page WF, Kurtzke JF . Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol 2004; 55: 65–71.

    Article  Google Scholar 

  8. Cree BA, Khan O, Bourdette D, Goodin DS, Cohen JA, Marrie RA et al. Clinical characteristics of African Americans versus Caucasian Americans with multiple sclerosis. Neurol 2004; 63: 2039–2045.

    Article  CAS  Google Scholar 

  9. Cree BA, Al-Sabbagh A, Bennett R, Goodin D . Response to interferon Beta-1a treatment in african american multiple sclerosis patients. Arch Neurol 2005; 62: 1681–1683.

    Article  Google Scholar 

  10. Reich D, Patterson N, De Jager PL, McDonald GJ, Waliszewska A, Tandon A et al. A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 2005; 37: 1113–1118.

    Article  CAS  Google Scholar 

  11. Traherne JA, Barcellos LF, Sawcer SJ, Compston A, Ramsay PP, Hauser SL et al. Association of the truncating splice site mutation in BTNL2 with multiple sclerosis is secondary to HLA-DRB1*15. Hum Mol Genet 2006; 15: 155–161.

    Article  CAS  Google Scholar 

  12. Haines JL, Pericak-Vance MA . Approaches to Gene Mapping in Complex Human Diseases. Wiley-Liss: New York, 1998.

    Google Scholar 

  13. Bellman R . Adaptive Control Processes. Princeton Princeton University Press, 1961.

    Book  Google Scholar 

  14. Concato J, Feinstein AR, Holford TR . The risk of determining risk with multivariable models. Ann Intern Med 1993; 118: 201–210.

    Article  CAS  Google Scholar 

  15. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR . A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996; 49: 1373–1379.

    Article  CAS  Google Scholar 

  16. Moore JH, Williams SM . New strategies for identifying gene-gene interactions in hypertension. Ann Med 2002; 34: 88–95.

    Article  CAS  Google Scholar 

  17. Ritchie MD, Hahn LW, Moore JH . Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 2003; 24: 150–157.

    Article  Google Scholar 

  18. Hahn L, Moore JH . Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biology 2004; 4: 0016.

    Google Scholar 

  19. Mirel DB, Barcellos LF, Wang J, Hauser SL, Oksenberg JR, Erlich HA . Analysis of IL4R haplotypes in predisposition to multiple sclerosis. Genes Immun 2004; 5: 138–141.

    Article  CAS  Google Scholar 

  20. Suppiah V, Goris A, Alloza I, Heggarty S, Dubois B, Carton H et al. Polymorphisms in the interleukin-4 and IL-4 receptor genes and multiple sclerosis: a study in Spanish-Basque, Northern Irish and Belgian populations. Int J Immunogenet 2005; 32: 383–388.

    Article  CAS  Google Scholar 

  21. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE . The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 1999; 17: 701–738.

    Article  CAS  Google Scholar 

  22. Hulshof S, Montagne L, De Groot CJ, Van der Valk P . Cellular localization and expression patterns of interleukin-10, interleukin-4, and their receptors in multiple sclerosis lesions. Glia 2002; 38: 24–35.

    Article  Google Scholar 

  23. Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA . The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 1997; 337: 1720–1725.

    Article  CAS  Google Scholar 

  24. Sandford AJ, Chagani T, Zhu S, Weir TD, Bai TR, Spinelli JJ et al. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol 2000; 106: 135–140.

    Article  CAS  Google Scholar 

  25. Shirakawa I, Deichmann KA, Izuhara I, Mao I, Adra CN, Hopkin JM . Atopy and asthma: genetic variants of IL-4 and IL-13 signaling. Immunol Today 2000; 21: 60–64.

    Article  CAS  Google Scholar 

  26. Mirel DB, Valdes AM, Lazzeroni LC, Reynolds RL, Erlich HA, Noble JA . Association of IL4R haplotypes with type 1 diabetes. Diabetes 2002; 51: 3336–3341.

    Article  CAS  Google Scholar 

  27. Huang YM, Xiao BG, Ozenci V, Kouwenhoven M, Teleshova N, Fredrikson S et al. Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J Neuroimmunol 1999; 99: 82–90.

    Article  CAS  Google Scholar 

  28. Cravens PD, Lipsky PE . Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunol Cell Biol 2002; 80: 497–505.

    Article  CAS  Google Scholar 

  29. Plumb J, Armstrong MA, Duddy M, Mirakhur M, McQuaid S . CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult Scler 2003; 9: 142–147.

    Article  CAS  Google Scholar 

  30. Larregina AT, Morelli AE, Kolkowski E, Sanjuan N, Barboza ME, Fainboim L . Pattern of cytokine receptors expressed by human dendritic cells migrated from dermal explants. Immunology 1997; 91: 303–313.

    Article  CAS  Google Scholar 

  31. Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R et al. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 1998; 63: 1839–1851.

    Article  CAS  Google Scholar 

  32. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  Google Scholar 

  33. Hahn LW, Moore JH . Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 2004; 4: 183–194.

    CAS  PubMed  Google Scholar 

  34. Ritchie MD, Motsinger AA . Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies. Pharmacogenomics 2005; 6: 823–834.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the MS patients and their families for participating in this study. We thank R.R. Lincoln, C. DeLoa, R. Harrison, W. Chin, H. Mousavi and R. Guerrero for recruitment of patients to the study, database management, and expert technical help. This work was funded by Grant RG3060 from the National Multiple Sclerosis Society and by National Institutes of Health Grants NS046297, GM31304, AG20135, and in part by HL65962, the Pharmacogenomics of Arrhythmia Therapy U01 site of the Pharmacogenetics Research Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Ritchie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brassat, D., Motsinger, A., Caillier, S. et al. Multifactor dimensionality reduction reveals gene–gene interactions associated with multiple sclerosis susceptibility in African Americans. Genes Immun 7, 310–315 (2006). https://doi.org/10.1038/sj.gene.6364299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364299

This article is cited by

Search

Quick links