Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Functional variants in SUMO4, TAB2, and NFκB and the risk of type 1 diabetes

Abstract

Several functional genetic variants that can potentially modulate the activity of NFκB have been recently described. As reduced NFκB activity has been implicated in risk for autoimmune diabetes in the NOD mouse, these variants were tested for allelic association with type 1 diabetes (T1D) in a family based study. Alleles at markers in the TAB2/SUMO4 locus on chromosome 6q had been previously reported to be associated with T1D in two separate studies, but these studies disagreed on the identity of the risk allele. The current study failed to confirm either of these results. No significant evidence of association with T1D was obtained for three SNP markers in the TAB2/SUMO4 region. An additional functional variant in the promoter of the NFKB1 gene that has been shown to directly affect the expression of NFκB was also tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Verge CF, Gianani R, Yu L et al. Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type 1 diabetes. Diabetes 1995; 44: 1176–1179.

    Article  CAS  PubMed  Google Scholar 

  2. Barnett AH, Eff C, Leslie RDG, Pyke DA . Diabetes in identical twins: a study of 200 pairs. Diabetologia 1981; 20: 87–93.

    Article  CAS  PubMed  Google Scholar 

  3. Florez JC, Hirschhorn J, Altshuler D . The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 2003; 4: 257–291.

    Article  CAS  PubMed  Google Scholar 

  4. Nerup J, Platz P, Andersen OO et al. HL-A antigens and diabetes mellitus. Lancet 1974; 2: 864–866.

    Article  CAS  PubMed  Google Scholar 

  5. Bell GI, Horita S, Karam JH . A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 1984; 33: 176–183.

    Article  CAS  PubMed  Google Scholar 

  6. Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  PubMed  Google Scholar 

  7. Bottini N, Musumeci L, Alonso A et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  PubMed  Google Scholar 

  8. Nistico L, Buzzetti R, Pritchard LE et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet 1996; 5: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  9. Hill NJ, Lyons PA, Armitage N, Todd JA, Wicker LS, Peterson LB . NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 2000; 49: 1744–1747.

    Article  CAS  PubMed  Google Scholar 

  10. Wicker LS, Todd JA, Peterson LB . Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 1995; 13: 179–200.

    Article  CAS  PubMed  Google Scholar 

  11. Davies JL, Kawaguchi Y, Bennett ST et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994; 371: 130–136.

    Article  CAS  PubMed  Google Scholar 

  12. Mein CA, Esposito L, Dunn MG et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet 1998; 19: 297–300.

    Article  CAS  PubMed  Google Scholar 

  13. Concannon P, Gogolin-Ewens KJ, Hinds D et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus (IDDM). Nat Genet 1998; 19: 292–296.

    Article  CAS  PubMed  Google Scholar 

  14. Cox NJ, Wapelhorst B, Morrison VA et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 2001; 69: 820–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hashimoto L, Habita C, Beressi JP et al. Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q. Nature 1994; 371: 161–164.

    Article  CAS  PubMed  Google Scholar 

  16. Nerup J, Pociot F . A genomewide scan for type 1-diabetes susceptibility in Scandinavian families: identification of new loci with evidence of interactions. Am J Hum Genet 2001; 69: 1301–1313.

    Article  CAS  PubMed  Google Scholar 

  17. Bennett ST, Lucassen AM, Gough SC et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995; 9: 284–292.

    Article  CAS  PubMed  Google Scholar 

  18. Guo D, Li M, Zhang Y et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 2004; 36: 837–841.

    Article  CAS  PubMed  Google Scholar 

  19. Takaesu G, Kishida S, Hiyama A et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000; 5: 649–658.

    Article  CAS  PubMed  Google Scholar 

  20. Kanayama A, Seth RB, Sun L et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15: 535–548.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi T, Faustman D . NOD mice are defective in proteasome production and activation of NF-kappaB. Mol Cell Biol 1999; 19: 8646–8659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poligone B, Weaver Jr DJ, Sen P, Baldwin Jr AS, Tisch R . Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol 2002; 168: 188–196.

    Article  CAS  PubMed  Google Scholar 

  23. Weaver Jr DJ, Poligone B, Bui T, Abdel-Motal UM, Baldwin Jr AS, Tisch R . Dendritic cells from nonobese diabetic mice exhibit a defect in NF-kappa B regulation due to a hyperactive I kappa B kinase. J Immunol 2001; 167: 1461–1468.

    Article  CAS  PubMed  Google Scholar 

  24. Owerbach D, Pina L, Gabbay KH . A 212-kb region on chromosome 6q25 containing the TAB2 gene is associated with susceptibility to type 1 diabetes. Diabetes 2004; 53: 1890–1893.

    Article  CAS  PubMed  Google Scholar 

  25. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D . A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 2004; 279: 27233–27238.

    Article  CAS  PubMed  Google Scholar 

  26. Karban AS, Okazaki T, Panhuysen CI et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13: 35–45.

    Article  CAS  PubMed  Google Scholar 

  27. Gylvin T, Bergholdt R, Nerup J, Pociot F . Characterization of a nuclear-factor-kappa B (NFkappaB) genetic marker in type 1 diabetes (T1DM) families. Genes Immun 2002; 3: 430–432.

    Article  CAS  PubMed  Google Scholar 

  28. Hegazy DM, O'Reilly DA, Yang BM, Hodgkinson AD, Millward BA, Demaine AG . NFkappaB polymorphisms and susceptibility to type 1 diabetes. Genes Immun 2001; 2: 304–308.

    Article  CAS  PubMed  Google Scholar 

  29. Lernmark A, Ducat L, Eisenbarth G et al. Family cell lines available for research. Am J Hum Genet 1990; 47: 1028–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bain SC, Todd JA, Barnett AH . The British Diabetic Association—Warren repository. Autoimmunity 1990; 7: 83–85.

    Article  CAS  PubMed  Google Scholar 

  31. Onengut-Gumuscu S, Ewens KG, Spielman RS, Concannon P . A functional polymorphism (1858C/T) in the PTPN22 gene is linked and associated with type I diabetes in multiplex families. Genes Immun 2004; 5: 678–680.

    Article  CAS  PubMed  Google Scholar 

  32. O'Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin ER, Monks SA, Warren LL, Kaplan NL . A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 2000; 67: 146–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monks SA, Kaplan NL . Removing the sampling restrictions from family-based tests of association for a quantitative-trait locus. Am J Hum Genet 2000; 66: 576–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  36. Onengut-Gumuscu S, Concannon P . Mapping genes for autoimmunity in humans: type 1 diabetes as a model. Immunol Rev 2002; 190: 182–194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Suna Onengut-Gumuscu for assistance with data analysis and Mary West for manuscript preparation and submission. This work was supported by an NIH training grant (NHGRI, T32 HG00035) to RK and grants from the NIH (DK46635) and the Juvenile Diabetes Research Foundation to PC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Concannon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosoy, R., Concannon, P. Functional variants in SUMO4, TAB2, and NFκB and the risk of type 1 diabetes. Genes Immun 6, 231–235 (2005). https://doi.org/10.1038/sj.gene.6364174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364174

Keywords

This article is cited by

Search

Quick links