Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Dendritic cells transduced with an adenovirus vector encoding interleukin-12 are a potent vaccine for invasive pulmonary aspergillosis

Abstract

Invasive pulmonary aspergillosis (IPA) is a common and devastating pneumonia. We developed a novel antiinfective vaccine that couples the potent Ag-presenting capacity of dendritic cells (DCs) with paracrine delivery of interleukin-12 (IL-12) to local immune response sites. Our results showed that DCs engulfed Aspergillus conidia through coiling phagocytosis. Transfection of DCs with adenovirus encoding the cDNA of IL-12 did not affect their morphology and capacity to engulf conidia. The transduced DCs secreted IL-12, which was biologically active, to induce the production of gamma interferon (IFN-γ) from spleen cells. Adoptive transfer of DCs pulsed with heat-inactivated Aspergillus fumigatus (HAF) to naïve mice induced the Ag-specific production of IFN-γ; the transduced HAF-pulsed DCs augmented this immune response further. Animals receiving HAF-pulsed DCs had lower fungal burdens, a more than three-fold higher survival rate at day 3. This protection was associated with a pronounced enhancement in the Aspergillus-specific IFN-γ response. IL-12-engineered DCs augmented this protection strikingly as judged by a higher survival, and almost no Aspergillus could be detected in the lung of mice that had received IL-12-transduced HAF-pulsed DCs. These results suggest that antigen-pulsed DCs and IL-12 gene therapy could be used as adjunct therapy for aspergillosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cenci E, Mencacci A, Bacci A, Bistoni F, Kurup VP, Romani L . T cell vaccination in mice with invasive pulmonary aspergillosis. J Immunol 2000; 165: 381–388.

    Article  CAS  PubMed  Google Scholar 

  2. Denning DW . Invasive aspergillosis. Clin Infect Dis 1998; 26: 781–805.

    Article  CAS  PubMed  Google Scholar 

  3. Cenci E, Mencacci A, Fè d’Ostiani C et al. Cytokine- and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis 1998; 178: 1750–1760.

    Article  CAS  PubMed  Google Scholar 

  4. Mehrad B, Strieter RM, Standiford TJ . Role of TNF-α in pulmonary host defense in murine invasive aspergillosis. J Immunol 1999; 162: 1633–1640.

    CAS  PubMed  Google Scholar 

  5. Cenci E, Mencacci A, Del Sero G et al. IL-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type 1 responses. J Infect Dis 1999; 180: 1957–1968.

    Article  CAS  PubMed  Google Scholar 

  6. Del Sero G, Mencacci A, Cenci E et al. Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes Infect 1999; 14: 1169–1180.

    Article  Google Scholar 

  7. Cenci E, Mencacci A, Del Sero G et al. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis 1999; 180: 1957–1968.

    Article  CAS  PubMed  Google Scholar 

  8. Austyn JM . Dendritic cells. Curr Opin Hematol 1998; 5: 3–15.

    Article  CAS  PubMed  Google Scholar 

  9. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  10. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  PubMed  Google Scholar 

  11. Constant SL, Bottomly K . Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 1997; 15: 297–322.

    Article  CAS  PubMed  Google Scholar 

  12. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  PubMed  Google Scholar 

  13. Sousa CR, Hieny S, Scharton-Kersten T et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin-12 by dendritic cells and their redistribution to T cell areas. J Exp Med 1997; 186: 1819–1829.

    Article  PubMed Central  Google Scholar 

  14. Claudia M, Bacci A, Silvia B, Gaziano R, Spreca A, Romani L . The interaction of fungi with dendritic cells: implication for Th immunity and vaccination. Curr Mol Med 2002; 2: 507–524.

    Article  CAS  PubMed  Google Scholar 

  15. Trinchieri G . Immunobiology of interleukin-12. Immunol Res 1998; 17: 269–278.

    Article  CAS  PubMed  Google Scholar 

  16. Locksley RM, Fowell DJ, Shinkai K, Wakil AE, Lacy D, Bix M . Development of CD4+ effector T cells and susceptibility to infectious diseases. Adv Exp Med Biol 1998; 452: 45–52.

    Article  CAS  PubMed  Google Scholar 

  17. Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280: 1432–1435.

    Article  CAS  PubMed  Google Scholar 

  18. Lu H, Zhong G . Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infect Immun 1999; 7: 1763–1769.

    Google Scholar 

  19. Roilides E, Tsaparidou S, Kadiltsoglou I, Sein T, Walsh TJ . Interleukin-12 enhances antifungal activity of human mononuclear phagocytes against Aspergillus fumigatus: implications for a gamma interferon-independent pathway. Infect Immun 1999; 67: 3047–3050.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang C, Magee DM, Cox RA . Construction of a single-chain interleukin-12-expressing retroviral vector and its application in cytokine gene therapy against experimental coccidioidomycosis. Infect Immun 1999; 67: 2996–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brown K, Gao W, Alber S et al. Adenovirus-transduced dendritic cells injected into skin or lymph node prime potent simian immunodeficiency virus-specific T cell immunity in monkeys. J Immunol 2003; 171: 6875–6882.

    Article  CAS  PubMed  Google Scholar 

  22. Ranieri E, Herr W, Gambotto A et al. Dendritic cells transduced with an adenovirus vector encoding Epstein–Barr virus latent membrane protein 2B: a new modality for vaccination. J Virol 1999; 73: 10416–10425.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mercier S, Gahery-Segard H, Monteil M et al. Distinct roles of adenovirus vector-transduced dendritic cells, myoblasts, and endothelial cells in mediating an immune response against a transgene product. J Virol 2002; 76: 2899–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahuja SS, Reddick RL, Sato N et al. Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. J Immunol 1999; 163: 3890–3897.

    CAS  PubMed  Google Scholar 

  25. Moll H, Berberich C . Dendritic cells as vectors for vaccination against infectious diseases. Int J Med Microbiol 2001; 291: 323–329.

    Article  CAS  PubMed  Google Scholar 

  26. Gilboa E, Nair SK, Lyerly HK . Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immuno Immunother 1998; 46: 82–87.

    Article  CAS  Google Scholar 

  27. Kim JJ, Ayyavoo V, Bagarazzi ML et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol 1997; 158: 816–826.

    CAS  PubMed  Google Scholar 

  28. Sousa CR . Dendritic cells as sensors of infection. Immunity 2001; 14: 495–498.

    Article  Google Scholar 

  29. Lanzavecchia A, Sallusto F . Regulation of T cell immunity by dendritic cells. Cell 2001; 106: 263–266.

    Article  CAS  PubMed  Google Scholar 

  30. Vieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P . Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 2000; 164: 4507–4512.

    Article  CAS  PubMed  Google Scholar 

  31. Roilides E, Sein T, Roden M, Schaufele RL, Walsh TJ . Elevated serum concentrations of interleukin-10 in nonneutropenic patients with invasive aspergillosis. J Infect Dis 2001; 183: 518–520.

    Article  CAS  PubMed  Google Scholar 

  32. Grazziutti M, Przepiorka D, Rex JH, Braunschweig I, Vadhan-Raj S, Savary CA . Dendritic cell-mediated stimulation of the in vitro lymphocyte response to Aspergillus. Bone Marrow Transplant 2001; 27: 647–652.

    Article  CAS  PubMed  Google Scholar 

  33. Bozza S, Gaziano R, Spreca A et al. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 2002; 168: 1362–1371.

    Article  CAS  PubMed  Google Scholar 

  34. d’Ostiani CF, Del Sero G, Bacci A et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans: implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 2000; 191: 1661–1674.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel RM . Dendritic cells efficiently induce protective antiviral immunity. J Virol 1998; 72: 3812–3818.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mbow ML, Zeidner N, Panella N, Titus RG, Piesman J . Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infect Immun 1997; 65: 3386–3390.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaw JH, Grund VR, Durling L, Caldwell HD . Expression of genes encoding Th1 cell-activating cytokines and lymphoid homing chemokines by chlamydia-pulsed dendritic cells correlates with protective immunizing efficacy. Infect Immun 2001; 69: 4667–4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berberich C, Ramirez-Pineda JR, Hambrecht C, Alber G, Skeiky YA, Moll H . Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J Immunol 2003; 170: 3171–3179.

    Article  CAS  PubMed  Google Scholar 

  39. Curiel-Lewandrowski C, Mahnke K, Labeur M et al. Transfection of immature murine bone marrow-derived dendritic cells with the granulocyte–macrophage colony-stimulating factor gene potently enhances their in vivo antigen-presenting capacity. J Immunol 1999; 163: 174–183.

    CAS  PubMed  Google Scholar 

  40. Kikuchi T, Crystal RG . Antigen-pulsed dendritic cells expressing macrophage-derived chemokine elicit Th2 responses and promote specific humoral immunity. J Clin Invest 2001; 108: 917–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su H, Messer R, Whitmire W, Fischer E, Portis JC, Caldwell HD . Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable Chlamydiae. J Exp Med 1998; 188: 809–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bourguin I, Moser M, Buzoni-Gatel D et al. Murine dendritic cells pulsed in vitro with Toxoplasma gondii antigens induce protective immunity in vivo. Infect Immun 1998; 66: 4867–4874.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barratt-Boyes SM, Zimmer MI, Harshyne LA et al. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J Immunol 2000; 164: 2487–2495.

    Article  CAS  PubMed  Google Scholar 

  44. De Vries IJ, Krooshoop DJ, Scharenborg NM et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63: 12–17.

    CAS  PubMed  Google Scholar 

  45. Kuribayashi K, Tsukiyama M, Takenaka T . Secretion patterns of Th1- and Th2-type cytokines in immune deviation caused by dendritic cells. Int Arch Allergy Immunol 1997; 114: 30–37.

    Article  CAS  PubMed  Google Scholar 

  46. Bacci A, Montagnoli C, Perruccio K et al. Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J Immunol 2002; 168: 2904–2913.

    Article  CAS  PubMed  Google Scholar 

  47. Bozza S, Gaziano R, Lipford GB et al. Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect 2002; 4: 1281–1290.

    Article  CAS  PubMed  Google Scholar 

  48. Bozza S, Perruccio K, Montagnoli C et al. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 2003; 102: 3807–3814.

    Article  CAS  PubMed  Google Scholar 

  49. Decken K, Kohler G, Palmer-Lehmann K et al. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 1998; 55: 4994–5000.

    Google Scholar 

  50. Gilboa E . Immunotherapy of cancer with genetically modified tumor vaccines. Semin Oncol 1996; 23: 101–107.

    CAS  PubMed  Google Scholar 

  51. Pisarev V, Yu B, Salup R, Sherman S, Altieri DC, Gabrilovich DI . Full-length dominant-negative survivin for cancer immunotherapy. Clin Cancer Res 2003; 9: 6523–6533.

    CAS  PubMed  Google Scholar 

  52. Zhang L, Tang Y, Akbulut H, Zelterman D, Linton PJ, Deisseroth AB . An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc Natl Acad Sci USA 2003; 100: 15101–15106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Grazziutti B, Przepiorka D, Rex JH, Braunschweig I, Vadhan-Raj S, Savary CA . Lymphocyte stimulation dendritic cell-mediated stimulation of the in vitro lymphocyte response to Aspergillus. Bone Marrow Transplant 2001; 27: 647–652.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang ZL, Zou WG, Luo CX et al. An armed oncolytic adenovirus system, ZD55-gene, demonstrating potent antitumoral efficacy. Cell Res 2003; 13: 481–489.

    Article  CAS  PubMed  Google Scholar 

  55. Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  PubMed  Google Scholar 

  56. Sisto F, Miluzio A, Leopardi O, Mirra M, Boelaert JR, Taramelli D . Differential cytokine pattern in the spleens and livers of BALB/c mice infected with Penicillium marneffei: protective role of gamma interferon. Infect Immun 2003; 71: 465–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Health Care Systems (Bai Ren Project, Grant 98BR030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, C., Qu, J., He, L. et al. Dendritic cells transduced with an adenovirus vector encoding interleukin-12 are a potent vaccine for invasive pulmonary aspergillosis. Genes Immun 6, 103–114 (2005). https://doi.org/10.1038/sj.gene.6364167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364167

Keywords

This article is cited by

Search

Quick links