Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans

Abstract

The observation that Toll-like receptor (TLR)2-deficient mice are highly susceptible to mycobacteria suggests that mutations altering TLR2 expression may impair host response to Mycobacterium tuberculosis. We evaluated the association between guanine-thymine (GT) repeat polymorphism in intron II of the TLR2 gene and the presence of tuberculosis (TB) in Koreans. The numbers of GT repeats were determined by PCR and gene scans for 176 TB patients and 196 controls. The recombinant TLR2 promoter/exonI/exonII/intronII/luciferase constructs including three representative repeats: (GT)13, (GT)20, and (GT)24 were transfected into K562 cells, and luciferase activities were estimated and compared. The expression of TLR2 on CD14+ peripheral blood mononuclear cells (PBMC) from healthy volunteers were measured with flow cytometry. Genotypes with shorter GT repeats were more common among TB patients (49.4 vs 37.7%, P=0.02). This observation was confirmed among 82 other TB patients as a validation cohort. Shorter GT repeats were associated with weaker promoter activities and lower TLR2 expression on CD14+ PBMCs. In conclusion, the development of TB disease in Koreans was associated with shorter GT repeats in intron II of the TLR2 gene. This association is correlated with lower expression of TLR2 through weaker promoter activity for genes with shorter GT repeats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Murray CJ, Styblo K, Rouillon A . Tuberculosis in developing countries: burden, intervention and cost. Bull Int Union Tuberc Lung Dis 1990; 65: 6–24.

    CAS  PubMed  Google Scholar 

  2. Comstock GW . Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 1978; 117: 621–624.

    CAS  PubMed  Google Scholar 

  3. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV . Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  PubMed  Google Scholar 

  4. Gao PS, Fujishima S, Mao XQ, Remus N, Kanda M, Enomoto T et al. Genetic variants of NRAMP1 and active tuberculosis in Japanese populations. International Tuberculosis Genetics Team. Clin Genet 2000; 58: 74–76.

    Article  CAS  PubMed  Google Scholar 

  5. Cervino AC, Lakiss S, Sow O, Hill AV . Allelic association between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry. Ann Hum Genet 2000; 64: 507–512.

    Article  CAS  PubMed  Google Scholar 

  6. Ryu S, Park YK, Bai GH, Kim SJ, Park SN, Kang S . 3′UTR polymorphisms in the NRAMP1 gene are associated with susceptibility to tuberculosis in Koreans. Int J Tuberc Lung Dis 2000; 4: 577–580.

    CAS  PubMed  Google Scholar 

  7. Liaw YS, Tsai-Wu JJ, Wu CH, Hung CC, Lee CN, Yang PC et al. Variations in the NRAMP1 gene and susceptibility of tuberculosis in Taiwanese. Int J Tuberc Lung Dis 2002; 6: 454–460.

    CAS  PubMed  Google Scholar 

  8. Bellamy R, Ruwende C, Corrah T, McAdam KP, Thursz M, Whittle HC et al. Tuberculosis and chronic hepatitis B virus infection in Africans and variation in the vitamin D receptor gene. J Infect Dis 1999; 179: 721–724.

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson RJ, Llewelyn M, Toossi Z, Patel P, Pasvol G, Lalvani A et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in west London: a case–control study. Lancet 2000; 355: 618–621.

    Article  CAS  PubMed  Google Scholar 

  10. Akahoshi M, Nakashima H, Miyake K, Inoue Y, Shimizu S, Tanaka Y et al. Influence of interleukin-12 receptor beta1 polymorphisms on tuberculosis. Hum Genet 2003; 112: 237–243.

    CAS  PubMed  Google Scholar 

  11. Remus N, El Baghdadi J, Fieschi C, Feinberg J, Quintin T, Chentoufi M et al. Association of IL12RB1 polymorphisms with pulmonary tuberculosis in adults in Morocco. J Infect Dis 2004; 190: 580–587.

    Article  CAS  PubMed  Google Scholar 

  12. Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G et al. Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med 1999; 189: 1863–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV . Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuber Lung Dis 1998; 79: 83–89.

    Article  CAS  PubMed  Google Scholar 

  14. Selvaraj P, Sriram U, Mathan Kurian S, Reetha AM, Narayanan PR . Tumour necrosis factor alpha (-238 and -308) and beta gene polymorphisms in pulmonary tuberculosis: haplotype analysis with HLA-A, B and DR genes. Tuberculosis (Edinburgh) 2001; 81: 335–341.

    Article  CAS  Google Scholar 

  15. Delgado JC, Baena A, Thim S, Goldfeld AE . Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002; 186: 1463–1468.

    Article  CAS  PubMed  Google Scholar 

  16. Lee HW, Lee HS, Kim DK, Ko DS, Han SK, Shim Y-S et al. Lack of an association between interleukin-12 receptor b1 polymorphisms and tuberculosis in Koreans. Respiration 2005; 72: 365–368.

    Article  CAS  PubMed  Google Scholar 

  17. Medzhitov R, Janeway Jr CA . Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295–298.

    Article  CAS  PubMed  Google Scholar 

  18. Medzhitov R, Janeway Jr CA . Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997; 9: 4–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA . Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  20. Kopp EB, Medzhitov R . The Toll-receptor family and control of innate immunity. Curr Opin Immunol 1999; 11: 13–18.

    Article  CAS  PubMed  Google Scholar 

  21. Medzhitov R, Janeway Jr C . Innate immune recognition: mechanisms and pathways. Immunol Rev 2000; 173: 89–97.

    Article  CAS  PubMed  Google Scholar 

  22. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R . Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2: 947–950.

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999; 11: 443–451.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D . Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999; 163: 1–5.

    CAS  PubMed  Google Scholar 

  25. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ . Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999; 274: 17406–17409.

    Article  CAS  PubMed  Google Scholar 

  26. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999; 285: 732–736.

    Article  CAS  PubMed  Google Scholar 

  27. Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2: 346–352.

    Article  CAS  PubMed  Google Scholar 

  28. Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S et al. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 2002; 169: 3480–3484.

    Article  CAS  PubMed  Google Scholar 

  29. Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 2004; 164: 49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogus AC, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I et al. The Arg753GLn polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004; 23: 219–223.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K . Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 2004; 11: 625–626.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM . A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 2004; 40: 163–169.

    Article  CAS  PubMed  Google Scholar 

  33. Kim W, Shin DJ, Harihara S, Kim YJ . Y chromosomal DNA variation in east Asian populations and its potential for inferring the peopling of Korea. J Hum Genet 2000; 45: 76–83.

    Article  CAS  PubMed  Google Scholar 

  34. Manchin D, Campbell MJ, Fayers PM, Pinol APY . Sample Size Tables for Clinical Studies. London: Blackwell Science, 1997.

    Google Scholar 

  35. http://www.ncbi.nlm.nih.gov/projects/SNP/.

  36. McGinnis RE, Spielman RS . Insulin gene 5′ flanking polymorphism. Length of class 1 alleles in number of repeat units. Diabetes 1995; 44: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  37. Yamada N, Yamaya M, Okinaga S, Nakayama K, Sekizawa K, Shibahara S et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet 2000; 66: 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV . In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet 1999; 26: 1–3.

    Article  CAS  PubMed  Google Scholar 

  39. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV . Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  PubMed  Google Scholar 

  40. Burgner D, Xu W, Rockett K, Gravenor M, Charles IG, Hill AV et al. Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet 1998; 352: 1193–1194.

    Article  CAS  PubMed  Google Scholar 

  41. Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD . Left-handed DNA in restriction fragments and a recombinant plasmid. Nature 1981; 290: 672–677.

    Article  CAS  PubMed  Google Scholar 

  42. Haniford DB, Pulleyblank DE . Facile transition of poly[d(TG) × d(CA)] into a left-handed helix in physiological conditions. Nature 1983; 302: 632–634.

    Article  CAS  PubMed  Google Scholar 

  43. Peck LJ, Nordheim A, Rich A, Wang JC . Flipping of cloned d(pCpG)n.d(pCpG)n DNA sequences from right- to left-handed helical structure by salt, Co(III), or negative supercoiling. Proc Natl Acad Sci USA 1982; 79: 4560–4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herbert A, Rich A . The biology of left-handed Z-DNA. J Biol Chem 1996; 271: 11595–11598.

    Article  CAS  PubMed  Google Scholar 

  45. McLean MJ, Blaho JA, Kilpatrick MW, Wells RD . Consecutive A × T pairs can adopt a left-handed DNA structure. Proc Natl Acad Sci USA 1986; 83: 5884–5888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ho PS, Ellison MJ, Quigley GJ, Rich A . A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 1986; 5: 2737–2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ellison MJ, Feigon J, Kelleher III RJ, Wang AH, Habener JF, Rich A . An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids. Biochemistry 1986; 25: 3648–3655.

    Article  CAS  PubMed  Google Scholar 

  48. Shimajiri S, Arima N, Tanimoto A, Murata Y, Hamada T, Wang KY et al. Shortened microsatellite d(CA)21 sequence down-regulates promoter activity of matrix metalloproteinase 9 gene. FEBS Lett 1999; 455: 70–74.

    Article  CAS  PubMed  Google Scholar 

  49. Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 2003; 9: 525–532.

    Article  CAS  PubMed  Google Scholar 

  50. Aleman M, Schierloh P, de la Barrera SS, Musella RM, Saab MA, Baldini M et al. Mycobacterium tuberculosis triggers apoptosis in peripheral neutrophils involving Toll-like receptor 2 and p38 mitogen protein kinase in tuberculosis patients. Infect Immun 2004; 72: 5150–5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heldwein KA, Liang MD, Andresen TK, Thomas KE, Marty AM, Cuesta N et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukoc Biol 2003; 74: 277–286.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant (09-2003-005) from the SNUH Research Fund and in part through the Division of Intramural Research, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, JJ., Lee, H., Lee, H. et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 7, 150–155 (2006). https://doi.org/10.1038/sj.gene.6364274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364274

Keywords

This article is cited by

Search

Quick links